| /* |
| * pass1b.c --- Pass #1b of e2fsck |
| * |
| * This file contains pass1B, pass1C, and pass1D of e2fsck. They are |
| * only invoked if pass 1 discovered blocks which are in use by more |
| * than one inode. |
| * |
| * Pass1B scans the data blocks of all the inodes again, generating a |
| * complete list of duplicate blocks and which inodes have claimed |
| * them. |
| * |
| * Pass1C does a tree-traversal of the filesystem, to determine the |
| * parent directories of these inodes. This step is necessary so that |
| * e2fsck can print out the pathnames of affected inodes. |
| * |
| * Pass1D is a reconciliation pass. For each inode with duplicate |
| * blocks, the user is prompted if s/he would like to clone the file |
| * (so that the file gets a fresh copy of the duplicated blocks) or |
| * simply to delete the file. |
| * |
| * Copyright (C) 1993, 1994, 1995, 1996, 1997 Theodore Ts'o. |
| * |
| * %Begin-Header% |
| * This file may be redistributed under the terms of the GNU Public |
| * License. |
| * %End-Header% |
| * |
| */ |
| |
| #include "config.h" |
| #include <time.h> |
| #ifdef HAVE_ERRNO_H |
| #include <errno.h> |
| #endif |
| |
| #ifdef HAVE_INTTYPES_H |
| #include <inttypes.h> |
| #endif |
| |
| #ifndef HAVE_INTPTR_T |
| typedef long intptr_t; |
| #endif |
| |
| /* Needed for architectures where sizeof(int) != sizeof(void *) */ |
| #define INT_TO_VOIDPTR(val) ((void *)(intptr_t)(val)) |
| #define VOIDPTR_TO_INT(ptr) ((int)(intptr_t)(ptr)) |
| |
| #include <et/com_err.h> |
| #include "e2fsck.h" |
| |
| #include "problem.h" |
| #include "support/dict.h" |
| |
| /* Define an extension to the ext2 library's block count information */ |
| #define BLOCK_COUNT_EXTATTR (-5) |
| |
| struct cluster_el { |
| blk64_t cluster; |
| struct cluster_el *next; |
| }; |
| |
| struct inode_el { |
| ext2_ino_t inode; |
| struct inode_el *next; |
| }; |
| |
| struct dup_cluster { |
| int num_bad; |
| struct inode_el *inode_list; |
| }; |
| |
| /* |
| * This structure stores information about a particular inode which |
| * is sharing blocks with other inodes. This information is collected |
| * to display to the user, so that the user knows what files he or she |
| * is dealing with, when trying to decide how to resolve the conflict |
| * of multiply-claimed blocks. |
| */ |
| struct dup_inode { |
| ext2_ino_t dir; |
| int num_dupblocks; |
| struct ext2_inode_large inode; |
| struct cluster_el *cluster_list; |
| }; |
| |
| static int process_pass1b_block(ext2_filsys fs, blk64_t *blocknr, |
| e2_blkcnt_t blockcnt, blk64_t ref_blk, |
| int ref_offset, void *priv_data); |
| static void delete_file(e2fsck_t ctx, ext2_ino_t ino, |
| struct dup_inode *dp, char *block_buf); |
| static errcode_t clone_file(e2fsck_t ctx, ext2_ino_t ino, |
| struct dup_inode *dp, char* block_buf); |
| static int check_if_fs_block(e2fsck_t ctx, blk64_t test_block); |
| static int check_if_fs_cluster(e2fsck_t ctx, blk64_t cluster); |
| |
| static void pass1b(e2fsck_t ctx, char *block_buf); |
| static void pass1c(e2fsck_t ctx, char *block_buf); |
| static void pass1d(e2fsck_t ctx, char *block_buf); |
| |
| static int dup_inode_count = 0; |
| static int dup_inode_founddir = 0; |
| |
| static dict_t clstr_dict, ino_dict; |
| |
| static ext2fs_inode_bitmap inode_dup_map; |
| |
| static int dict_int_cmp(const void *a, const void *b) |
| { |
| intptr_t ia, ib; |
| |
| ia = (intptr_t)a; |
| ib = (intptr_t)b; |
| |
| return (ia-ib); |
| } |
| |
| /* |
| * Add a duplicate block record |
| */ |
| static void add_dupe(e2fsck_t ctx, ext2_ino_t ino, blk64_t cluster, |
| struct ext2_inode_large *inode) |
| { |
| dnode_t *n; |
| struct dup_cluster *db; |
| struct dup_inode *di; |
| struct cluster_el *cluster_el; |
| struct inode_el *ino_el; |
| |
| n = dict_lookup(&clstr_dict, INT_TO_VOIDPTR(cluster)); |
