blob: 9f60e63ef2ae555533c08d18f4712f26c3d03008 [file] [log] [blame]
/*
* Copyright (c) 2006 - 2009 Mellanox Technology Inc. All rights reserved.
* Copyright (C) 2008 - 2018 Bart Van Assche <bvanassche@acm.org>.
* Copyright (C) 2008 Vladislav Bolkhovitin <vst@vlnb.net>
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*/
#undef pr_fmt
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/ctype.h>
#include <linux/kthread.h>
#include <linux/string.h>
#include <linux/delay.h>
#if !defined(INSIDE_KERNEL_TREE)
#include <linux/version.h>
#endif
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 37)
#include <linux/atomic.h>
#else
#include <asm/atomic.h>
#endif
#include <rdma/ib_cache.h>
#include "ib_srpt.h"
#define LOG_PREFIX "ib_srpt" /* Prefix for SCST tracing macros. */
#if defined(INSIDE_KERNEL_TREE)
#include <scst/scst_debug.h>
#else
#include "scst_debug.h"
#endif
/* Name of this kernel module. */
#define DRV_NAME "ib_srpt"
#define DRV_VERSION "3.5.0" "#" __stringify(OFED_FLAVOR)
#define DRV_RELDATE "21 December 2020"
#if defined(CONFIG_SCST_DEBUG) || defined(CONFIG_SCST_TRACING)
/* Flags to be used in SCST debug tracing statements. */
#define DEFAULT_SRPT_TRACE_FLAGS (TRACE_OUT_OF_MEM | TRACE_MINOR \
| TRACE_MGMT | TRACE_SPECIAL)
/* Name of the entry that will be created under /proc/scsi_tgt/ib_srpt. */
#define SRPT_PROC_TRACE_LEVEL_NAME "trace_level"
#endif
#define DEFAULT_SRPT_ID_STRING "SCST SRP target"
MODULE_AUTHOR("Vu Pham and Bart Van Assche");
MODULE_DESCRIPTION("SCSI RDMA Protocol target driver "
"v" DRV_VERSION " (" DRV_RELDATE ")");
MODULE_LICENSE("Dual BSD/GPL");
MODULE_IMPORT_NS(SCST);
/*
* Global Variables
*/
static u64 srpt_service_guid;
static atomic_t srpt_device_count;
#if defined(CONFIG_SCST_DEBUG) || defined(CONFIG_SCST_TRACING)
static unsigned long trace_flag = DEFAULT_SRPT_TRACE_FLAGS;
module_param(trace_flag, long, 0644);
MODULE_PARM_DESC(trace_flag, "SCST trace flags.");
#endif
static u16 rdma_cm_port;
module_param(rdma_cm_port, short, 0444);
MODULE_PARM_DESC(rdma_cm_port, "Port number RDMA/CM will bind to.");
static unsigned int srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE;
module_param(srp_max_rdma_size, int, 0644);
MODULE_PARM_DESC(srp_max_rdma_size,
"Maximum size of SRP RDMA transfers for new connections.");
static unsigned int srp_max_req_size = DEFAULT_MAX_REQ_SIZE;
module_param(srp_max_req_size, int, 0444);
MODULE_PARM_DESC(srp_max_req_size,
"Maximum size of SRP request messages in bytes.");
static unsigned int srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE;
module_param(srp_max_rsp_size, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(srp_max_rsp_size,
"Maximum size of SRP response messages in bytes.");
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 31) \
|| defined(RHEL_MAJOR) && RHEL_MAJOR -0 <= 5
static int use_srq;
#else
static bool use_srq;
#endif
module_param(use_srq, bool, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(use_srq, "Whether or not to use SRQ");
static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE;
module_param(srpt_srq_size, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(srpt_srq_size,
"Shared receive queue (SRQ) size.");
static int srpt_sq_size = DEF_SRPT_SQ_SIZE;
module_param(srpt_sq_size, int, 0444);
MODULE_PARM_DESC(srpt_sq_size, "Per-channel send queue (SQ) size.");
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 31) \
|| defined(RHEL_MAJOR) && RHEL_MAJOR -0 <= 5
static int use_port_guid_in_session_name;
#else
static bool use_port_guid_in_session_name;
#endif
module_param(use_port_guid_in_session_name, bool, 0444);
MODULE_PARM_DESC(use_port_guid_in_session_name,
"Use target port ID in the session name such that"
" redundant paths between multiport systems can be masked.");
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 31) \
|| defined(RHEL_MAJOR) && RHEL_MAJOR -0 <= 5
static int use_node_guid_in_target_name;
#else
static bool use_node_guid_in_target_name;
#endif
module_param(use_node_guid_in_target_name, bool, 0444);
MODULE_PARM_DESC(use_node_guid_in_target_name,
"Use HCA node GUID as SCST target name.");
#if LINUX_VERSION_CODE < KERNEL_VERSION(4, 10, 0)
static int srpt_get_u64_x(char *buffer, struct kernel_param *kp)
#else
static int srpt_get_u64_x(char *buffer, const struct kernel_param *kp)
#endif
{
return sprintf(buffer, "0x%016llx", *(u64 *)kp->arg);
}
module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid,
0444);
MODULE_PARM_DESC(srpt_service_guid,
"Using this value for ioc_guid, id_ext, and cm_listen_id instead of using the node_guid of the first HCA.");
static unsigned int max_sge_delta;
module_param(max_sge_delta, uint, 0444);
MODULE_PARM_DESC(max_sge_delta, "Number to subtract from max_sge (obsolete).");
/*
* Note: changing any of the two constants below into SCST_CONTEXT_DIRECT is
* dangerous because it might cause IB completions to be processed too late
* ("IB completion for idx <n> has not been received in time").
*/
static const enum scst_exec_context srpt_new_iu_context = SCST_CONTEXT_THREAD;
static const enum scst_exec_context srpt_xmt_rsp_context = SCST_CONTEXT_THREAD;
static const enum scst_exec_context srpt_send_context = SCST_CONTEXT_DIRECT;
static struct ib_client srpt_client;
static struct scst_tgt_template srpt_template;
static struct workqueue_struct *srpt_wq;
static struct net *srpt_net_ns;
static struct rdma_cm_id *rdma_cm_id;
static void srpt_unmap_sg_to_ib_sge(struct srpt_rdma_ch *ch,
struct srpt_send_ioctx *ioctx);
static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch);
static void srpt_unregister_ch(struct srpt_rdma_ch *ch);
/*
* The only allowed channel state changes are those that change the channel
* state into a state with a higher numerical value. Hence the new > prev test.
*/
static bool srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new)
{
unsigned long flags;
enum rdma_ch_state prev;
bool changed = false;
spin_lock_irqsave(&ch->spinlock, flags);
prev = ch->state;
if (new > prev) {
ch->state = new;
changed = true;
}
spin_unlock_irqrestore(&ch->spinlock, flags);
return changed;
}
/*
* srpt_adjust_req_lim() - Adjust ch->req_lim and ch->req_lim_delta atomically.
*
* Returns the new value of ch->req_lim.
*/
static int srpt_adjust_req_lim(struct srpt_rdma_ch *ch, int req_lim_change,
int req_lim_delta_change)
{
int req_lim;
unsigned long flags;
spin_lock_irqsave(&ch->spinlock, flags);
ch->req_lim += req_lim_change;
req_lim = ch->req_lim;
ch->req_lim_delta += req_lim_delta_change;
spin_unlock_irqrestore(&ch->spinlock, flags);
return req_lim;
}
/*
* srpt_inc_req_lim() - Increase ch->req_lim and decrease ch->req_lim_delta.
*
* Returns one more than the previous value of ch->req_lim_delta.
*/
static int srpt_inc_req_lim(struct srpt_rdma_ch *ch)
{
int req_lim_delta;
unsigned long flags;
spin_lock_irqsave(&ch->spinlock, flags);
req_lim_delta = ch->req_lim_delta + 1;
ch->req_lim += req_lim_delta;
ch->req_lim_delta = 0;
spin_unlock_irqrestore(&ch->spinlock, flags);
return req_lim_delta;
}
/*
* srpt_undo_inc_req_lim() - Undo the effect of srpt_inc_req_lim.
*/
static int srpt_undo_inc_req_lim(struct srpt_rdma_ch *ch, int req_lim_delta)
{
return srpt_adjust_req_lim(ch, -req_lim_delta, req_lim_delta - 1);
}
/**
* srpt_event_handler - asynchronous IB event callback function
* @handler: IB event handler registered by ib_register_event_handler().
* @event: Description of the event that occurred.
*
* Callback function called by the InfiniBand core when an asynchronous IB
* event occurs. This callback may occur in interrupt context. See also
* section 11.5.2, Set Asynchronous Event Handler in the InfiniBand
* Architecture Specification.
*/
static void srpt_event_handler(struct ib_event_handler *handler,
struct ib_event *event)
{
struct srpt_device *sdev;
struct srpt_port *sport;
u8 port_num;
sdev = ib_get_client_data(event->device, &srpt_client);
if (!sdev || sdev->device != event->device)
return;
pr_debug("ASYNC event= %d on device= %s\n", event->event,
dev_name(&sdev->device->dev));
switch (event->event) {
case IB_EVENT_PORT_ERR:
port_num = event->element.port_num - 1;
if (port_num < sdev->device->phys_port_cnt) {
sport = &sdev->port[port_num];
sport->lid = 0;
sport->sm_lid = 0;
} else {
WARN(true, "event %d: port_num %d out of range 1..%d\n",
event->event, port_num + 1,
sdev->device->phys_port_cnt);
}
break;
case IB_EVENT_PORT_ACTIVE:
case IB_EVENT_LID_CHANGE:
case IB_EVENT_PKEY_CHANGE:
case IB_EVENT_SM_CHANGE:
case IB_EVENT_CLIENT_REREGISTER:
case IB_EVENT_GID_CHANGE:
/* Refresh port data asynchronously. */
port_num = event->element.port_num - 1;
if (port_num < sdev->device->phys_port_cnt) {
sport = &sdev->port[port_num];
if (!sport->lid && !sport->sm_lid)
schedule_work(&sport->work);
} else {
WARN(true, "event %d: port_num %d out of range 1..%d\n",
event->event, port_num + 1,
sdev->device->phys_port_cnt);
}
break;
default:
pr_err("received unrecognized IB event %d\n", event->event);
break;
}
}
/**
* srpt_srq_event - SRQ event callback function
* @event: Description of the event that occurred.
* @ctx: Context pointer specified at SRQ creation time.
*/
static void srpt_srq_event(struct ib_event *event, void *ctx)
{
pr_debug("SRQ event %d\n", event->event);
}
static const char *get_ch_state_name(enum rdma_ch_state s)
{
switch (s) {
case CH_CONNECTING:
return "connecting";
case CH_LIVE:
return "live";
case CH_DISCONNECTING:
return "disconnecting";
case CH_DRAINING:
return "draining";
case CH_DISCONNECTED:
return "disconnected";
}
return "???";
}
/**
* srpt_qp_event - QP event callback function
* @event: Description of the event that occurred.
* @ch: SRPT RDMA channel.
*/
static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch)
{
pr_debug("QP event %d on ch=%p sess_name=%s-%d state=%s\n",
event->event, ch, ch->sess_name, ch->qp->qp_num,
get_ch_state_name(ch->state));
switch (event->event) {
case IB_EVENT_COMM_EST:
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 20) || defined(BACKPORT_LINUX_WORKQUEUE_TO_2_6_19)
if (ch->using_rdma_cm)
rdma_notify(ch->rdma_cm.cm_id, event->event);
else
ib_cm_notify(ch->ib_cm.cm_id, event->event);
#else
/* Vanilla 2.6.19 kernel (or before) without OFED. */
pr_err("how to perform ib_cm_notify() on a vanilla 2.6.18 kernel ???\n");
#endif
break;
case IB_EVENT_QP_LAST_WQE_REACHED:
pr_debug("%s-%d, state %s: received Last WQE event.\n",
ch->sess_name, ch->qp->qp_num,
get_ch_state_name(ch->state));
break;
default:
pr_err("received unrecognized IB QP event %d\n", event->event);
break;
}
}
/**
* srpt_set_ioc - initialize a IOUnitInfo structure
* @c_list: controller list.
* @slot: one-based slot number.
* @value: four-bit value.
*
* Copies the lowest four bits of value in element slot of the array of four
* bit elements called c_list (controller list). The index slot is one-based.
*/
static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value)
{
u16 id;
u8 tmp;
id = (slot - 1) / 2;
if (slot & 0x1) {
tmp = c_list[id] & 0xf;
c_list[id] = (value << 4) | tmp;
} else {
tmp = c_list[id] & 0xf0;
c_list[id] = (value & 0xf) | tmp;
}
}
/**
* srpt_get_class_port_info - copy ClassPortInfo to a management datagram
* @mad: Datagram that will be sent as response to DM_ATTR_CLASS_PORT_INFO.
*
* See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture
* Specification.