| if (n) |
| db = (struct dup_cluster *) dnode_get(n); |
| else { |
| db = (struct dup_cluster *) e2fsck_allocate_memory(ctx, |
| sizeof(struct dup_cluster), "duplicate cluster header"); |
| db->num_bad = 0; |
| db->inode_list = 0; |
| dict_alloc_insert(&clstr_dict, INT_TO_VOIDPTR(cluster), db); |
| } |
| ino_el = (struct inode_el *) e2fsck_allocate_memory(ctx, |
| sizeof(struct inode_el), "inode element"); |
| ino_el->inode = ino; |
| ino_el->next = db->inode_list; |
| db->inode_list = ino_el; |
| db->num_bad++; |
| |
| n = dict_lookup(&ino_dict, INT_TO_VOIDPTR(ino)); |
| if (n) |
| di = (struct dup_inode *) dnode_get(n); |
| else { |
| di = (struct dup_inode *) e2fsck_allocate_memory(ctx, |
| sizeof(struct dup_inode), "duplicate inode header"); |
| if (ino == EXT2_ROOT_INO) { |
| di->dir = EXT2_ROOT_INO; |
| dup_inode_founddir++; |
| } else |
| di->dir = 0; |
| |
| di->num_dupblocks = 0; |
| di->cluster_list = 0; |
| di->inode = *inode; |
| dict_alloc_insert(&ino_dict, INT_TO_VOIDPTR(ino), di); |
| } |
| cluster_el = (struct cluster_el *) e2fsck_allocate_memory(ctx, |
| sizeof(struct cluster_el), "cluster element"); |
| cluster_el->cluster = cluster; |
| cluster_el->next = di->cluster_list; |
| di->cluster_list = cluster_el; |
| di->num_dupblocks++; |
| } |
| |
| /* |
| * Free a duplicate inode record |
| */ |
| static void inode_dnode_free(dnode_t *node, |
| void *context EXT2FS_ATTR((unused))) |
| { |
| struct dup_inode *di; |
| struct cluster_el *p, *next; |
| |
| di = (struct dup_inode *) dnode_get(node); |
| for (p = di->cluster_list; p; p = next) { |
| next = p->next; |
| free(p); |
| } |
| free(di); |
| free(node); |
| } |
| |
| /* |
| * Free a duplicate cluster record |
| */ |
| static void cluster_dnode_free(dnode_t *node, |
| void *context EXT2FS_ATTR((unused))) |
| { |
| struct dup_cluster *dc; |
| struct inode_el *p, *next; |
| |
| dc = (struct dup_cluster *) dnode_get(node); |
| for (p = dc->inode_list; p; p = next) { |
| next = p->next; |
| free(p); |
| } |
| free(dc); |
| free(node); |
| } |
| |
| |
| /* |
| * Main procedure for handling duplicate blocks |
| */ |
| void e2fsck_pass1_dupblocks(e2fsck_t ctx, char *block_buf) |
| { |
| ext2_filsys fs = ctx->fs; |
| struct problem_context pctx; |
| #ifdef RESOURCE_TRACK |
| struct resource_track rtrack; |
| #endif |
| |
| clear_problem_context(&pctx); |
| |
| pctx.errcode = e2fsck_allocate_inode_bitmap(fs, |
| _("multiply claimed inode map"), |
| EXT2FS_BMAP64_RBTREE, "inode_dup_map", |
| &inode_dup_map); |
| if (pctx.errcode) { |
| fix_problem(ctx, PR_1B_ALLOCATE_IBITMAP_ERROR, &pctx); |
| ctx->flags |= E2F_FLAG_ABORT; |
| return; |
| } |
| |
| dict_init(&ino_dict, DICTCOUNT_T_MAX, dict_int_cmp); |
| dict_init(&clstr_dict, DICTCOUNT_T_MAX, dict_int_cmp); |
| dict_set_allocator(&ino_dict, NULL, inode_dnode_free, NULL); |
| dict_set_allocator(&clstr_dict, NULL, cluster_dnode_free, NULL); |
| |
| init_resource_track(&rtrack, ctx->fs->io); |
| pass1b(ctx, block_buf); |
| print_resource_track(ctx, "Pass 1b", &rtrack, ctx->fs->io); |
| |
| init_resource_track(&rtrack, ctx->fs->io); |
| pass1c(ctx, block_buf); |
| print_resource_track(ctx, "Pass 1c", &rtrack, ctx->fs->io); |
| |
| init_resource_track(&rtrack, ctx->fs->io); |
| pass1d(ctx, block_buf); |
| print_resource_track(ctx, "Pass 1d", &rtrack, ctx->fs->io); |
| |
| /* |
| * Time to free all of the accumulated data structures that we |
| * don't need anymore. |
| */ |
| dict_free_nodes(&ino_dict); |
| dict_free_nodes(&clstr_dict); |
| ext2fs_free_inode_bitmap(inode_dup_map); |
| } |
| |
| /* |
| * Scan the inodes looking for inodes that contain duplicate blocks. |
| */ |
| struct process_block_struct { |
| e2fsck_t ctx; |
| ext2_ino_t ino; |
| int dup_blocks; |
| blk64_t cur_cluster, phys_cluster; |
| blk64_t last_blk; |