*/
static void srpt_get_class_port_info(struct ib_dm_mad *mad)
{
struct ib_class_port_info *cif;
cif = (struct ib_class_port_info *)mad->data;
memset(cif, 0, sizeof(*cif));
cif->base_version = 1;
cif->class_version = 1;
#ifndef HAVE_IB_SET_CPI_RESP_TIME
cif->resp_time_value = 20;
#else
ib_set_cpi_resp_time(cif, 20);
#endif
mad->mad_hdr.status = 0;
}
/**
* srpt_get_iou - write IOUnitInfo to a management datagram
* @mad: Datagram that will be sent as response to DM_ATTR_IOU_INFO.
*
* See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture
* Specification. See also section B.7, table B.6 in the SRP r16a document.
*/
static void srpt_get_iou(struct ib_dm_mad *mad)
{
struct ib_dm_iou_info *ioui;
u8 slot;
int i;
ioui = (struct ib_dm_iou_info *)mad->data;
ioui->change_id = cpu_to_be16(1);
ioui->max_controllers = 16;
/* set present for slot 1 and empty for the rest */
srpt_set_ioc(ioui->controller_list, 1, 1);
for (i = 1, slot = 2; i < 16; i++, slot++)
srpt_set_ioc(ioui->controller_list, slot, 0);
mad->mad_hdr.status = 0;
}
/**
* srpt_get_ioc - write IOControllerprofile to a management datagram
* @sport: HCA port through which the MAD has been received.
* @slot: Slot number specified in DM_ATTR_IOC_PROFILE query.
* @mad: Datagram that will be sent as response to DM_ATTR_IOC_PROFILE.
*
* See also section 16.3.3.4 IOControllerProfile in the InfiniBand
* Architecture Specification. See also section B.7, table B.7 in the SRP
* r16a document.
*/
static void srpt_get_ioc(struct srpt_port *sport, u32 slot,
struct ib_dm_mad *mad)
{
struct srpt_device *sdev = sport->sdev;
struct ib_dm_ioc_profile *iocp;
int send_queue_depth;
iocp = (struct ib_dm_ioc_profile *)mad->data;
if (!slot || slot > 16) {
mad->mad_hdr.status
= cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
return;
}
if (slot > 2) {
mad->mad_hdr.status
= cpu_to_be16(DM_MAD_STATUS_NO_IOC);
return;
}
if (sdev->use_srq)
send_queue_depth = sdev->srq_size;
else
send_queue_depth = min(MAX_SRPT_RQ_SIZE,
sdev->dev_attr.max_qp_wr);
memset(iocp, 0, sizeof(*iocp));
mutex_lock(&sport->mutex);
strlcpy(iocp->id_string, sport->port_id, sizeof(iocp->id_string));
mutex_unlock(&sport->mutex);
iocp->guid = cpu_to_be64(srpt_service_guid);
iocp->vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id);
iocp->device_id = cpu_to_be32(sdev->dev_attr.vendor_part_id);
iocp->device_version = cpu_to_be16(sdev->dev_attr.hw_ver);
iocp->subsys_vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id);
iocp->subsys_device_id = 0x0;
iocp->io_class = cpu_to_be16(SRP_REV16A_IB_IO_CLASS);
iocp->io_subclass = cpu_to_be16(SRP_IO_SUBCLASS);
iocp->protocol = cpu_to_be16(SRP_PROTOCOL);
iocp->protocol_version = cpu_to_be16(SRP_PROTOCOL_VERSION);
iocp->send_queue_depth = cpu_to_be16(send_queue_depth);
iocp->rdma_read_depth = 4;
iocp->send_size = cpu_to_be32(srp_max_req_size);
iocp->rdma_size = cpu_to_be32(min(max(srp_max_rdma_size, 256U),
1U << 24));
iocp->num_svc_entries = 1;
iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC |
SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC;
mad->mad_hdr.status = 0;
}
/**
* srpt_get_svc_entries - write ServiceEntries to a management datagram
* @ioc_guid: I/O controller GUID to use in reply.
* @slot: I/O controller number.
* @hi: End of the range of service entries to be specified in the reply.
* @lo: Start of the range of service entries to be specified in the reply..
* @mad: Datagram that will be sent as response to DM_ATTR_SVC_ENTRIES.
*
* See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture
* Specification. See also section B.7, table B.8 in the SRP r16a document.
*/
static void srpt_get_svc_entries(u64 ioc_guid,
u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad)
{
struct ib_dm_svc_entries *svc_entries;
WARN_ON(!ioc_guid);
if (!slot || slot > 16) {
mad->mad_hdr.status
= cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
return;
}
if (slot > 2 || lo > hi || hi > 1) {
mad->mad_hdr.status
= cpu_to_be16(DM_MAD_STATUS_NO_IOC);
return;
}
svc_entries = (struct ib_dm_svc_entries *)mad->data;
memset(svc_entries, 0, sizeof(*svc_entries));
svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid);
snprintf(svc_entries->service_entries[0].name,
sizeof(svc_entries->service_entries[0].name),
"%s%016llx",
SRP_SERVICE_NAME_PREFIX,
ioc_guid);
mad->mad_hdr.status = 0;
}
/**
* srpt_mgmt_method_get - process a received management datagram
* @sp: HCA port through which the MAD has been received.
* @rq_mad: received MAD.
* @rsp_mad: response MAD.
*/
static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad,
struct ib_dm_mad *rsp_mad)
{
u16 attr_id;
u32 slot;
u8 hi, lo;
attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id);
switch (attr_id) {
case DM_ATTR_CLASS_PORT_INFO:
srpt_get_class_port_info(rsp_mad);
break;
case DM_ATTR_IOU_INFO:
srpt_get_iou(rsp_mad);
break;
case DM_ATTR_IOC_PROFILE:
slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
srpt_get_ioc(sp, slot, rsp_mad);
break;
case DM_ATTR_SVC_ENTRIES:
slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
hi = (u8) ((slot >> 8) & 0xff);
lo = (u8) (slot & 0xff);
slot = (u16) ((slot >> 16) & 0xffff);
srpt_get_svc_entries(srpt_service_guid,
slot, hi, lo, rsp_mad);
break;
default:
rsp_mad->mad_hdr.status =
cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
break;
}
}
/**
* srpt_mad_send_handler - MAD send completion callback
* @mad_agent: Return value of ib_register_mad_agent().
* @mad_wc: Work completion reporting that the MAD has been sent.
*/
static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent,
struct ib_mad_send_wc *mad_wc)
{
#if HAVE_RDMA_DESTROY_AH_WITH_FLAGS
rdma_destroy_ah(mad_wc->send_buf->ah, RDMA_DESTROY_AH_SLEEPABLE);
#elif HAVE_RDMA_DESTROY_AH
rdma_destroy_ah(mad_wc->send_buf->ah);
#else
ib_destroy_ah(mad_wc->send_buf->ah);
#endif
ib_free_send_mad(mad_wc->send_buf);
}
/**
* srpt_mad_recv_handler - MAD reception callback function
* @mad_agent: Return value of ib_register_mad_agent().
* @send_buf: Not used.
* @mad_wc: Work completion reporting that a MAD has been received.
*/
static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent,
#ifdef MAD_HANDLER_TAKES_SEND_BUF
struct ib_mad_send_buf *send_buf,
#endif
struct ib_mad_recv_wc *mad_wc)
{
struct srpt_port *sport = (struct srpt_port *)mad_agent->context;
struct ib_ah *ah;
struct ib_mad_send_buf *rsp;
struct ib_dm_mad *dm_mad;
if (!mad_wc || !mad_wc->recv_buf.mad)
return;
ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc,
mad_wc->recv_buf.grh, mad_agent->port_num);
if (IS_ERR(ah))
goto err;
BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR);
rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp,
mad_wc->wc->pkey_index,
#ifdef CREATE_SEND_MAD_HAS_AH_ARG
NULL,
#endif
0, IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA,
GFP_KERNEL
#ifdef CREATE_SEND_MAD_HAS_BASE_ARG
, IB_MGMT_BASE_VERSION
#endif
);
if (IS_ERR(rsp))
goto err_rsp;
rsp->ah = ah;
dm_mad = rsp->mad;
memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof(*dm_mad));
dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP;
dm_mad->mad_hdr.status = 0;
switch (mad_wc->recv_buf.mad->mad_hdr.method) {
case IB_MGMT_METHOD_GET:
srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad);
break;
case IB_MGMT_METHOD_SET:
dm_mad->mad_hdr.status =
cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
break;
default:
dm_mad->mad_hdr.status =
cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD);
break;
}
if (!ib_post_send_mad(rsp, NULL)) {
ib_free_recv_mad(mad_wc);
/* will destroy_ah & free_send_mad in send completion */
return;
}
ib_free_send_mad(rsp);
err_rsp:
#if HAVE_RDMA_DESTROY_AH_WITH_FLAGS
rdma_destroy_ah(ah, RDMA_DESTROY_AH_SLEEPABLE);
#elif HAVE_RDMA_DESTROY_AH
rdma_destroy_ah(ah);
#else
ib_destroy_ah(ah);
#endif
err:
ib_free_recv_mad(mad_wc);
}
/**
* srpt_refresh_port - configure a HCA port
* @sport: SRPT HCA port.
*
* Enable InfiniBand management datagram processing, update the cached sm_lid,
* lid and gid values, and register a callback function for processing MADs
* on the specified port.
*
* Note: It is safe to call this function more than once for the same port.
*/
static int srpt_refresh_port(struct srpt_port *sport)
{
struct ib_mad_reg_req reg_req;
struct ib_port_modify port_modify;
struct ib_port_attr port_attr;
int ret;
char tgt_name[40];
ret = ib_query_port(sport->sdev->device, sport->port, &port_attr);
if (ret)
return ret;
sport->sm_lid = port_attr.sm_lid;
sport->lid = port_attr.lid;
#if HAVE_RDMA_QUERY_GID
ret = rdma_query_gid(sport->sdev->device, sport->port, 0, &sport->gid);
#else
ret = ib_query_gid(sport->sdev->device, sport->port, 0, &sport->gid
#ifdef IB_QUERY_GID_HAS_ATTR_ARG
, NULL
#endif
);
#endif
if (ret)
return ret;
memset(&port_modify, 0, sizeof(port_modify));
port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
port_modify.clr_port_cap_mask = 0;
ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
if (ret) {
pr_warn("%s-%d: enabling device management failed (%d). Note: this is expected if SR-IOV is enabled.\n",
dev_name(&sport->sdev->device->dev), sport->port, ret);
goto register_tgt;
}
if (!sport->mad_agent) {
memset(&reg_req, 0, sizeof(reg_req));
reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT;
reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION;
set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask);
set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask);
sport->mad_agent = ib_register_mad_agent(sport->sdev->device,
sport->port,
IB_QPT_GSI,
&reg_req, 0,
srpt_mad_send_handler,
srpt_mad_recv_handler,
sport
#ifdef REGISTER_MAD_AGENT_HAS_FLAGS_ARG
, 0
#endif
);
if (IS_ERR(sport->mad_agent)) {
pr_err("%s-%d: MAD agent registration failed (%ld). Note: this is expected if SR-IOV is enabled.\n",
dev_name(&sport->sdev->device->dev), sport->port,
PTR_ERR(sport->mad_agent));
sport->mad_agent = NULL;
}
}
register_tgt:
if (!sport->scst_tgt) {
snprintf(tgt_name, sizeof(tgt_name), "%pI6", &sport->gid);
sport->scst_tgt = scst_register_target(&srpt_template,
tgt_name);
if (sport->scst_tgt)
scst_tgt_set_tgt_priv(sport->scst_tgt, sport);
else
pr_err("Registration of target %s failed.\n", tgt_name);
}
return 0;
}
/**
* srpt_unregister_mad_agent - unregister MAD callback functions
* @sdev: SRPT HCA pointer.
*
* Note: It is safe to call this function more than once for the same device.
*/
static void srpt_unregister_mad_agent(struct srpt_device *sdev)
{
struct ib_port_modify port_modify = {
.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP,
};
struct srpt_port *sport;
int i;
for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
sport = &sdev->port[i - 1];
WARN_ON(sport->port != i);
if (ib_modify_port(sdev->device, i, 0, &port_modify) < 0)
pr_err("disabling MAD processing failed.\n");
if (sport->mad_agent) {
ib_unregister_mad_agent(sport->mad_agent);
sport->mad_agent = NULL;
}
}
}
/**
* srpt_alloc_ioctx - allocate a SRPT I/O context structure
* @sdev: SRPT HCA pointer.
* @ioctx_size: I/O context size.
* @buf_cache: I/O buffer cache.
* @dir: DMA data direction.
*/
static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev,
int ioctx_size,
struct kmem_cache *buf_cache,
enum dma_data_direction dir)
{
struct srpt_ioctx *ioctx;
ioctx = kzalloc(ioctx_size, GFP_KERNEL);
if (!ioctx)
goto err;
ioctx->buf = kmem_cache_alloc(buf_cache, GFP_KERNEL);
if (!ioctx->buf)
goto err_free_ioctx;
ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf,
kmem_cache_size(buf_cache), dir);
if (ib_dma_mapping_error(sdev->device, ioctx->dma))
goto err_free_buf;
return ioctx;
err_free_buf:
kmem_cache_free(buf_cache, ioctx->buf);
err_free_ioctx:
kfree(ioctx);
err:
return NULL;
}
/**
* srpt_free_ioctx - free a SRPT I/O context structure
* @sdev: SRPT HCA pointer.