| struct ext2_inode_large *inode; |
| struct problem_context *pctx; |
| }; |
| |
| static void pass1b(e2fsck_t ctx, char *block_buf) |
| { |
| ext2_filsys fs = ctx->fs; |
| ext2_ino_t ino = 0; |
| struct ext2_inode_large inode; |
| ext2_inode_scan scan; |
| struct process_block_struct pb; |
| struct problem_context pctx; |
| problem_t op; |
| |
| clear_problem_context(&pctx); |
| |
| if (!(ctx->options & E2F_OPT_PREEN)) |
| fix_problem(ctx, PR_1B_PASS_HEADER, &pctx); |
| pctx.errcode = ext2fs_open_inode_scan(fs, ctx->inode_buffer_blocks, |
| &scan); |
| if (pctx.errcode) { |
| fix_problem(ctx, PR_1B_ISCAN_ERROR, &pctx); |
| ctx->flags |= E2F_FLAG_ABORT; |
| return; |
| } |
| ctx->stashed_inode = EXT2_INODE(&inode); |
| pb.ctx = ctx; |
| pb.pctx = &pctx; |
| pctx.str = "pass1b"; |
| while (1) { |
| if (ino % (fs->super->s_inodes_per_group * 4) == 1) { |
| if (e2fsck_mmp_update(fs)) |
| fatal_error(ctx, 0); |
| } |
| pctx.errcode = ext2fs_get_next_inode_full(scan, &ino, |
| EXT2_INODE(&inode), sizeof(inode)); |
| if (pctx.errcode == EXT2_ET_BAD_BLOCK_IN_INODE_TABLE) |
| continue; |
| if (pctx.errcode) { |
| pctx.ino = ino; |
| fix_problem(ctx, PR_1B_ISCAN_ERROR, &pctx); |
| ctx->flags |= E2F_FLAG_ABORT; |
| return; |
| } |
| if (!ino) |
| break; |
| pctx.ino = ctx->stashed_ino = ino; |
| if ((ino != EXT2_BAD_INO) && |
| !ext2fs_test_inode_bitmap2(ctx->inode_used_map, ino)) |
| continue; |
| |
| pb.ino = ino; |
| pb.dup_blocks = 0; |
| pb.inode = &inode; |
| pb.cur_cluster = ~0; |
| pb.phys_cluster = ~0; |
| pb.last_blk = 0; |
| pb.pctx->blk = pb.pctx->blk2 = 0; |
| |
| if (ext2fs_inode_has_valid_blocks2(fs, EXT2_INODE(&inode)) || |
| (ino == EXT2_BAD_INO)) |
| pctx.errcode = ext2fs_block_iterate3(fs, ino, |
| BLOCK_FLAG_READ_ONLY, block_buf, |
| process_pass1b_block, &pb); |
| /* If the feature is not set, attrs will be cleared later anyway */ |
| if (ext2fs_has_feature_xattr(fs->super) && |
| ext2fs_file_acl_block(fs, EXT2_INODE(&inode))) { |
| blk64_t blk = ext2fs_file_acl_block(fs, EXT2_INODE(&inode)); |
| process_pass1b_block(fs, &blk, |
| BLOCK_COUNT_EXTATTR, 0, 0, &pb); |
| ext2fs_file_acl_block_set(fs, EXT2_INODE(&inode), blk); |
| } |
| if (pb.dup_blocks) { |
| if (ino != EXT2_BAD_INO) { |
| op = pctx.blk == pctx.blk2 ? |
| PR_1B_DUP_BLOCK : PR_1B_DUP_RANGE; |
| fix_problem(ctx, op, pb.pctx); |
| } |
| end_problem_latch(ctx, PR_LATCH_DBLOCK); |
| if (ino >= EXT2_FIRST_INODE(fs->super) || |
| ino == EXT2_ROOT_INO) |
| dup_inode_count++; |
| } |
| if (pctx.errcode) |
| fix_problem(ctx, PR_1B_BLOCK_ITERATE, &pctx); |
| } |
| ext2fs_close_inode_scan(scan); |
| e2fsck_use_inode_shortcuts(ctx, 0); |
| } |
| |
| static int process_pass1b_block(ext2_filsys fs EXT2FS_ATTR((unused)), |
| blk64_t *block_nr, |
| e2_blkcnt_t blockcnt, |
| blk64_t ref_blk EXT2FS_ATTR((unused)), |
| int ref_offset EXT2FS_ATTR((unused)), |
| void *priv_data) |
| { |
| struct process_block_struct *p; |
| e2fsck_t ctx; |
| blk64_t lc, pc; |
| problem_t op; |
| |
| if (*block_nr == 0) |
| return 0; |
| p = (struct process_block_struct *) priv_data; |
| ctx = p->ctx; |
| lc = EXT2FS_B2C(fs, blockcnt); |
| pc = EXT2FS_B2C(fs, *block_nr); |
| |
| if (!ext2fs_test_block_bitmap2(ctx->block_dup_map, *block_nr)) |
| goto finish; |
| |
| /* OK, this is a duplicate block */ |
| if (p->ino != EXT2_BAD_INO) { |
| if (p->last_blk + 1 != *block_nr) { |
| if (p->last_blk) { |
| op = p->pctx->blk == p->pctx->blk2 ? |
| PR_1B_DUP_BLOCK : |
| PR_1B_DUP_RANGE; |
| fix_problem(ctx, op, p->pctx); |
| } |
| p->pctx->blk = *block_nr; |
| } |
| p->pctx->blk2 = *block_nr; |
| p->last_blk = *block_nr; |
| } |
| p->dup_blocks++; |
| ext2fs_mark_inode_bitmap2(inode_dup_map, p->ino); |
| |
| /* |
| * Qualifications for submitting a block for duplicate processing: |
| * It's an extent/indirect block (and has a negative logical offset); |