* @ioctx: I/O context pointer.
* @buf_cache: I/O buffer cache.
* @dir: DMA data direction.
*/
static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx,
struct kmem_cache *buf_cache,
enum dma_data_direction dir)
{
if (!ioctx)
return;
ib_dma_unmap_single(sdev->device, ioctx->dma,
kmem_cache_size(buf_cache), dir);
kmem_cache_free(buf_cache, ioctx->buf);
kfree(ioctx);
}
/**
* srpt_alloc_ioctx_ring - allocate a ring of SRPT I/O context structures
* @sdev: Device to allocate the I/O context ring for.
* @ring_size: Number of elements in the I/O context ring.
* @ioctx_size: I/O context size.
* @buf_cache: I/O buffer cache.
* @alignment_offset: Offset in each ring buffer at which the SRP information
* unit starts.
* @dir: DMA data direction.
*/
static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev,
int ring_size, int ioctx_size,
struct kmem_cache *buf_cache,
int alignment_offset,
enum dma_data_direction dir)
{
struct srpt_ioctx **ring;
int i;
WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx) &&
ioctx_size != sizeof(struct srpt_send_ioctx));
ring = kvmalloc_array(ring_size, sizeof(ring[0]), GFP_KERNEL);
if (!ring)
goto out;
for (i = 0; i < ring_size; ++i) {
ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, buf_cache, dir);
if (!ring[i])
goto err;
ring[i]->index = i;
ring[i]->offset = alignment_offset;
}
goto out;
err:
while (--i >= 0)
srpt_free_ioctx(sdev, ring[i], buf_cache, dir);
kvfree(ring);
ring = NULL;
out:
return ring;
}
/**
* srpt_free_ioctx_ring - free the ring of SRPT I/O context structures
* @ioctx_ring: I/O context ring to be freed.
* @sdev: SRPT HCA pointer.
* @ring_size: Number of ring elements.
* @buf_cache: I/O buffer cache.
* @dir: DMA data direction.
*/
static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring,
struct srpt_device *sdev, int ring_size,
struct kmem_cache *buf_cache,
enum dma_data_direction dir)
{
int i;
if (!ioctx_ring)
return;
for (i = 0; i < ring_size; ++i)
srpt_free_ioctx(sdev, ioctx_ring[i], buf_cache, dir);
kvfree(ioctx_ring);
}
/**
* srpt_set_cmd_state - set the state of a SCSI command
* @ioctx: Send I/O context.
* @new: New I/O context state.
*
* Does not modify the state of aborted commands. Returns the previous command
* state.
*/
static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx,
enum srpt_command_state new)
{
enum srpt_command_state previous;
previous = ioctx->state;
if (previous != SRPT_STATE_DONE)
ioctx->state = new;
return previous;
}
/**
* srpt_test_and_set_cmd_state - test and set the state of a command
* @ioctx: Send I/O context.
* @old: Current I/O context state.
* @new: New I/O context state.
*
* Returns true if and only if the previous command state was equal to 'old'.
*/
static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx,
enum srpt_command_state old,
enum srpt_command_state new)
{
enum srpt_command_state previous;
WARN_ON(!ioctx);
WARN_ON(old == SRPT_STATE_DONE);
WARN_ON(new == SRPT_STATE_NEW);
previous = ioctx->state;
if (previous == old)
ioctx->state = new;
return previous == old;
}
/**
* srpt_post_recv - post an IB receive request
* @sdev: SRPT HCA pointer.
* @ch: SRPT RDMA channel.
* @ioctx: Receive I/O context pointer.
*/
static int srpt_post_recv(struct srpt_device *sdev, struct srpt_rdma_ch *ch,
struct srpt_recv_ioctx *ioctx)
{
struct ib_sge list;
struct ib_recv_wr wr;
BAD_WR_MODIFIER struct ib_recv_wr *bad_wr;
BUG_ON(!sdev);
wr.wr_id = encode_wr_id(SRPT_RECV, ioctx->ioctx.index);
list.addr = ioctx->ioctx.dma + ioctx->ioctx.offset;
list.length = srp_max_req_size;
list.lkey = sdev->lkey;
wr.next = NULL;
wr.sg_list = &list;
wr.num_sge = 1;
if (sdev->use_srq)
return ib_post_srq_recv(sdev->srq, &wr, &bad_wr);
else
return ib_post_recv(ch->qp, &wr, &bad_wr);
}
static int srpt_adjust_sq_wr_avail(struct srpt_rdma_ch *ch, int delta)
{
return atomic_add_return(delta, &ch->sq_wr_avail);
}
/**
* srpt_post_send - post an IB send request
* @ch: SRPT RDMA channel.
* @ioctx: I/O context.
* @len: Length in bytes of request to send.
*
* Returns zero upon success and a non-zero value upon failure.
*/
static int srpt_post_send(struct srpt_rdma_ch *ch,
struct srpt_send_ioctx *ioctx, int len)
{
struct ib_sge list;
struct ib_send_wr wr;
BAD_WR_MODIFIER struct ib_send_wr *bad_wr;
struct srpt_device *sdev = ch->sport->sdev;
int ret;
ret = -ENOMEM;
if (srpt_adjust_sq_wr_avail(ch, -1) < 0) {
pr_warn("ch %s-%d send queue full (needed 1)\n", ch->sess_name,
ch->qp->qp_num);
goto out;
}
ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, len,
DMA_TO_DEVICE);
list.addr = ioctx->ioctx.dma;
list.length = len;
list.lkey = sdev->lkey;
wr.next = NULL;
wr.wr_id = encode_wr_id(SRPT_SEND, ioctx->ioctx.index);
wr.sg_list = &list;
wr.num_sge = 1;
wr.opcode = IB_WR_SEND;
wr.send_flags = IB_SEND_SIGNALED;
ret = ib_post_send(ch->qp, &wr, &bad_wr);
out:
if (ret < 0)
srpt_adjust_sq_wr_avail(ch, 1);
return ret;
}
/**
* srpt_zerolength_write - perform a zero-length RDMA write
* @ch: SRPT RDMA channel.
*
* A quote from the InfiniBand specification: C9-88: For an HCA responder
* using Reliable Connection service, for each zero-length RDMA READ or WRITE
* request, the R_Key shall not be validated, even if the request includes
* Immediate data.
*/
static int srpt_zerolength_write(struct srpt_rdma_ch *ch)
{
#ifdef USE_PRE_440_WR_STRUCTURE
struct ib_send_wr wr;
#else
struct ib_rdma_wr wr;
#endif
BAD_WR_MODIFIER struct ib_send_wr *bad_wr;
memset(&wr, 0, sizeof(wr));
#ifdef USE_PRE_440_WR_STRUCTURE
wr.opcode = IB_WR_RDMA_WRITE;
wr.wr_id = encode_wr_id(SRPT_RDMA_ZEROLENGTH_WRITE, 0xffffffffUL);
wr.send_flags = IB_SEND_SIGNALED;
return ib_post_send(ch->qp, &wr, &bad_wr);
#else
wr.wr.opcode = IB_WR_RDMA_WRITE;
wr.wr.wr_id = encode_wr_id(SRPT_RDMA_ZEROLENGTH_WRITE, 0xffffffffUL);
wr.wr.send_flags = IB_SEND_SIGNALED;
return ib_post_send(ch->qp, &wr.wr, &bad_wr);
#endif
}
static inline void *srpt_get_desc_buf(struct srp_cmd *srp_cmd)
{
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 31)
/*
* The pointer computations below will only be compiled correctly
* if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check
* whether srp_cmd::add_data has been declared as a byte pointer.
*/
BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0) &&
!__same_type(srp_cmd->add_data[0], (u8)0));
#endif
/*
* According to the SRP spec, the lower two bits of the 'ADDITIONAL
* CDB LENGTH' field are reserved and the size in bytes of this field
* is four times the value specified in bits 3..7. Hence the "& ~3".
*/
return srp_cmd->add_data + (srp_cmd->add_cdb_len & ~3);
}
/**
* srpt_get_desc_tbl - parse the data descriptors of a SRP_CMD request
* @recv_ioctx: I/O context associated with the received command @srp_cmd.
* @ioctx: I/O context that will be used for responding to the initiator.
* @srp_cmd: Pointer to the SRP_CMD request data.
* @dir: Pointer to the variable to which the transfer direction will be
* written.
* @data_len: Pointer to the variable to which the total data length of all
* descriptors in the SRP_CMD request will be written.
* @imm_data_offset: [in] Offset in SRP_CMD requests at which immediate data
* starts.
*
* This function initializes ioctx->nrbuf and ioctx->r_bufs.
*
* Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors;
* -ENOMEM when memory allocation fails and zero upon success.
*/
static int srpt_get_desc_tbl(struct srpt_recv_ioctx *recv_ioctx,
struct srpt_send_ioctx *ioctx,
struct srp_cmd *srp_cmd,
scst_data_direction *dir, u64 *data_len,
u16 imm_data_offset)
{
u8 fmt;
BUG_ON(!dir);
BUG_ON(!data_len);
*data_len = 0;
/*
* The lower four bits of the buffer format field contain the DATA-IN
* buffer descriptor format, and the highest four bits contain the
* DATA-OUT buffer descriptor format.
*/
fmt = srp_cmd->buf_fmt;
if (fmt & 0xf) {
/* DATA-IN: transfer data from target to initiator (read). */
*dir = SCST_DATA_READ;
fmt = fmt & 0xf;
} else if (fmt >> 4) {
/* DATA-OUT: transfer data from initiator to target (write). */
*dir = SCST_DATA_WRITE;
fmt = fmt >> 4;
} else {
*dir = SCST_DATA_NONE;
}
if (fmt == SRP_DATA_DESC_DIRECT) {
struct srp_direct_buf *db = srpt_get_desc_buf(srp_cmd);
ioctx->n_rbuf = 1;
ioctx->rbufs = &ioctx->single_rbuf;
memcpy(ioctx->rbufs, db, sizeof(*db));
*data_len = be32_to_cpu(db->len);
return 0;
} else if (fmt == SRP_DATA_DESC_INDIRECT) {
struct srp_indirect_buf *idb = srpt_get_desc_buf(srp_cmd);
struct srp_direct_buf *db;
ioctx->n_rbuf = be32_to_cpu(idb->table_desc.len) / sizeof(*db);
if (ioctx->n_rbuf >
(srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) {
pr_err("received unsupported SRP_CMD request type (%u out + %u in != %u / %zu)\n",
srp_cmd->data_out_desc_cnt,
srp_cmd->data_in_desc_cnt,
be32_to_cpu(idb->table_desc.len),
sizeof(struct srp_direct_buf));
ioctx->n_rbuf = 0;
return -EINVAL;
}
if (ioctx->n_rbuf == 1)
ioctx->rbufs = &ioctx->single_rbuf;
else {
ioctx->rbufs = kmalloc_array(ioctx->n_rbuf,
sizeof(*db), GFP_ATOMIC);
if (!ioctx->rbufs) {
ioctx->n_rbuf = 0;
return -ENOMEM;
}
}
db = idb->desc_list;
memcpy(ioctx->rbufs, db, ioctx->n_rbuf * sizeof(*db));
*data_len = be32_to_cpu(idb->len);
return 0;
} else if (fmt == SRP_DATA_DESC_IMM) {
struct srp_imm_buf *imm_buf = srpt_get_desc_buf(srp_cmd);
void *data = (void *)srp_cmd + imm_data_offset;
uint32_t len = be32_to_cpu(imm_buf->len);
uint32_t req_size = imm_data_offset + len;
if (req_size > srp_max_req_size) {
pr_err("Immediate data (length %d + %d) exceeds request size %d\n",
imm_data_offset, len, srp_max_req_size);
return -EINVAL;
}
if (recv_ioctx->byte_len < req_size) {
pr_err("Received too few data - %d < %d\n",
recv_ioctx->byte_len, req_size);
return -EIO;
}
/*
* The immediate data buffer descriptor must occur before the
* immediate data itself.
*/
if ((void *)(imm_buf + 1) > (void *)data) {
pr_err("Received invalid write request\n");
return -EINVAL;
}
*data_len = len;
ioctx->recv_ioctx = recv_ioctx;
if ((uintptr_t)data & 511) {
pr_warn_once("Internal error - the receive buffers are not aligned properly.\n");
return -EINVAL;
}
/* Note: this sg entry may span more than one physical page. */
sg_init_one(&ioctx->imm_sg, data, len);
scst_cmd_set_tgt_sg(&ioctx->cmd, &ioctx->imm_sg, 1);
return 0;
} else if (fmt != 0) {
pr_err("Unsupported data format %d\n\n", fmt);
return -EINVAL;
} else {
*data_len = 0;
return 0;
}
}
/**
* srpt_init_ch_qp - initialize queue pair attributes
* @ch: SRPT RDMA channel.