| * we've crossed a logical cluster boundary; or the physical cluster |
| * suddenly changed, which indicates that blocks in a logical cluster |
| * are mapped to multiple physical clusters. |
| */ |
| if (blockcnt < 0 || lc != p->cur_cluster || pc != p->phys_cluster) |
| add_dupe(ctx, p->ino, EXT2FS_B2C(fs, *block_nr), p->inode); |
| |
| finish: |
| p->cur_cluster = lc; |
| p->phys_cluster = pc; |
| return 0; |
| } |
| |
| /* |
| * Pass 1c: Scan directories for inodes with duplicate blocks. This |
| * is used so that we can print pathnames when prompting the user for |
| * what to do. |
| */ |
| struct search_dir_struct { |
| int count; |
| ext2_ino_t first_inode; |
| ext2_ino_t max_inode; |
| }; |
| |
| static int search_dirent_proc(ext2_ino_t dir, int entry, |
| struct ext2_dir_entry *dirent, |
| int offset EXT2FS_ATTR((unused)), |
| int blocksize EXT2FS_ATTR((unused)), |
| char *buf EXT2FS_ATTR((unused)), |
| void *priv_data) |
| { |
| struct search_dir_struct *sd; |
| struct dup_inode *p; |
| dnode_t *n; |
| |
| sd = (struct search_dir_struct *) priv_data; |
| |
| if (dirent->inode > sd->max_inode) |
| /* Should abort this inode, but not everything */ |
| return 0; |
| |
| if ((dirent->inode < sd->first_inode) || (entry < DIRENT_OTHER_FILE) || |
| !ext2fs_test_inode_bitmap2(inode_dup_map, dirent->inode)) |
| return 0; |
| |
| n = dict_lookup(&ino_dict, INT_TO_VOIDPTR(dirent->inode)); |
| if (!n) |
| return 0; |
| p = (struct dup_inode *) dnode_get(n); |
| if (!p->dir) { |
| p->dir = dir; |
| sd->count--; |
| } |
| |
| return(sd->count ? 0 : DIRENT_ABORT); |
| } |
| |
| |
| static void pass1c(e2fsck_t ctx, char *block_buf) |
| { |
| ext2_filsys fs = ctx->fs; |
| struct search_dir_struct sd; |
| struct problem_context pctx; |
| |
| clear_problem_context(&pctx); |
| |
| if (!(ctx->options & E2F_OPT_PREEN)) |
| fix_problem(ctx, PR_1C_PASS_HEADER, &pctx); |
| |
| /* |
| * Search through all directories to translate inodes to names |
| * (by searching for the containing directory for that inode.) |
| */ |
| sd.count = dup_inode_count - dup_inode_founddir; |
| sd.first_inode = EXT2_FIRST_INODE(fs->super); |
| sd.max_inode = fs->super->s_inodes_count; |
| ext2fs_dblist_dir_iterate(fs->dblist, 0, block_buf, |
| search_dirent_proc, &sd); |
| } |
| |
| static void pass1d(e2fsck_t ctx, char *block_buf) |
| { |
| ext2_filsys fs = ctx->fs; |
| struct dup_inode *p, *t; |
| struct dup_cluster *q; |
| ext2_ino_t *shared, ino; |
| int shared_len; |
| int i; |
| int file_ok; |
| int meta_data = 0; |
| struct problem_context pctx; |
| dnode_t *n, *m; |
| struct cluster_el *s; |
| struct inode_el *r; |
| |
| clear_problem_context(&pctx); |
| |
| if (!(ctx->options & E2F_OPT_PREEN)) |
| fix_problem(ctx, PR_1D_PASS_HEADER, &pctx); |
| e2fsck_read_bitmaps(ctx); |
| |
| pctx.num = dup_inode_count; /* dict_count(&ino_dict); */ |
| fix_problem(ctx, PR_1D_NUM_DUP_INODES, &pctx); |
| shared = (ext2_ino_t *) e2fsck_allocate_memory(ctx, |
| sizeof(ext2_ino_t) * dict_count(&ino_dict), |
| "Shared inode list"); |
| for (n = dict_first(&ino_dict); n; n = dict_next(&ino_dict, n)) { |
| p = (struct dup_inode *) dnode_get(n); |
| shared_len = 0; |
| file_ok = 1; |
| ino = (ext2_ino_t)VOIDPTR_TO_INT(dnode_getkey(n)); |
| if (ino == EXT2_BAD_INO || ino == EXT2_RESIZE_INO) |
| continue; |
| |
| /* |
| * Find all of the inodes which share blocks with this |
| * one. First we find all of the duplicate blocks |
| * belonging to this inode, and then search each block |
| * get the list of inodes, and merge them together. |
| */ |
| for (s = p->cluster_list; s; s = s->next) { |
| m = dict_lookup(&clstr_dict, |
| INT_TO_VOIDPTR(s->cluster)); |
| if (!m) |
| continue; /* Should never happen... */ |
| q = (struct dup_cluster *) dnode_get(m); |
| if (q->num_bad > 1) |
| file_ok = 0; |
| if (check_if_fs_cluster(ctx, s->cluster)) { |
| file_ok = 0; |
| meta_data = 1; |
| } |
| |
| /* |
| * Add all inodes used by this block to the |
| * shared[] --- which is a unique list, so |
| * if an inode is already in shared[], don't |
| * add it again. |
| */ |
| for (r = q->inode_list; r; r = r->next) { |
| if (r->inode == ino) |
| continue; |
| for (i = 0; i < shared_len; i++) |
| if (shared[i] == r->inode) |
| break; |
| if (i == shared_len) { |
| shared[shared_len++] = r->inode; |
| } |
| } |
| } |
| |
| /* |
| * Report the inode that we are working on |
| */ |
| pctx.inode = EXT2_INODE(&p->inode); |
| pctx.ino = ino; |
| pctx.dir = p->dir; |
| pctx.blkcount = p->num_dupblocks; |
| pctx.num = meta_data ? shared_len+1 : shared_len; |
| fix_problem(ctx, PR_1D_DUP_FILE, &pctx); |
| pctx.blkcount = 0; |
| pctx.num = 0; |
| |
| if (meta_data) |
| fix_problem(ctx, PR_1D_SHARE_METADATA, &pctx); |
| |
| for (i = 0; i < shared_len; i++) { |
| m = dict_lookup(&ino_dict, INT_TO_VOIDPTR(shared[i])); |
| if (!m) |
| continue; /* should never happen */ |
| t = (struct dup_inode *) dnode_get(m); |
| /* |
| * Report the inode that we are sharing with |
| */ |
| pctx.inode = EXT2_INODE(&t->inode); |
| pctx.ino = shared[i]; |
| pctx.dir = t->dir; |
| fix_problem(ctx, PR_1D_DUP_FILE_LIST, &pctx); |
| } |
| /* |
| * Even if the file shares blocks with itself, we still need to |
| * clone the blocks. |
| */ |
| if (file_ok && (meta_data ? shared_len+1 : shared_len) != 0) { |
| fix_problem(ctx, PR_1D_DUP_BLOCKS_DEALT, &pctx); |
| continue; |
| } |
| if (fix_problem(ctx, PR_1D_CLONE_QUESTION, &pctx)) { |
| pctx.errcode = clone_file(ctx, ino, p, block_buf); |
| if (pctx.errcode) |
| fix_problem(ctx, PR_1D_CLONE_ERROR, &pctx); |
| else |
| continue; |
| } |
| if (fix_problem(ctx, PR_1D_DELETE_QUESTION, &pctx)) |
| delete_file(ctx, ino, p, block_buf); |
| else |
| ext2fs_unmark_valid(fs); |
| } |
| ext2fs_free_mem(&shared); |
| } |
| |
| /* |
| * Drop the refcount on the dup_block structure, and clear the entry |
| * in the block_dup_map if appropriate. |
| */ |
| static void decrement_badcount(e2fsck_t ctx, blk64_t block, |
| struct dup_cluster *p) |
| { |
| p->num_bad--; |
| if (p->num_bad <= 0 || |
| (p->num_bad == 1 && !check_if_fs_block(ctx, block))) { |
| if (check_if_fs_cluster(ctx, EXT2FS_B2C(ctx->fs, block))) |
| return; |
| ext2fs_unmark_block_bitmap2(ctx->block_dup_map, block); |
| } |
| } |
| |
| static int delete_file_block(ext2_filsys fs, |
| blk64_t *block_nr, |
| e2_blkcnt_t blockcnt, |
| blk64_t ref_block EXT2FS_ATTR((unused)), |
| int ref_offset EXT2FS_ATTR((unused)), |
| void *priv_data) |
| { |
| struct process_block_struct *pb; |
| struct dup_cluster *p; |
| dnode_t *n; |
| e2fsck_t ctx; |
| blk64_t c, lc; |
| |
| pb = (struct process_block_struct *) priv_data; |
| ctx = pb->ctx; |
| |
| if (*block_nr == 0) |
| return 0; |
| |
| c = EXT2FS_B2C(fs, *block_nr); |
| lc = EXT2FS_B2C(fs, blockcnt); |
| if (ext2fs_test_block_bitmap2(ctx->block_dup_map, *block_nr)) { |
| n = dict_lookup(&clstr_dict, INT_TO_VOIDPTR(c)); |
| if (n) { |
| p = (struct dup_cluster *) dnode_get(n); |
| if (lc != pb->cur_cluster) |
| decrement_badcount(ctx, *block_nr, p); |
| } else |
| com_err("delete_file_block", 0, |
| _("internal error: can't find dup_blk for %llu\n"), |
| *block_nr); |
| } else { |
| if ((*block_nr % EXT2FS_CLUSTER_RATIO(ctx->fs)) == 0) |
| ext2fs_block_alloc_stats2(fs, *block_nr, -1); |
| pb->dup_blocks++; |
| } |
| pb->cur_cluster = lc; |
| |
| return 0; |
| } |
| |
| static void delete_file(e2fsck_t ctx, ext2_ino_t ino, |
| struct dup_inode *dp, char* block_buf) |
| { |
| ext2_filsys fs = ctx->fs; |
| struct process_block_struct pb; |
| struct problem_context pctx; |
| unsigned int count; |
| |
| clear_problem_context(&pctx); |
| pctx.ino = pb.ino = ino; |