* @qp: Queue pair pointer.
*
* Initialized the attributes of queue pair 'qp' by allowing local write,
* remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT.
*/
static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp)
{
struct ib_qp_attr *attr;
int ret;
WARN_ON_ONCE(ch->using_rdma_cm);
attr = kzalloc(sizeof(*attr), GFP_KERNEL);
if (!attr)
return -ENOMEM;
attr->qp_state = IB_QPS_INIT;
attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE;
attr->port_num = ch->sport->port;
ret = ib_find_cached_pkey(ch->sport->sdev->device, ch->sport->port,
ch->pkey, &attr->pkey_index);
if (ret < 0)
pr_err("Translating pkey %#x failed (%d) - using index 0\n",
ch->pkey, ret);
ret = ib_modify_qp(qp, attr,
IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT |
IB_QP_PKEY_INDEX);
kfree(attr);
return ret;
}
/**
* srpt_ch_qp_rtr - change the state of a channel to 'ready to receive' (RTR)
* @ch: channel of the queue pair.
* @qp: queue pair to change the state of.
*
* Returns zero upon success and a negative value upon failure.
*/
static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp)
{
struct ib_qp_attr *attr;
int attr_mask;
int ret;
WARN_ON_ONCE(ch->using_rdma_cm);
attr = kzalloc(sizeof(*attr), GFP_KERNEL);
if (!attr)
return -ENOMEM;
attr->qp_state = IB_QPS_RTR;
ret = ib_cm_init_qp_attr(ch->ib_cm.cm_id, attr, &attr_mask);
if (ret)
goto out;
attr->max_dest_rd_atomic = 4;
ret = ib_modify_qp(qp, attr, attr_mask);
out:
kfree(attr);
return ret;
}
/**
* srpt_ch_qp_rts - change the state of a channel to 'ready to send' (RTS)
* @ch: channel of the queue pair.
* @qp: queue pair to change the state of.
*
* Returns zero upon success and a negative value upon failure.
*/
static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp)
{
struct ib_qp_attr *attr;
int attr_mask;
int ret;
WARN_ON_ONCE(ch->using_rdma_cm);
attr = kzalloc(sizeof(*attr), GFP_KERNEL);
if (!attr)
return -ENOMEM;
attr->qp_state = IB_QPS_RTS;
ret = ib_cm_init_qp_attr(ch->ib_cm.cm_id, attr, &attr_mask);
if (ret)
goto out;
attr->max_rd_atomic = 4;
ret = ib_modify_qp(qp, attr, attr_mask);
out:
kfree(attr);
return ret;
}
/**
* srpt_ch_qp_err - set the channel queue pair state to 'error'
* @ch: SRPT RDMA channel.
*/
static int srpt_ch_qp_err(struct srpt_rdma_ch *ch)
{
struct ib_qp_attr *attr;
int ret;
attr = kzalloc(sizeof(*attr), GFP_KERNEL);
if (!attr)
return -ENOMEM;
attr->qp_state = IB_QPS_ERR;
ret = ib_modify_qp(ch->qp, attr, IB_QP_STATE);
kfree(attr);
return ret;
}
/**
* srpt_get_send_ioctx - obtain an I/O context for sending to the initiator
* @ch: SRPT RDMA channel.
*/
static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch)
{
struct srpt_send_ioctx *ioctx;
unsigned long flags;
BUG_ON(!ch);
ioctx = NULL;
spin_lock_irqsave(&ch->spinlock, flags);
if (!list_empty(&ch->free_list)) {
ioctx = list_first_entry(&ch->free_list,
struct srpt_send_ioctx, free_list);
list_del(&ioctx->free_list);
}
spin_unlock_irqrestore(&ch->spinlock, flags);
if (!ioctx)
return ioctx;
BUG_ON(ioctx->ch != ch);
ioctx->state = SRPT_STATE_NEW;
EXTRACHECKS_WARN_ON(ioctx->recv_ioctx);
ioctx->n_rbuf = 0;
ioctx->rbufs = NULL;
ioctx->n_rdma = 0;
ioctx->n_rdma_ius = 0;
ioctx->rdma_ius = NULL;
ioctx->mapped_sg_count = 0;
memset(&ioctx->cmd, 0, sizeof(ioctx->cmd));
return ioctx;
}
/**
* srpt_put_send_ioctx() - free up resources
* @ioctx: I/O context to free.
*/
static void srpt_put_send_ioctx(struct srpt_send_ioctx *ioctx)
{
struct srpt_rdma_ch *ch = ioctx->ch;
struct srpt_recv_ioctx *recv_ioctx = ioctx->recv_ioctx;
unsigned long flags;
if (recv_ioctx) {
EXTRACHECKS_WARN_ON(!list_empty(&recv_ioctx->wait_list));
ioctx->recv_ioctx = NULL;
srpt_post_recv(ch->sport->sdev, ch, recv_ioctx);
}
/*
* If the WARN_ON() below gets triggered this means that
* srpt_unmap_sg_to_ib_sge() has not been called.
*/
WARN_ON(ioctx->mapped_sg_count);
if (ioctx->n_rbuf > 1) {
kfree(ioctx->rbufs);
ioctx->rbufs = NULL;
ioctx->n_rbuf = 0;
}
spin_lock_irqsave(&ch->spinlock, flags);
list_add(&ioctx->free_list, &ch->free_list);
spin_unlock_irqrestore(&ch->spinlock, flags);
}
/**
* srpt_abort_cmd - abort a SCSI command
* @ioctx: I/O context associated with the SCSI command.
* @context: Preferred execution context.
*
* Must only be called when the I/O context is in a state where it is waiting
* for the HCA.
*/
static void srpt_abort_cmd(struct srpt_send_ioctx *ioctx,
enum scst_exec_context context)
{
struct scst_cmd *cmd = &ioctx->cmd;
enum srpt_command_state state = ioctx->state;
switch (state) {
case SRPT_STATE_NEED_DATA:
ioctx->state = SRPT_STATE_DATA_IN;
break;
case SRPT_STATE_CMD_RSP_SENT:
case SRPT_STATE_MGMT_RSP_SENT:
ioctx->state = SRPT_STATE_DONE;
break;
default:
WARN_ONCE(true, "%s: unexpected I/O context state %d\n",
__func__, state);
break;
}
WARN_ON(ioctx != scst_cmd_get_tgt_priv(cmd));
pr_debug("Aborting cmd with state %d -> %d and tag %lld\n", state,
ioctx->state, scst_cmd_get_tag(cmd));
switch (state) {
case SRPT_STATE_NEW:
case SRPT_STATE_DATA_IN:
case SRPT_STATE_MGMT:
case SRPT_STATE_DONE:
/*
* Do nothing - defer abort processing until
* srpt_queue_response() is invoked.
*/
break;
case SRPT_STATE_NEED_DATA:
pr_debug("tag %#llx: RDMA read error\n", ioctx->cmd.tag);
scst_set_cmd_error(cmd,
SCST_LOAD_SENSE(scst_sense_write_error));
scst_rx_data(cmd, SCST_RX_STATUS_ERROR_SENSE_SET, context);
break;
case SRPT_STATE_CMD_RSP_SENT:
/*
* SRP_RSP sending failed or the SRP_RSP send completion has
* not been received in time.
*/
srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx);
scst_set_delivery_status(cmd, SCST_CMD_DELIVERY_ABORTED);
scst_tgt_cmd_done(cmd, context);
break;
case SRPT_STATE_MGMT_RSP_SENT:
/*
* Management command response sending failed. This state is
* never reached since there is no cmd associated with
* management commands. Note: the SCST core frees these
* commands immediately after srpt_tsk_mgmt_done() returned.
*/
WARN(true, "Unexpected command state %d\n", state);
break;
}
}
/*
* srpt_handle_send_err_comp() - Process an IB_WC_SEND error completion.
*/
static void srpt_handle_send_err_comp(struct srpt_rdma_ch *ch, u64 wr_id,
enum scst_exec_context context)
{
u32 index = idx_from_wr_id(wr_id);
struct srpt_send_ioctx *ioctx = ch->ioctx_ring[index];
struct scst_cmd *cmd = &ioctx->cmd;
enum srpt_command_state state = ioctx->state;
int wr_avail_delta = 1;
switch (state) {
case SRPT_STATE_NEED_DATA:
srpt_abort_cmd(ioctx, context);
break;
case SRPT_STATE_CMD_RSP_SENT:
if (scst_cmd_get_data_direction(cmd) == SCST_DATA_READ) {
/*
* IB_SEND_SIGNALED is not set for RDMA writes so
* process the wr_avail delta when the response
* send completion has been received.
*/
EXTRACHECKS_WARN_ON(ioctx->n_rdma <= 0);
wr_avail_delta += ioctx->n_rdma;
}
srpt_undo_inc_req_lim(ch, ioctx->req_lim_delta);
srpt_abort_cmd(ioctx, context);
break;
case SRPT_STATE_MGMT_RSP_SENT:
srpt_undo_inc_req_lim(ch, ioctx->req_lim_delta);
srpt_put_send_ioctx(ioctx);
break;
case SRPT_STATE_DONE:
pr_err("Received more than one IB error completion for wr_id = %u.\n",
index);
break;
default:
EXTRACHECKS_WARN_ON(true);
break;
}
srpt_adjust_sq_wr_avail(ch, wr_avail_delta);
}
/*
* srpt_handle_send_comp() - Process an IB send completion notification.
*/
static void srpt_handle_send_comp(struct srpt_rdma_ch *ch,
struct srpt_send_ioctx *ioctx,
enum scst_exec_context context)
{
struct scst_cmd *cmd = &ioctx->cmd;
int wr_avail_delta = 1;
switch (srpt_set_cmd_state(ioctx, SRPT_STATE_DONE)) {
case SRPT_STATE_CMD_RSP_SENT:
if (scst_cmd_get_data_direction(cmd) == SCST_DATA_READ) {
/*
* IB_SEND_SIGNALED is not set for RDMA writes so
* process the wr_avail delta when the response
* send completion has been received.
*/
EXTRACHECKS_WARN_ON(ioctx->n_rdma <= 0);
wr_avail_delta += ioctx->n_rdma;
}
srpt_unmap_sg_to_ib_sge(ch, ioctx);
scst_tgt_cmd_done(&ioctx->cmd, context);
break;
case SRPT_STATE_MGMT_RSP_SENT:
srpt_put_send_ioctx(ioctx);
break;
case SRPT_STATE_DONE:
pr_err("IB completion has been received too late for wr_id = %u.\n",
ioctx->ioctx.index);
break;
default:
EXTRACHECKS_WARN_ON(true);
}
srpt_adjust_sq_wr_avail(ch, wr_avail_delta);
}
/*
* srpt_handle_rdma_comp() - Process an IB RDMA completion notification.
*/
static void srpt_handle_rdma_comp(struct srpt_rdma_ch *ch,
struct srpt_send_ioctx *ioctx,
enum srpt_opcode opcode,
enum scst_exec_context context)
{
struct scst_cmd *cmd = &ioctx->cmd;
if (opcode == SRPT_RDMA_READ_LAST) {
EXTRACHECKS_WARN_ON(ioctx->n_rdma <= 0);
srpt_adjust_sq_wr_avail(ch, ioctx->n_rdma);
if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA,
SRPT_STATE_DATA_IN))
scst_rx_data(cmd, SCST_RX_STATUS_SUCCESS, context);
else
pr_err("%s: wrong ioctx state %d\n", __func__,
ioctx->state);
} else if (opcode == SRPT_RDMA_ABORT) {
ioctx->rdma_aborted = true;
} else {
WARN(true, "Unexpected RDMA opcode %d\n", opcode);
}
}
/*
* srpt_handle_rdma_err_comp() - Process an IB RDMA error completion.
*/
static void srpt_handle_rdma_err_comp(struct srpt_rdma_ch *ch,
struct srpt_send_ioctx *ioctx,
enum srpt_opcode opcode,
enum scst_exec_context context)
{
struct scst_cmd *cmd = &ioctx->cmd;
enum srpt_command_state state = ioctx->state;
switch (opcode) {
case SRPT_RDMA_READ_LAST:
if (ioctx->n_rdma <= 0) {
pr_err("Received invalid RDMA read error completion with idx %d\n",
ioctx->ioctx.index);
break;
}
srpt_adjust_sq_wr_avail(ch, ioctx->n_rdma);
if (state == SRPT_STATE_NEED_DATA)
srpt_abort_cmd(ioctx, context);
else
pr_err("%s: wrong ioctx state %d\n", __func__, state);
break;
case SRPT_RDMA_WRITE_LAST:
/*
* Note: if an RDMA write error completion is received that
* means that a SEND also has been posted. Defer further
* processing of the associated command until the send error
* completion has been received.
*/
scst_set_delivery_status(cmd, SCST_CMD_DELIVERY_ABORTED);
break;
default:
pr_err("%s: opcode %u\n", __func__, opcode);
break;
}
}
/**
* srpt_build_cmd_rsp - build a SRP_RSP response
* @ch: RDMA channel through which the request has been received.