| pb.dup_blocks = 0; |
| pb.ctx = ctx; |
| pctx.str = "delete_file"; |
| pb.cur_cluster = ~0; |
| |
| if (ext2fs_inode_has_valid_blocks2(fs, EXT2_INODE(&dp->inode))) |
| pctx.errcode = ext2fs_block_iterate3(fs, ino, |
| BLOCK_FLAG_READ_ONLY, |
| block_buf, |
| delete_file_block, &pb); |
| if (pctx.errcode) |
| fix_problem(ctx, PR_1B_BLOCK_ITERATE, &pctx); |
| if (ctx->inode_bad_map) |
| ext2fs_unmark_inode_bitmap2(ctx->inode_bad_map, ino); |
| ext2fs_inode_alloc_stats2(fs, ino, -1, LINUX_S_ISDIR(dp->inode.i_mode)); |
| quota_data_sub(ctx->qctx, &dp->inode, ino, |
| pb.dup_blocks * fs->blocksize); |
| quota_data_inodes(ctx->qctx, &dp->inode, ino, -1); |
| |
| /* Inode may have changed by block_iterate, so reread it */ |
| e2fsck_read_inode_full(ctx, ino, EXT2_INODE(&dp->inode), |
| sizeof(dp->inode), "delete_file"); |
| e2fsck_clear_inode(ctx, ino, EXT2_INODE(&dp->inode), 0, "delete_file"); |
| if (ext2fs_file_acl_block(fs, EXT2_INODE(&dp->inode)) && |
| ext2fs_has_feature_xattr(fs->super)) { |
| blk64_t file_acl_block = ext2fs_file_acl_block(fs, |
| EXT2_INODE(&dp->inode)); |
| |
| count = 1; |
| pctx.errcode = ext2fs_adjust_ea_refcount3(fs, file_acl_block, |
| block_buf, -1, &count, ino); |
| if (pctx.errcode == EXT2_ET_BAD_EA_BLOCK_NUM) { |
| pctx.errcode = 0; |
| count = 1; |
| } |
| if (pctx.errcode) { |
| pctx.blk = file_acl_block; |
| fix_problem(ctx, PR_1B_ADJ_EA_REFCOUNT, &pctx); |
| } |
| /* |
| * If the count is zero, then arrange to have the |
| * block deleted. If the block is in the block_dup_map, |
| * also call delete_file_block since it will take care |
| * of keeping the accounting straight. |
| */ |
| if ((count == 0) || |
| ext2fs_test_block_bitmap2(ctx->block_dup_map, |
| file_acl_block)) { |
| delete_file_block(fs, &file_acl_block, |
| BLOCK_COUNT_EXTATTR, 0, 0, &pb); |
| ext2fs_file_acl_block_set(fs, EXT2_INODE(&dp->inode), |
| file_acl_block); |
| quota_data_sub(ctx->qctx, &dp->inode, ino, |
| fs->blocksize); |
| } |
| } |
| } |
| |
| struct clone_struct { |
| errcode_t errcode; |
| blk64_t dup_cluster; |
| blk64_t alloc_block; |
| ext2_ino_t dir, ino; |
| char *buf; |
| e2fsck_t ctx; |
| struct ext2_inode_large *inode; |
| |
| struct dup_cluster *save_dup_cluster; |
| blk64_t save_blocknr; |
| }; |
| |
| /* |
| * Decrement the bad count *after* we've shown that (a) we can allocate a |
| * replacement block and (b) remap the file blocks. Unfortunately, there's no |
| * way to find out if the remap succeeded until either the next |
| * clone_file_block() call (an error when remapping the block after returning |
| * BLOCK_CHANGED will halt the iteration) or after block_iterate() returns. |
| * Otherwise, it's possible that we decrease the badcount once in preparation |
| * to remap, then the remap fails (either we can't find a replacement block or |
| * we have to split the extent tree and can't find a new extent block), so we |
| * delete the file, which decreases the badcount again. |
| */ |
| static void deferred_dec_badcount(struct clone_struct *cs) |
| { |
| if (!cs->save_dup_cluster) |
| return; |
| decrement_badcount(cs->ctx, cs->save_blocknr, cs->save_dup_cluster); |
| cs->save_dup_cluster = NULL; |
| } |
| |
| static int clone_file_block(ext2_filsys fs, |
| blk64_t *block_nr, |
| e2_blkcnt_t blockcnt, |
| blk64_t ref_block EXT2FS_ATTR((unused)), |
| int ref_offset EXT2FS_ATTR((unused)), |
| void *priv_data) |
| { |
| struct dup_cluster *p = NULL; |
| blk64_t new_block; |
| errcode_t retval; |
| struct clone_struct *cs = (struct clone_struct *) priv_data; |
| dnode_t *n; |
| e2fsck_t ctx; |
| blk64_t c; |
| int is_meta = 0; |
| |
| ctx = cs->ctx; |
| deferred_dec_badcount(cs); |
| |
| if (*block_nr == 0) |
| return 0; |
| |
| c = EXT2FS_B2C(fs, blockcnt); |
| if (check_if_fs_cluster(ctx, EXT2FS_B2C(fs, *block_nr))) |