* @ioctx: I/O context associated with the SRP_CMD request. The response will
* be built in the buffer ioctx->buf points at and hence this function will
* overwrite the request data.
* @tag: tag of the request for which this response is being generated.
* @status: value for the STATUS field of the SRP_RSP information unit.
* @sense_data: pointer to sense data to be included in the response.
* @sense_data_len: length in bytes of the sense data.
*
* Returns the size in bytes of the SRP_RSP response.
*
* An SRP_RSP response contains a SCSI status or service response. See also
* section 6.9 in the SRP r16a document for the format of an SRP_RSP
* response. See also SPC-2 for more information about sense data.
*/
static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch,
struct srpt_send_ioctx *ioctx, u64 tag,
int status, const u8 *sense_data,
int sense_data_len)
{
struct scst_cmd *cmd = &ioctx->cmd;
struct srp_rsp *srp_rsp;
int resid, max_sense_len;
/*
* The lowest bit of all SAM-3 status codes is zero (see also
* paragraph 5.3 in SAM-3).
*/
EXTRACHECKS_WARN_ON(status & 1);
srp_rsp = ioctx->ioctx.buf;
BUG_ON(!srp_rsp);
memset(srp_rsp, 0, sizeof(*srp_rsp));
srp_rsp->opcode = SRP_RSP;
srp_rsp->req_lim_delta = cpu_to_be32(ioctx->req_lim_delta);
srp_rsp->tag = tag;
srp_rsp->status = status;
if (unlikely(scst_get_resid(cmd, &resid, NULL) && resid != 0)) {
if (scst_cmd_get_data_direction(cmd) & SCST_DATA_READ) {
if (resid > 0)
srp_rsp->flags |= SRP_RSP_FLAG_DIUNDER;
else if (resid < 0)
srp_rsp->flags |= SRP_RSP_FLAG_DIOVER;
srp_rsp->data_in_res_cnt = cpu_to_be32(abs(resid));
}
if (scst_cmd_get_data_direction(cmd) & SCST_DATA_WRITE) {
if (resid > 0)
srp_rsp->flags |= SRP_RSP_FLAG_DOUNDER;
else if (resid < 0)
srp_rsp->flags |= SRP_RSP_FLAG_DOOVER;
srp_rsp->data_out_res_cnt = cpu_to_be32(abs(resid));
}
}
if (!scst_sense_valid(sense_data)) {
sense_data_len = 0;
} else {
BUILD_BUG_ON(sizeof(*srp_rsp) >= MIN_MAX_RSP_SIZE);
max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp);
if (sense_data_len > max_sense_len) {
pr_warn("truncated sense data from %d to %d bytes\n",
sense_data_len, max_sense_len);
sense_data_len = max_sense_len;
}
srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID;
srp_rsp->sense_data_len = cpu_to_be32(sense_data_len);
memcpy(srp_rsp + 1, sense_data, sense_data_len);
}
return sizeof(*srp_rsp) + sense_data_len;
}
/**
* srpt_build_tskmgmt_rsp - build a task management response
* @ch: RDMA channel through which the request has been received.
* @ioctx: I/O context in which the SRP_RSP response will be built.
* @rsp_code: RSP_CODE that will be stored in the response.
* @tag: Tag of the request for which this response is being generated.
*
* Returns the size in bytes of the SRP_RSP response.
*
* An SRP_RSP response contains a SCSI status or service response. See also
* section 6.9 in the SRP r16a document for the format of an SRP_RSP
* response.
*/
static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch,
struct srpt_send_ioctx *ioctx,
u8 rsp_code, u64 tag)
{
struct srp_rsp *srp_rsp;
int resp_data_len;
int resp_len;
resp_data_len = 4;
resp_len = sizeof(*srp_rsp) + resp_data_len;
srp_rsp = ioctx->ioctx.buf;
BUG_ON(!srp_rsp);
memset(srp_rsp, 0, sizeof(*srp_rsp));
srp_rsp->opcode = SRP_RSP;
srp_rsp->req_lim_delta = cpu_to_be32(ioctx->req_lim_delta);
srp_rsp->tag = tag;
srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID;
srp_rsp->resp_data_len = cpu_to_be32(resp_data_len);
srp_rsp->data[3] = rsp_code;
return resp_len;
}
/**
* srpt_handle_cmd - process a SRP_CMD information unit
* @ch: SRPT RDMA channel.
* @recv_ioctx: Receive I/O context.
* @send_ioctx: Send I/O context.
* @context: SCST command processing context.
*/
static int srpt_handle_cmd(struct srpt_rdma_ch *ch,
struct srpt_recv_ioctx *recv_ioctx,
struct srpt_send_ioctx *send_ioctx,
enum scst_exec_context context)
{
struct scst_cmd *cmd;
struct srp_cmd *srp_cmd;
scst_data_direction dir;
u64 data_len;
int ret;
BUG_ON(!send_ioctx);
srp_cmd = recv_ioctx->ioctx.buf + recv_ioctx->ioctx.offset;
cmd = &send_ioctx->cmd;
ret = scst_rx_cmd_prealloced(cmd, ch->sess, (u8 *) &srp_cmd->lun,
sizeof(srp_cmd->lun), srp_cmd->cdb,
sizeof(srp_cmd->cdb), in_interrupt());
if (ret) {
pr_err("tag 0x%llx: SCST command initialization failed\n",
srp_cmd->tag);
goto err;
}
ret = srpt_get_desc_tbl(recv_ioctx, send_ioctx, srp_cmd, &dir,
&data_len, ch->imm_data_offset);
if (ret) {
pr_err("0x%llx: parsing SRP descriptor table failed.\n",
srp_cmd->tag);
scst_set_cmd_error(cmd,
SCST_LOAD_SENSE(scst_sense_invalid_field_in_cdb));
}
switch (srp_cmd->task_attr) {
case SRP_CMD_HEAD_OF_Q:
scst_cmd_set_queue_type(cmd, SCST_CMD_QUEUE_HEAD_OF_QUEUE);
break;
case SRP_CMD_ORDERED_Q:
scst_cmd_set_queue_type(cmd, SCST_CMD_QUEUE_ORDERED);
break;
case SRP_CMD_SIMPLE_Q:
scst_cmd_set_queue_type(cmd, SCST_CMD_QUEUE_SIMPLE);
break;
case SRP_CMD_ACA:
scst_cmd_set_queue_type(cmd, SCST_CMD_QUEUE_ACA);
break;
default:
scst_cmd_set_queue_type(cmd, SCST_CMD_QUEUE_ORDERED);
break;
}
scst_cmd_set_tag(cmd, srp_cmd->tag);
scst_cmd_set_tgt_priv(cmd, send_ioctx);
scst_cmd_set_expected(cmd, dir, data_len);
scst_cmd_init_done(cmd, context);
return 0;
err:
srpt_put_send_ioctx(send_ioctx);
return -1;
}
/**
* srpt_handle_tsk_mgmt - process a SRP_TSK_MGMT information unit
* @ch: SRPT RDMA channel.
* @recv_ioctx: Receive I/O context.
* @send_ioctx: Send I/O context.
*
* Each task management function is performed by calling one of the
* scst_rx_mgmt_fn*() functions. These functions will either report failure
* or process the task management function asynchronously. The function
* srpt_tsk_mgmt_done() will be called by the SCST core upon completion of the
* task management function. When srpt_handle_tsk_mgmt() reports failure
* (i.e. returns -1) a response will have been built in ioctx->buf. This
* information unit has to be sent back by the caller.
*
* For more information about SRP_TSK_MGMT information units, see also section
* 6.7 in the SRP r16a document.
*/
static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch,
struct srpt_recv_ioctx *recv_ioctx,
struct srpt_send_ioctx *send_ioctx)
{
struct srp_tsk_mgmt *srp_tsk;
int ret;
ret = -EOPNOTSUPP;
BUG_ON(!send_ioctx);
BUG_ON(send_ioctx->ch != ch);
srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT);
srp_tsk = recv_ioctx->ioctx.buf + recv_ioctx->ioctx.offset;
pr_debug("recv_tsk_mgmt= %d for task_tag= %lld using tag= %lld ch= %p sess= %p\n",
srp_tsk->tsk_mgmt_func, srp_tsk->task_tag, srp_tsk->tag,
ch, ch->sess);
send_ioctx->tsk_mgmt.tag = srp_tsk->tag;
switch (srp_tsk->tsk_mgmt_func) {
case SRP_TSK_ABORT_TASK:
pr_debug("Processing SRP_TSK_ABORT_TASK\n");
ret = scst_rx_mgmt_fn_tag(ch->sess, SCST_ABORT_TASK,
srp_tsk->task_tag,
in_interrupt(), send_ioctx);
break;
case SRP_TSK_ABORT_TASK_SET:
pr_debug("Processing SRP_TSK_ABORT_TASK_SET\n");
ret = scst_rx_mgmt_fn_lun(ch->sess, SCST_ABORT_TASK_SET,
&srp_tsk->lun, sizeof(srp_tsk->lun),
in_interrupt(), send_ioctx);
break;
case SRP_TSK_CLEAR_TASK_SET:
pr_debug("Processing SRP_TSK_CLEAR_TASK_SET\n");
ret = scst_rx_mgmt_fn_lun(ch->sess, SCST_CLEAR_TASK_SET,
&srp_tsk->lun, sizeof(srp_tsk->lun),
in_interrupt(), send_ioctx);
break;
case SRP_TSK_LUN_RESET:
pr_debug("Processing SRP_TSK_LUN_RESET\n");
ret = scst_rx_mgmt_fn_lun(ch->sess, SCST_LUN_RESET,
&srp_tsk->lun, sizeof(srp_tsk->lun),
in_interrupt(), send_ioctx);
break;
case SRP_TSK_CLEAR_ACA:
pr_debug("Processing SRP_TSK_CLEAR_ACA\n");
ret = scst_rx_mgmt_fn_lun(ch->sess, SCST_CLEAR_ACA,
&srp_tsk->lun, sizeof(srp_tsk->lun),
in_interrupt(), send_ioctx);
break;
default:
pr_debug("Unsupported task management function.\n");
}
if (ret != 0) {
pr_err("Processing task management function %d failed: %d\n",
srp_tsk->tsk_mgmt_func, ret);
srpt_put_send_ioctx(send_ioctx);
}
}
static u8 scst_to_srp_tsk_mgmt_status(const int scst_mgmt_status)
{
switch (scst_mgmt_status) {
case SCST_MGMT_STATUS_SUCCESS:
return SRP_TSK_MGMT_SUCCESS;
case SCST_MGMT_STATUS_FN_NOT_SUPPORTED:
return SRP_TSK_MGMT_FUNC_NOT_SUPP;
case SCST_MGMT_STATUS_TASK_NOT_EXIST:
case SCST_MGMT_STATUS_LUN_NOT_EXIST:
case SCST_MGMT_STATUS_REJECTED:
case SCST_MGMT_STATUS_FAILED:
default:
break;
}
return SRP_TSK_MGMT_FAILED;
}
/**
* srpt_handle_new_iu - process a newly received information unit
* @ch: RDMA channel through which the information unit has been received.
* @recv_ioctx: Receive I/O context associated with the information unit.
* @context: SCST command processing context.
*/
static struct srpt_send_ioctx *
srpt_handle_new_iu(struct srpt_rdma_ch *ch,
struct srpt_recv_ioctx *recv_ioctx,
enum scst_exec_context context)
{
struct srpt_send_ioctx *send_ioctx = NULL;
struct srp_cmd *srp_cmd;
u8 opcode;
BUG_ON(!ch);
BUG_ON(!recv_ioctx);
if (unlikely(ch->state == CH_CONNECTING))
goto push;
ib_dma_sync_single_for_cpu(ch->sport->sdev->device,
recv_ioctx->ioctx.dma,
recv_ioctx->ioctx.offset + srp_max_req_size,
DMA_FROM_DEVICE);
srp_cmd = recv_ioctx->ioctx.buf + recv_ioctx->ioctx.offset;
opcode = srp_cmd->opcode;
if (opcode == SRP_CMD || opcode == SRP_TSK_MGMT) {
send_ioctx = srpt_get_send_ioctx(ch);
if (unlikely(!send_ioctx))
goto push;
}
if (!list_empty(&recv_ioctx->wait_list)) {
WARN_ON_ONCE(!ch->processing_wait_list);
list_del_init(&recv_ioctx->wait_list);
}
switch (opcode) {
case SRP_CMD:
srpt_handle_cmd(ch, recv_ioctx, send_ioctx, context);
break;
case SRP_TSK_MGMT:
srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx);
break;
case SRP_I_LOGOUT:
pr_err("Not yet implemented: SRP_I_LOGOUT\n");
break;
case SRP_CRED_RSP:
pr_debug("received SRP_CRED_RSP\n");
break;
case SRP_AER_RSP:
pr_debug("received SRP_AER_RSP\n");
break;
case SRP_RSP:
pr_err("Received SRP_RSP\n");
break;
default:
pr_err("received IU with unknown opcode 0x%x\n", opcode);
break;
}
if (!send_ioctx || !send_ioctx->recv_ioctx)
srpt_post_recv(ch->sport->sdev, ch, recv_ioctx);
out:
return send_ioctx;
push:
if (list_empty(&recv_ioctx->wait_list)) {
WARN_ON_ONCE(ch->processing_wait_list);
list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list);
}
goto out;
}
static void srpt_process_rcv_completion(struct ib_cq *cq,
struct srpt_rdma_ch *ch,
struct ib_wc *wc)
{
struct srpt_recv_ioctx *ioctx;
u32 index;
index = idx_from_wr_id(wc->wr_id);
if (wc->status == IB_WC_SUCCESS) {
int req_lim;
req_lim = srpt_adjust_req_lim(ch, -1, 0);
if (unlikely(req_lim < 0))
pr_err("req_lim = %d < 0\n", req_lim);
if (ch->sport->sdev->use_srq)
ioctx = ch->sport->sdev->ioctx_ring[index];
else
ioctx = ch->ioctx_recv_ring[index];
ioctx->byte_len = wc->byte_len;
srpt_handle_new_iu(ch, ioctx, srpt_new_iu_context);
} else if (ch->state <= CH_LIVE) {
pr_info("receiving failed for idx %u with status %d\n", index,
wc->status);
}
}
/*
* This function must be called from the context in which RDMA completions are
* processed because it accesses the wait list without protection against
* access from other threads.