| is_meta = 1; |
| |
| if (c == cs->dup_cluster && cs->alloc_block) { |
| new_block = cs->alloc_block; |
| goto got_block; |
| } |
| |
| if (ext2fs_test_block_bitmap2(ctx->block_dup_map, *block_nr)) { |
| n = dict_lookup(&clstr_dict, |
| INT_TO_VOIDPTR(EXT2FS_B2C(fs, *block_nr))); |
| if (!n) { |
| com_err("clone_file_block", 0, |
| _("internal error: can't find dup_blk for %llu\n"), |
| *block_nr); |
| return 0; |
| } |
| |
| p = (struct dup_cluster *) dnode_get(n); |
| |
| cs->dup_cluster = c; |
| /* |
| * Let's try an implied cluster allocation. If we get the same |
| * cluster back, then we need to find a new block; otherwise, |
| * we're merely fixing the problem of one logical cluster being |
| * mapped to multiple physical clusters. |
| */ |
| new_block = 0; |
| retval = ext2fs_map_cluster_block(fs, cs->ino, |
| EXT2_INODE(cs->inode), |
| blockcnt, &new_block); |
| if (retval == 0 && new_block != 0 && |
| EXT2FS_B2C(ctx->fs, new_block) != |
| EXT2FS_B2C(ctx->fs, *block_nr)) |
| goto cluster_alloc_ok; |
| retval = ext2fs_new_block2(fs, 0, ctx->block_found_map, |
| &new_block); |
| if (retval) { |
| cs->errcode = retval; |
| return BLOCK_ABORT; |
| } |
| cluster_alloc_ok: |
| cs->alloc_block = new_block; |
| |
| got_block: |
| new_block &= ~EXT2FS_CLUSTER_MASK(fs); |
| new_block += EXT2FS_CLUSTER_MASK(fs) & blockcnt; |
| if (cs->dir && (blockcnt >= 0)) { |
| retval = ext2fs_set_dir_block2(fs->dblist, |
| cs->dir, new_block, blockcnt); |
| if (retval) { |
| cs->errcode = retval; |
| return BLOCK_ABORT; |
| } |
| } |
| #if 0 |
| printf("Cloning block #%lld from %llu to %llu\n", |
| blockcnt, *block_nr, new_block); |
| #endif |
| retval = io_channel_read_blk64(fs->io, *block_nr, 1, cs->buf); |
| if (retval) { |
| cs->errcode = retval; |
| return BLOCK_ABORT; |
| } |
| retval = io_channel_write_blk64(fs->io, new_block, 1, cs->buf); |
| if (retval) { |
| cs->errcode = retval; |
| return BLOCK_ABORT; |
| } |
| cs->save_dup_cluster = (is_meta ? NULL : p); |
| cs->save_blocknr = *block_nr; |
| *block_nr = new_block; |
| ext2fs_mark_block_bitmap2(ctx->block_found_map, new_block); |
| ext2fs_mark_block_bitmap2(fs->block_map, new_block); |
| return BLOCK_CHANGED; |
| } |
| return 0; |
| } |
| |
| static errcode_t clone_file(e2fsck_t ctx, ext2_ino_t ino, |
| struct dup_inode *dp, char* block_buf) |
| { |
| ext2_filsys fs = ctx->fs; |
| errcode_t retval; |
| struct clone_struct cs; |
| struct problem_context pctx; |
| blk64_t blk, new_blk; |
| dnode_t *n; |
| struct inode_el *ino_el; |
| struct dup_cluster *dc; |
| struct dup_inode *di; |
| |
| clear_problem_context(&pctx); |
| cs.errcode = 0; |
| cs.dir = 0; |
| cs.dup_cluster = ~0; |
| cs.alloc_block = 0; |
| cs.ctx = ctx; |
| cs.ino = ino; |
| cs.inode = &dp->inode; |
| cs.save_dup_cluster = NULL; |
| cs.save_blocknr = 0; |
| retval = ext2fs_get_mem(fs->blocksize, &cs.buf); |
| if (retval) |
| return retval; |
| |
| if (ext2fs_test_inode_bitmap2(ctx->inode_dir_map, ino)) |
| cs.dir = ino; |
| |
| pctx.ino = ino; |
| pctx.str = "clone_file"; |
| if (ext2fs_inode_has_valid_blocks2(fs, EXT2_INODE(&dp->inode))) |
| pctx.errcode = ext2fs_block_iterate3(fs, ino, 0, block_buf, |
| clone_file_block, &cs); |
| deferred_dec_badcount(&cs); |
| ext2fs_mark_bb_dirty(fs); |
| if (pctx.errcode) { |
| fix_problem(ctx, PR_1B_BLOCK_ITERATE, &pctx); |
| retval = pctx.errcode; |
| goto errout; |
| } |
| if (cs.errcode) { |
| com_err("clone_file", cs.errcode, "%s", |
| _("returned from clone_file_block")); |
| retval = cs.errcode; |
| goto errout; |
| } |
| /* The inode may have changed on disk, so we have to re-read it */ |
| e2fsck_read_inode_full(ctx, ino, EXT2_INODE(&dp->inode), |
| sizeof(dp->inode), "clone file EA"); |
| blk = ext2fs_file_acl_block(fs, EXT2_INODE(&dp->inode)); |
| new_blk = blk; |
| if (blk && (clone_file_block(fs, &new_blk, |