*/
static void srpt_process_wait_list(struct srpt_rdma_ch *ch)
{
struct srpt_recv_ioctx *recv_ioctx, *tmp;
WARN_ON_ONCE(ch->state == CH_CONNECTING);
if (list_empty(&ch->cmd_wait_list))
return;
WARN_ON_ONCE(ch->processing_wait_list);
ch->processing_wait_list = true;
list_for_each_entry_safe(recv_ioctx, tmp, &ch->cmd_wait_list,
wait_list) {
if (!srpt_handle_new_iu(ch, recv_ioctx, srpt_new_iu_context))
break;
}
ch->processing_wait_list = false;
}
/*
* srpt_process_send_completion() - Process an IB send completion.
*
* Note: Although this has not yet been observed during tests, at least in
* theory it is possible that the srpt_get_send_ioctx() call invoked by
* srpt_handle_new_iu() fails. This is possible because the req_lim_delta
* value in each response is set to at least one, and it is possible that this
* response makes the initiator send a new request before the send completion
* for that response has been processed. This could e.g. happen if the call to
* srpt_put_send_iotcx() is delayed because of a higher priority interrupt or
* if IB retransmission causes generation of the send completion to be
* delayed. Incoming information units for which srpt_get_send_ioctx() fails
* are queued on cmd_wait_list. The code below processes these delayed
* requests one at a time.
*/
static void srpt_process_send_completion(struct ib_cq *cq,
struct srpt_rdma_ch *ch,
struct ib_wc *wc)
{
uint32_t index;
enum srpt_opcode opcode;
index = idx_from_wr_id(wc->wr_id);
opcode = opcode_from_wr_id(wc->wr_id);
if (wc->status == IB_WC_SUCCESS) {
if (opcode == SRPT_SEND) {
srpt_handle_send_comp(ch, ch->ioctx_ring[index],
srpt_send_context);
} else if (opcode == SRPT_RDMA_READ_LAST ||
opcode == SRPT_RDMA_ABORT) {
srpt_handle_rdma_comp(ch, ch->ioctx_ring[index], opcode,
srpt_xmt_rsp_context);
} else if (opcode == SRPT_RDMA_ZEROLENGTH_WRITE) {
WARN_ONCE(ch->state != CH_LIVE,
"%s-%d: QP not in 'live' state\n",
ch->sess_name, ch->qp->qp_num);
srpt_process_wait_list(ch);
} else {
WARN(true, "unexpected opcode %d\n", opcode);
}
} else {
if (opcode == SRPT_SEND) {
pr_info("sending response for idx %u failed with status %d\n",
index, wc->status);
srpt_handle_send_err_comp(ch, wc->wr_id,
srpt_send_context);
} else if (opcode == SRPT_RDMA_READ_LAST ||
opcode == SRPT_RDMA_WRITE_LAST) {
pr_info("RDMA t %d for idx %u failed with status %d.%s\n",
opcode, index, wc->status,
wc->status == IB_WC_RETRY_EXC_ERR ?
" If this has not been triggered by a cable pull, please consider to increase the subnet timeout parameter on the IB switch." :
wc->status == IB_WC_WR_FLUSH_ERR ?
" If this has not been triggered by a cable pull, please check the involved IB HCA's and cables." :
"");
srpt_handle_rdma_err_comp(ch, ch->ioctx_ring[index],
opcode, srpt_xmt_rsp_context);
} else if (opcode == SRPT_RDMA_ZEROLENGTH_WRITE) {
srpt_unregister_ch(ch);
} else if (opcode != SRPT_RDMA_MID) {
WARN(true, "unexpected opcode %d\n", opcode);
}
}
if (unlikely(!list_empty(&ch->cmd_wait_list) &&
ch->state != CH_CONNECTING &&
!ch->processing_wait_list))
srpt_process_wait_list(ch);
}
static void srpt_process_one_compl(struct srpt_rdma_ch *ch, struct ib_wc *wc)
{
struct ib_cq *const cq = ch->cq;
if (opcode_from_wr_id(wc->wr_id) == SRPT_RECV)
srpt_process_rcv_completion(cq, ch, wc);
else
srpt_process_send_completion(cq, ch, wc);
}
static int srpt_poll(struct srpt_rdma_ch *ch, int budget)
{
struct ib_cq *const cq = ch->cq;
struct ib_wc *const wc = ch->wc;
int i, n, processed = 0;
while ((n = ib_poll_cq(cq, min_t(int, ARRAY_SIZE(ch->wc), budget),
wc)) > 0) {
for (i = 0; i < n; i++)
srpt_process_one_compl(ch, &wc[i]);
budget -= n;
processed += n;
}
return processed;
}
static int srpt_process_completion(struct srpt_rdma_ch *ch, int budget)
{
struct ib_cq *const cq = ch->cq;
int processed = 0, n = budget;
do {
processed += srpt_poll(ch, n);
n = ib_req_notify_cq(cq, IB_CQ_NEXT_COMP |
IB_CQ_REPORT_MISSED_EVENTS);
} while (n > 0);
return processed;
}
/*
* srpt_completion() - IB completion queue callback function.
*/
static void srpt_completion(struct ib_cq *cq, void *ctx)
{
struct srpt_rdma_ch *ch = ctx;
queue_work_on(raw_smp_processor_id(), srpt_wq, &ch->compl);
}
static void srpt_free_ch(struct kref *kref)
{
struct srpt_rdma_ch *ch = container_of(kref, struct srpt_rdma_ch, kref);
srpt_destroy_ch_ib(ch);
kfree_rcu(ch, rcu);
}
/*
* Called indirectly by scst_unregister_session() after the last command
* associated with a session has finished.
*/
static void srpt_unreg_ch(struct srpt_rdma_ch *ch)
{
struct srpt_port *sport = ch->sport;
struct srpt_device *sdev = sport->sdev;
WARN_ON_ONCE(ch->state != CH_DISCONNECTED);
flush_work(&ch->compl);
srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_recv_ring,
sdev, ch->rq_size,
ch->req_buf_cache, DMA_FROM_DEVICE);
srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
sdev, ch->rq_size,
ch->rsp_buf_cache, DMA_TO_DEVICE);
/* Wait until CM callbacks have finished and prevent new callbacks. */
if (ch->using_rdma_cm)
rdma_destroy_id(ch->rdma_cm.cm_id);
else
ib_destroy_cm_id(ch->ib_cm.cm_id);
/*
* Invoke wake_up() inside the lock to avoid that sport disappears
* after list_del() and before wake_up() has been invoked.
*/
mutex_lock(&sport->mutex);
list_del_rcu(&ch->list);
wake_up(&sport->ch_releaseQ);
mutex_unlock(&sport->mutex);
kref_put(&ch->kref, srpt_free_ch);
}
/*
* Called by scst_unregister_session() after the last command associated with
* a session has finished.
*/
static void srpt_unreg_sess(struct scst_session *sess)
{
srpt_unreg_ch(scst_sess_get_tgt_priv(sess));
}
static void srpt_unregister_ch(struct srpt_rdma_ch *ch)
{
WARN_ON_ONCE(!srpt_set_ch_state(ch, CH_DISCONNECTED));
pr_debug("%s-%d: about to unregister this session\n", ch->sess_name,
ch->qp->qp_num);
scst_unregister_session(ch->sess, false, srpt_unreg_sess);
}
static void srpt_do_compl_work(struct work_struct *work)
{
struct srpt_rdma_ch *ch = container_of(work, typeof(*ch), compl);
enum { poll_budget = 256 };
int n;
n = srpt_process_completion(ch, poll_budget);
if (n >= poll_budget)
schedule_work(work);
}
/**
* srpt_create_ch_ib - create receive and send completion queues
* @ch: SRPT RDMA channel.
*/
static int srpt_create_ch_ib(struct srpt_rdma_ch *ch)
{
struct ib_qp_init_attr *qp_init;
struct srpt_device *sdev = ch->sport->sdev;
int sq_size = srpt_sq_size, i, ret;
EXTRACHECKS_WARN_ON(ch->rq_size < 1);
ret = -ENOMEM;
qp_init = kzalloc(sizeof(*qp_init), GFP_KERNEL);
if (!qp_init)
goto out;
retry:
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 20) && \
!defined(RHEL_RELEASE_CODE)
ch->cq = ib_create_cq(sdev->device, srpt_completion, NULL, ch,
ch->rq_size + sq_size);
#elif !defined(IB_CREATE_CQ_HAS_INIT_ATTR)
ch->cq = ib_create_cq(sdev->device, srpt_completion, NULL, ch,
ch->rq_size + sq_size, ch->comp_vector);
#else
{
struct ib_cq_init_attr ia = { };
ia.cqe = ch->rq_size + sq_size;
ia.comp_vector = ch->comp_vector;
ch->cq = ib_create_cq(sdev->device, srpt_completion, NULL, ch, &ia);
}
#endif
if (IS_ERR(ch->cq)) {
ret = PTR_ERR(ch->cq);
pr_err("failed to create CQ: cqe %d; c.v. %d; ret %d\n",
ch->rq_size + sq_size, ch->comp_vector, ret);
goto out;
}
ib_req_notify_cq(ch->cq, IB_CQ_NEXT_COMP);
qp_init->qp_context = (void *)ch;
qp_init->event_handler
= (void(*)(struct ib_event *, void*))srpt_qp_event;
qp_init->send_cq = ch->cq;
qp_init->recv_cq = ch->cq;
qp_init->sq_sig_type = IB_SIGNAL_REQ_WR;
qp_init->qp_type = IB_QPT_RC;
qp_init->cap.max_send_wr = sq_size;
#if HAVE_DEV_ATTR_MAX_SEND_SGE
ch->max_send_sge = sdev->dev_attr.max_send_sge;
#else
ch->max_send_sge = sdev->dev_attr.max_sge;
#endif
qp_init->cap.max_send_sge = ch->max_send_sge;
qp_init->cap.max_recv_sge = 1;
if (sdev->use_srq) {
qp_init->srq = sdev->srq;
} else {
qp_init->cap.max_recv_wr = ch->rq_size;
}
if (ch->using_rdma_cm) {
ret = rdma_create_qp(ch->rdma_cm.cm_id, sdev->pd, qp_init);
ch->qp = ch->rdma_cm.cm_id->qp;
} else {
ch->qp = ib_create_qp(sdev->pd, qp_init);
if (!IS_ERR(ch->qp)) {
ret = srpt_init_ch_qp(ch, ch->qp);
if (ret)
ib_destroy_qp(ch->qp);
} else {
ret = PTR_ERR(ch->qp);
}
}
if (ret) {
bool retry = sq_size > MIN_SRPT_SQ_SIZE;
if (retry) {
pr_debug("failed to create queue pair with sq_size = %d (%d) - retrying\n",
sq_size, ret);
ib_destroy_cq(ch->cq);
sq_size = max(sq_size / 2, MIN_SRPT_SQ_SIZE);
goto retry;
} else {
pr_err("failed to create queue pair with sq_size = %d (%d)\n",
sq_size, ret);
goto err_destroy_cq;
}
}
pr_debug("qp_num = %#x\n", ch->qp->qp_num);
if (!sdev->use_srq)
for (i = 0; i < ch->rq_size; i++)
srpt_post_recv(sdev, ch, ch->ioctx_recv_ring[i]);
atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr);
pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d ch= %p\n", __func__,
ch->cq->cqe, qp_init->cap.max_send_sge,
qp_init->cap.max_send_wr, ch);
out:
kfree(qp_init);
return ret;
err_destroy_cq:
ch->qp = NULL;
ib_destroy_cq(ch->cq);
goto out;
}
static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch)
{
ib_destroy_qp(ch->qp);
ib_destroy_cq(ch->cq);
}
/**
* srpt_close_ch - close a RDMA channel
* @ch: SRPT RDMA channel.
*
* Make sure all resources associated with the channel will be deallocated at
* an appropriate time.
*
* Returns true if and only if the channel state has been modified into
* CH_DRAINING.
*/
static bool srpt_close_ch(struct srpt_rdma_ch *ch)
{
int ret;
if (!srpt_set_ch_state(ch, CH_DRAINING)) {
pr_debug("%s: already closed\n", ch->sess_name);
return false;
}
kref_get(&ch->kref);
ret = srpt_ch_qp_err(ch);
if (ret < 0)
pr_err("%s-%d: changing queue pair into error state failed: %d\n",
ch->sess_name, ch->qp->qp_num, ret);
ret = srpt_zerolength_write(ch);
if (ret < 0) {
pr_err("%s-%d: queuing zero-length write failed: %d\n",
ch->sess_name, ch->qp->qp_num, ret);
srpt_unregister_ch(ch);
}
kref_put(&ch->kref, srpt_free_ch);
return true;
}
/*
* Change the channel state into CH_DISCONNECTING. If a channel has not yet
* reached the connected state, close it. If a channel is in the connected
* state, send a DREQ. If a DREQ has been received, send a DREP. Note: it is
* the responsibility of the caller to ensure that this function is not
* invoked concurrently with the code that accepts a connection. This means
* that this function must either be invoked from inside a CM callback
* function or that it must be invoked with the srpt_port.mutex held.
*/
static int srpt_disconnect_ch(struct srpt_rdma_ch *ch)
{
int ret;
if (!srpt_set_ch_state(ch, CH_DISCONNECTING))
return -ENOTCONN;
if (ch->using_rdma_cm) {
ret = rdma_disconnect(ch->rdma_cm.cm_id);
} else {
ret = ib_send_cm_dreq(ch->ib_cm.cm_id, NULL, 0);
if (ret < 0)
ret = ib_send_cm_drep(ch->ib_cm.cm_id, NULL, 0);
}
if (ret < 0 && srpt_close_ch(ch))
ret = 0;
return ret;
}
static void __srpt_close_all_ch(struct srpt_port *sport)
{
struct srpt_nexus *nexus;
struct srpt_rdma_ch *ch;
lockdep_assert_held(&sport->mutex);
list_for_each_entry(nexus, &sport->nexus_list, entry) {
list_for_each_entry(ch, &nexus->ch_list, list) {
if (srpt_disconnect_ch(ch) >= 0)
pr_info("Closing channel %s-%d because target %s has been disabled\n",
ch->sess_name, ch->qp->qp_num,
sport->scst_tgt->tgt_name);
srpt_close_ch(ch);
}
}
}
/*
* Look up (i_port_id, t_port_id) in sport->nexus_list. Create an entry if
* it does not yet exist.
*/
static struct srpt_nexus *srpt_get_nexus(struct srpt_port *sport,
const u8 i_port_id[16],
const u8 t_port_id[16])
{
struct srpt_nexus *nexus = NULL, *tmp_nexus = NULL, *n;
for (;;) {
mutex_lock(&sport->mutex);
list_for_each_entry(n, &sport->nexus_list, entry) {
if (memcmp(n->i_port_id, i_port_id, 16) == 0 &&
memcmp(n->t_port_id, t_port_id, 16) == 0) {
nexus = n;
break;
}
}
if (!nexus && tmp_nexus) {
list_add_tail_rcu(&tmp_nexus->entry,
&sport->nexus_list);
swap(nexus, tmp_nexus);
}
mutex_unlock(&sport->mutex);
if (nexus)
break;
tmp_nexus = kzalloc(sizeof(*nexus), GFP_KERNEL);
if (!tmp_nexus) {
nexus = ERR_PTR(-ENOMEM);
break;
}
INIT_LIST_HEAD(&tmp_nexus->ch_list);
memcpy(tmp_nexus->i_port_id, i_port_id, 16);
memcpy(tmp_nexus->t_port_id, t_port_id, 16);
}
kfree(tmp_nexus);
return nexus;
}
/*
* srpt_enable_target - Set the "enabled" status of a target.
*/
static int srpt_enable_target(struct scst_tgt *scst_tgt, bool enable)
{
struct srpt_port *sport = scst_tgt_get_tgt_priv(scst_tgt);
int res = -E_TGT_PRIV_NOT_YET_SET;
EXTRACHECKS_WARN_ON_ONCE(irqs_disabled());
if (!sport)
goto out;
pr_info("%s target %s\n", enable ? "Enabling" : "Disabling",
scst_tgt->tgt_name);
mutex_lock(&sport->mutex);
sport->enabled = enable;
if (!enable)
__srpt_close_all_ch(sport);
mutex_unlock(&sport->mutex);
res = 0;
out:
return res;
}
/*
* srpt_is_target_enabled - Report whether a target is enabled.
*/
static bool srpt_is_target_enabled(struct scst_tgt *scst_tgt)
{
struct srpt_port *sport = scst_tgt_get_tgt_priv(scst_tgt);
return sport && sport->enabled;
}
/*
* srpt_next_comp_vector() - Next completion vector >= sport->comp_vector
*/
static u16 srpt_next_comp_vector(struct srpt_port *sport)
{
u16 comp_vector;
mutex_lock(&sport->mutex);
comp_vector = cpumask_next(sport->comp_vector, &sport->comp_v_mask);
if (comp_vector >= nr_cpu_ids)
comp_vector = cpumask_next(-1, &sport->comp_v_mask);
sBUG_ON(comp_vector >= nr_cpu_ids);
sport->comp_vector = comp_vector;
mutex_unlock(&sport->mutex);
return comp_vector;
}
/**
* srpt_cm_req_recv - process the event IB_CM_REQ_RECEIVED
* @sdev: HCA through which the login request was received.
* @ib_cm_id: IB/CM connection identifier in case of IB/CM.
* @rdma_cm_id: RDMA/CM connection identifier in case of RDMA/CM.
* @port_num: Port through which the REQ message was received.
* @pkey: P_Key of the incoming connection.
* @req: SRP login request.
* @src_addr: GID (IB/CM) or IP address (RDMA/CM) of the port that submitted
* the login request.
*
* Ownership of the cm_id is transferred to the target session if this
* function returns zero. Otherwise the caller remains the owner of cm_id.
*/
static int srpt_cm_req_recv(struct srpt_device *const sdev,
struct ib_cm_id *ib_cm_id,
struct rdma_cm_id *rdma_cm_id,
u8 port_num, __be16 pkey,
const struct srp_login_req *req,
const char *src_addr)
{
struct srpt_port *const sport = &sdev->port[port_num - 1];
struct srpt_nexus *nexus;
struct srp_login_rsp *rsp = NULL;
struct srp_login_rej *rej = NULL;
union {
struct rdma_conn_param rdma_cm;
struct ib_cm_rep_param ib_cm;
} *rep_param = NULL;
struct srpt_rdma_ch *ch = NULL;
u32 it_iu_len;
int i, ret;
WARN_ON_ONCE(irqs_disabled());
#if LINUX_VERSION_CODE <= KERNEL_VERSION(2, 6, 18)
WARN_ON(!sdev || !req);
if (!sdev || !req)
return -EINVAL;
#else
if (WARN_ON(!sdev || !req))
return -EINVAL;
#endif
it_iu_len = be32_to_cpu(req->req_it_iu_len);
pr_info("Received SRP_LOGIN_REQ with i_port_id %pI6, t_port_id %pI6 and it_iu_len %d on port %d (guid=%pI6); pkey %#04x\n",
req->initiator_port_id, req->target_port_id, it_iu_len,
port_num, &sport->gid, be16_to_cpu(pkey));
nexus = srpt_get_nexus(sport, req->initiator_port_id,
req->target_port_id);
if (IS_ERR(nexus)) {
ret = PTR_ERR(nexus);
goto out;
}
ret = -ENOMEM;
rsp = kzalloc(sizeof(*rsp), GFP_KERNEL);
rej = kzalloc(sizeof(*rej), GFP_KERNEL);
rep_param = kzalloc(sizeof(*rep_param), GFP_KERNEL);
if (!rsp || !rej || !rep_param)
goto out;
ret = -EINVAL;
if (it_iu_len > srp_max_req_size || it_iu_len < 64) {
rej->reason = cpu_to_be32(
SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE);
pr_err("rejected SRP_LOGIN_REQ because its length (%d bytes) is out of range (%d .. %d)\n",
it_iu_len, 64, srp_max_req_size);
goto reject;
}
if (!sport->enabled) {
rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
pr_info("rejected SRP_LOGIN_REQ because target port %s has not yet been enabled\n",
sport->scst_tgt->tgt_name);
goto reject;
}
if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid)
|| *(__be64 *)(req->target_port_id + 8) !=
cpu_to_be64(srpt_service_guid)) {
rej->reason = cpu_to_be32(
SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL);
pr_err("rejected SRP_LOGIN_REQ because it has an invalid target port identifier.\n");
goto reject;
}
ret = -ENOMEM;
ch = kzalloc(sizeof(*ch), GFP_KERNEL);
if (!ch) {
rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
pr_err("rejected SRP_LOGIN_REQ because out of memory.\n");
goto reject;
}
kref_init(&ch->kref);
ch->pkey = be16_to_cpu(pkey);
ch->nexus = nexus;
ch->sport = sport;
if (ib_cm_id) {
ch->ib_cm.cm_id = ib_cm_id;
ib_cm_id->context = ch;
} else {
ch->using_rdma_cm = true;
ch->rdma_cm.cm_id = rdma_cm_id;
rdma_cm_id->context = ch;
}
/*
* ch->rq_size should be at least as large as the initiator queue
* depth to avoid that the initiator driver has to report QUEUE_FULL
* to the SCSI mid-layer.
*/
ch->rq_size = min(MAX_SRPT_RQ_SIZE, scst_get_max_lun_commands(NULL, 0));
spin_lock_init(&ch->spinlock);
ch->state = CH_CONNECTING;
INIT_WORK(&ch->compl, srpt_do_compl_work);
INIT_LIST_HEAD(&ch->cmd_wait_list);
ch->max_rsp_size = max_t(uint32_t, srp_max_rsp_size, MIN_MAX_RSP_SIZE);
ch->rsp_buf_cache = kmem_cache_create("srpt-rsp-buf", ch->max_rsp_size,
512, 0, NULL);
if (!ch->rsp_buf_cache)
goto free_ch;
ch->ioctx_ring = (struct srpt_send_ioctx **)
srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
sizeof(*ch->ioctx_ring[0]),
ch->rsp_buf_cache, 0, DMA_TO_DEVICE);
if (!ch->ioctx_ring) {
pr_err("rejected SRP_LOGIN_REQ because creating a new QP SQ ring failed.\n");
rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
goto free_rsp_cache;
}
INIT_LIST_HEAD(&ch->free_list);
for (i = 0; i < ch->rq_size; i++) {
ch->ioctx_ring[i]->ch = ch;
list_add_tail(&ch->ioctx_ring[i]->free_list, &ch->free_list);
}
if (!sdev->use_srq) {
u16 imm_data_offset = req->req_flags & SRP_IMMED_REQUESTED ?