| BLOCK_COUNT_EXTATTR, 0, 0, &cs) == |
| BLOCK_CHANGED)) { |
| ext2fs_file_acl_block_set(fs, EXT2_INODE(&dp->inode), new_blk); |
| e2fsck_write_inode_full(ctx, ino, EXT2_INODE(&dp->inode), |
| sizeof(dp->inode), "clone file EA"); |
| /* |
| * If we cloned the EA block, find all other inodes |
| * which refered to that EA block, and modify |
| * them to point to the new EA block. |
| */ |
| n = dict_lookup(&clstr_dict, |
| INT_TO_VOIDPTR(EXT2FS_B2C(fs, blk))); |
| if (!n) { |
| com_err("clone_file", 0, |
| _("internal error: couldn't lookup EA " |
| "block record for %llu"), blk); |
| retval = 0; /* OK to stumble on... */ |
| goto errout; |
| } |
| dc = (struct dup_cluster *) dnode_get(n); |
| for (ino_el = dc->inode_list; ino_el; ino_el = ino_el->next) { |
| if (ino_el->inode == ino) |
| continue; |
| n = dict_lookup(&ino_dict, INT_TO_VOIDPTR(ino_el->inode)); |
| if (!n) { |
| com_err("clone_file", 0, |
| _("internal error: couldn't lookup EA " |
| "inode record for %u"), |
| ino_el->inode); |
| retval = 0; /* OK to stumble on... */ |
| goto errout; |
| } |
| di = (struct dup_inode *) dnode_get(n); |
| if (ext2fs_file_acl_block(fs, |
| EXT2_INODE(&di->inode)) == blk) { |
| ext2fs_file_acl_block_set(fs, |
| EXT2_INODE(&di->inode), |
| ext2fs_file_acl_block(fs, EXT2_INODE(&dp->inode))); |
| e2fsck_write_inode_full(ctx, ino_el->inode, |
| EXT2_INODE(&di->inode), |
| sizeof(di->inode), "clone file EA"); |
| decrement_badcount(ctx, blk, dc); |
| } |
| } |
| } |
| retval = 0; |
| errout: |
| ext2fs_free_mem(&cs.buf); |
| return retval; |
| } |
| |
| /* |
| * This routine returns 1 if a block overlaps with one of the superblocks, |
| * group descriptors, inode bitmaps, or block bitmaps. |
| */ |
| static int check_if_fs_block(e2fsck_t ctx, blk64_t test_block) |
| { |
| ext2_filsys fs = ctx->fs; |
| blk64_t first_block; |
| dgrp_t i; |
| |
| first_block = fs->super->s_first_data_block; |
| for (i = 0; i < fs->group_desc_count; i++) { |
| |
| /* Check superblocks/block group descriptors */ |
| if (ext2fs_bg_has_super(fs, i)) { |
| if (test_block >= first_block && |
| (test_block <= first_block + fs->desc_blocks)) |
| return 1; |
| } |
| |
| /* Check the inode table */ |
| if ((ext2fs_inode_table_loc(fs, i)) && |
| (test_block >= ext2fs_inode_table_loc(fs, i)) && |
| (test_block < (ext2fs_inode_table_loc(fs, i) + |
| fs->inode_blocks_per_group))) |
| return 1; |
| |
| /* Check the bitmap blocks */ |
| if ((test_block == ext2fs_block_bitmap_loc(fs, i)) || |
| (test_block == ext2fs_inode_bitmap_loc(fs, i))) |
| return 1; |
| |
| first_block += fs->super->s_blocks_per_group; |
| } |
| return 0; |
| } |
| |
| /* |
| * This routine returns 1 if a cluster overlaps with one of the superblocks, |
| * group descriptors, inode bitmaps, or block bitmaps. |
| */ |
| static int check_if_fs_cluster(e2fsck_t ctx, blk64_t cluster) |
| { |
| ext2_filsys fs = ctx->fs; |
| blk64_t first_block; |
| dgrp_t i; |
| |
| first_block = fs->super->s_first_data_block; |
| for (i = 0; i < fs->group_desc_count; i++) { |
| |
| /* Check superblocks/block group descriptors */ |
| if (ext2fs_bg_has_super(fs, i)) { |
| if (cluster >= EXT2FS_B2C(fs, first_block) && |
| (cluster <= EXT2FS_B2C(fs, first_block + |
| fs->desc_blocks))) |
| return 1; |
| } |
| |
| /* Check the inode table */ |
| if ((ext2fs_inode_table_loc(fs, i)) && |
| (cluster >= EXT2FS_B2C(fs, |
| ext2fs_inode_table_loc(fs, i))) && |
| (cluster <= EXT2FS_B2C(fs, |
| ext2fs_inode_table_loc(fs, i) + |
| fs->inode_blocks_per_group - 1))) |
| return 1; |
| |
| /* Check the bitmap blocks */ |
| if ((cluster == EXT2FS_B2C(fs, |
| ext2fs_block_bitmap_loc(fs, i))) || |
| (cluster == EXT2FS_B2C(fs, |
| ext2fs_inode_bitmap_loc(fs, i)))) |
| return 1; |
| |
| first_block += fs->super->s_blocks_per_group; |
| } |
| return 0; |
| } |