be16_to_cpu(req->imm_data_offset) : 0;
u16 alignment_offset;
u32 req_sz;
if (req->req_flags & SRP_IMMED_REQUESTED)
pr_debug("imm_data_offset = %d\n",
be16_to_cpu(req->imm_data_offset));
if (imm_data_offset >= sizeof(struct srp_cmd)) {
ch->imm_data_offset = imm_data_offset;
rsp->rsp_flags |= SRP_LOGIN_RSP_IMMED_SUPP;
} else {
ch->imm_data_offset = 0;
}
alignment_offset = round_up(imm_data_offset, 512) -
imm_data_offset;
req_sz = alignment_offset + imm_data_offset + srp_max_req_size;
ch->req_buf_cache = kmem_cache_create("srpt-req-buf", req_sz,
512, 0, NULL);
if (!ch->req_buf_cache)
goto free_rsp_ring;
ch->ioctx_recv_ring = (struct srpt_recv_ioctx **)
srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
sizeof(*ch->ioctx_recv_ring[0]),
ch->req_buf_cache,
alignment_offset,
DMA_FROM_DEVICE);
if (!ch->ioctx_recv_ring) {
pr_err("rejected SRP_LOGIN_REQ because creating a new QP RQ ring failed.\n");
rej->reason =
cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
goto free_recv_cache;
}
for (i = 0; i < ch->rq_size; i++)
INIT_LIST_HEAD(&ch->ioctx_recv_ring[i]->wait_list);
}
ch->comp_vector = srpt_next_comp_vector(sport);
ret = srpt_create_ch_ib(ch);
if (ret) {
rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
pr_err("rejected SRP_LOGIN_REQ because creating a new RDMA channel failed.\n");
goto free_recv_ring;
}
strlcpy(ch->sess_name, src_addr, sizeof(ch->sess_name));
pr_debug("registering session %s\n", ch->sess_name);
BUG_ON(!sport->scst_tgt);
ret = -ENOMEM;
ch->sess = scst_register_session(sport->scst_tgt, 0,
ch->sess_name, ch, NULL, NULL);
if (!ch->sess) {
rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
pr_debug("Failed to create SCST session\n");
goto destroy_ib;
}
mutex_lock(&sport->mutex);
if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) {
struct srpt_rdma_ch *ch2;
list_for_each_entry(ch2, &nexus->ch_list, list) {
if (srpt_disconnect_ch(ch2) < 0)
continue;
pr_info("Relogin - closed existing channel %s\n",
ch2->sess_name);
rsp->rsp_flags |= SRP_LOGIN_RSP_MULTICHAN_TERMINATED;
}
} else {
rsp->rsp_flags |= SRP_LOGIN_RSP_MULTICHAN_MAINTAINED;
}
list_add_tail_rcu(&ch->list, &nexus->ch_list);
if (!sport->enabled) {
rej->reason = cpu_to_be32(
SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
pr_info("rejected SRP_LOGIN_REQ because the target %s (%s) is not enabled\n",
sport->scst_tgt->tgt_name,
dev_name(&sdev->device->dev));
mutex_unlock(&sport->mutex);
goto reject;
}
mutex_unlock(&sport->mutex);
ret = ch->using_rdma_cm ? 0 : srpt_ch_qp_rtr(ch, ch->qp);
if (ret) {
rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
pr_err("rejected SRP_LOGIN_REQ because enabling RTR failed (error code = %d)\n",
ret);
goto reject;
}
pr_debug("Establish connection sess=%p name=%s ch=%p\n", ch->sess,
ch->sess_name, ch);
/* create srp_login_response */
rsp->opcode = SRP_LOGIN_RSP;
rsp->tag = req->tag;
rsp->max_it_iu_len = cpu_to_be32(srp_max_req_size);
rsp->max_ti_iu_len = req->req_it_iu_len;
ch->max_ti_iu_len = it_iu_len;
rsp->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT |
SRP_BUF_FORMAT_INDIRECT);
rsp->req_lim_delta = cpu_to_be32(ch->rq_size);
ch->req_lim = ch->rq_size;
ch->req_lim_delta = 0;
/* create cm reply */
if (ch->using_rdma_cm) {
rep_param->rdma_cm.private_data = (void *)rsp;
rep_param->rdma_cm.private_data_len = sizeof(*rsp);
rep_param->rdma_cm.rnr_retry_count = 7;
rep_param->rdma_cm.flow_control = 1;
rep_param->rdma_cm.responder_resources = 4;
rep_param->rdma_cm.initiator_depth = 4;
} else {
rep_param->ib_cm.qp_num = ch->qp->qp_num;
rep_param->ib_cm.private_data = (void *)rsp;
rep_param->ib_cm.private_data_len = sizeof(*rsp);
rep_param->ib_cm.rnr_retry_count = 7;
rep_param->ib_cm.flow_control = 1;
rep_param->ib_cm.failover_accepted = 0;
rep_param->ib_cm.srq = 1;
rep_param->ib_cm.responder_resources = 4;
rep_param->ib_cm.initiator_depth = 4;
}
/*
* Hold the sport mutex while accepting a connection to avoid that
* srpt_disconnect_ch() is invoked concurrently with this code.
*/
mutex_lock(&sport->mutex);
if (sport->enabled && ch->state == CH_CONNECTING) {
if (ch->using_rdma_cm)
ret = rdma_accept(rdma_cm_id, &rep_param->rdma_cm);
else
ret = ib_send_cm_rep(ib_cm_id, &rep_param->ib_cm);
} else {
ret = -EINVAL;
}
mutex_unlock(&sport->mutex);
switch (ret) {
case 0:
break;
case -EINVAL:
goto reject;
default:
rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
pr_err("sending SRP_LOGIN_REQ response failed (error code = %d)\n",
ret);
goto reject;
}
goto out;
destroy_ib:
srpt_destroy_ch_ib(ch);
free_recv_ring:
srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_recv_ring,
ch->sport->sdev, ch->rq_size,
ch->req_buf_cache, DMA_FROM_DEVICE);
free_recv_cache:
kmem_cache_destroy(ch->req_buf_cache);
free_rsp_ring:
srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
ch->sport->sdev, ch->rq_size,
ch->rsp_buf_cache, DMA_TO_DEVICE);
free_rsp_cache:
kmem_cache_destroy(ch->rsp_buf_cache);
free_ch:
if (rdma_cm_id)
rdma_cm_id->context = NULL;
else
ib_cm_id->context = NULL;
kfree(ch);
ch = NULL;
WARN_ON_ONCE(ret == 0);
reject:
pr_info("Rejecting login with reason %#x\n", be32_to_cpu(rej->reason));
rej->opcode = SRP_LOGIN_REJ;
rej->tag = req->tag;
rej->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT |
SRP_BUF_FORMAT_INDIRECT);
if (rdma_cm_id)
rdma_reject(rdma_cm_id, rej, sizeof(*rej)
#if RDMA_REJECT_HAS_FOUR_ARGS
, IB_CM_REJ_CONSUMER_DEFINED
#endif
);
else
ib_send_cm_rej(ib_cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0,
rej, sizeof(*rej));
if (ch && ch->qp) {
srpt_close_ch(ch);
/*
* Tell the caller not to free cm_id since srpt_do_compl_work()
* will do that.
*/
ret = 0;
}
out:
kfree(rep_param);
kfree(rsp);
kfree(rej);
return ret;
}
static int srpt_ib_cm_req_recv(struct ib_cm_id *cm_id,
const struct ib_cm_req_event_param *param,
void *private_data)
{
char sgid[40];
snprintf(sgid, sizeof(sgid), "%pI6", &param->primary_path->dgid);
return srpt_cm_req_recv(cm_id->context, cm_id, NULL, param->port,
param->primary_path->pkey,
private_data, sgid);
}
static const char *inet_ntop(const void *sa, char *dst, unsigned int size)
{
switch (((struct sockaddr *)sa)->sa_family) {
case AF_INET:
snprintf(dst, size, "%pI4",
&((struct sockaddr_in *)sa)->sin_addr);
break;
case AF_INET6:
snprintf(dst, size, "%pI6",
&((struct sockaddr_in6 *)sa)->sin6_addr);
break;
default:
snprintf(dst, size, "???");
break;
}
return dst;
}
static int srpt_rdma_cm_req_recv(struct rdma_cm_id *cm_id,
const struct rdma_cm_event *event)
{
struct srpt_device *sdev;
struct srp_login_req req;
const struct srp_login_req_rdma *req_rdma;
/*
* See also commit c2f8fc4ec440 ("IB/SA: Rename ib_sa_path_rec to
* sa_path_rec") # v4.12.
*/
typeof(cm_id->route.path_rec) path_rec = cm_id->route.path_rec;
char src_addr[40];
sdev = ib_get_client_data(cm_id->device, &srpt_client);
if (!sdev)
return -ECONNREFUSED;
if (event->param.conn.private_data_len < sizeof(*req_rdma))
return -EINVAL;
/* Transform srp_login_req_rdma into srp_login_req. */
req_rdma = event->param.conn.private_data;
memset(&req, 0, sizeof(req));
req.opcode = req_rdma->opcode;
req.tag = req_rdma->tag;
req.req_it_iu_len = req_rdma->req_it_iu_len;
req.req_buf_fmt = req_rdma->req_buf_fmt;
req.req_flags = req_rdma->req_flags;
memcpy(req.initiator_port_id, req_rdma->initiator_port_id, 16);
memcpy(req.target_port_id, req_rdma->target_port_id, 16);
req.imm_data_offset = req_rdma->imm_data_offset;
inet_ntop(&cm_id->route.addr.src_addr, src_addr, sizeof(src_addr));
return srpt_cm_req_recv(sdev, NULL, cm_id, cm_id->port_num,
path_rec ? path_rec->pkey : 0, &req, src_addr);
}
static void srpt_cm_rej_recv(struct srpt_rdma_ch *ch,
enum ib_cm_rej_reason reason,
const u8 *private_data,
u8 private_data_len)
{
char *priv = NULL;
int i;
if (private_data_len && (priv = kmalloc(private_data_len * 3 + 1,
GFP_KERNEL))) {
for (i = 0; i < private_data_len; i++)
sprintf(priv + 3 * i, " %02x", private_data[i]);
}
pr_info("Received CM REJ for ch %s-%d; reason %d%s%s.\n",
ch->sess_name, ch->qp->qp_num, reason, private_data_len ?
"; private data" : "", priv ? priv : " (?)");
kfree(priv);
}
static void srpt_check_timeout(struct srpt_rdma_ch *ch)
{
struct ib_qp_attr attr;
struct ib_qp_init_attr iattr;
uint64_t T_tr_ns, max_compl_time_ms;
uint64_t T_tr_ms;
if (ib_query_qp(ch->qp, &attr, IB_QP_TIMEOUT, &iattr) < 0) {
pr_err("Querying QP attributes failed\n");
return;
}
/*
* From IBTA C9-140: Transport Timer timeout interval
* T_tr = 4.096 us * 2**(local ACK timeout) where the local ACK timeout
* is a five-bit value, with zero meaning that the timer is disabled.
*/
WARN_ON(attr.timeout >= (1 << 5));
if (attr.timeout) {
T_tr_ns = 1ULL << (12 + attr.timeout);
max_compl_time_ms = attr.retry_cnt * 4 * T_tr_ns;
do_div(max_compl_time_ms, 1000000);
T_tr_ms = T_tr_ns;
do_div(T_tr_ms, 1000000);
pr_debug("%s-%d: QP local ack timeout = %d or T_tr = %llu ms; retry_cnt = %d; max compl. time = %d ms\n",
ch->sess_name, ch->qp->qp_num, attr.timeout, T_tr_ms,
attr.retry_cnt, (unsigned int)max_compl_time_ms);
if (max_compl_time_ms >= RDMA_COMPL_TIMEOUT_S * 1000) {
pr_err("Maximum RDMA completion time (%lld ms) exceeds ib_srpt timeout (%d ms)\n",
max_compl_time_ms, 1000 * RDMA_COMPL_TIMEOUT_S);
}
}
}
/**
* srpt_cm_rtu_recv - process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event
* @ch: SRPT RDMA channel.
*
* An RTU (ready to use) message indicates that the connection has been
* established and that the recipient may begin transmitting.
*/
static void srpt_cm_rtu_recv(struct srpt_rdma_ch *ch)
{
int ret;
ret = ch->using_rdma_cm ? 0 : srpt_ch_qp_rts(ch, ch->qp);
if (ret < 0) {
pr_err("%s-%d: QP transition to RTS failed\n", ch->sess_name,
ch->qp->qp_num);
srpt_close_ch(ch);
return;
}
srpt_check_timeout(ch);
/*
* Note: calling srpt_close_ch() if the transition to the LIVE state
* fails is not necessary since that means that that function has
* already been invoked from another thread.
*/
if (!srpt_set_ch_state(ch, CH_LIVE))
pr_err("%s-%d: channel transition to LIVE state failed\n",
ch->sess_name, ch->qp->qp_num);
/* Trigger wait list processing. */
ret = srpt_zerolength_write(ch);
WARN_ONCE(ret < 0, "%d\n", ret);
}
/**
* srpt_cm_handler - IB connection manager callback function
* @cm_id: IB/CM connection identifier.
* @event: IB/CM event.
*
* A non-zero return value will cause the caller destroy the CM ID.
*
* Note: srpt_cm_handler() must only return a non-zero value when transferring
* ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning
* a non-zero value in any other case will trigger a race with the
* ib_destroy_cm_id() call triggered indirectly by srpt_do_compl_work().
*/
static int srpt_cm_handler(struct ib_cm_id *cm_id,
CM_HANDLER_EVENT_MODIFIER struct ib_cm_event *event)
{
struct srpt_rdma_ch *ch = cm_id->context;
int ret;
ret = 0;
switch (event->event) {
case IB_CM_REQ_RECEIVED:
ret = srpt_ib_cm_req_recv(cm_id, &event->param.req_rcvd,
event->private_data);
break;
case IB_CM_REJ_RECEIVED:
srpt_cm_rej_recv(ch, event->param.rej_rcvd.reason,
event->private_data,
IB_CM_REJ_PRIVATE_DATA_SIZE);
break;
case IB_CM_RTU_RECEIVED:
case IB_CM_USER_ESTABLISHED:
srpt_cm_rtu_recv(ch);
break;
case IB_CM_DREQ_RECEIVED:
srpt_disconnect_ch(ch);
break;
case IB_CM_DREP_RECEIVED:
pr_info("Received CM DREP message for ch %s-%d.\n",
ch->sess_name, ch->qp->qp_num);
srpt_close_ch(ch);
break;
case IB_CM_TIMEWAIT_EXIT:
pr_info("Received CM TimeWait exit for ch %s-%d.\n",
ch->sess_name, ch->qp->qp_num);
srpt_close_ch(ch);
break;
case IB_CM_REP_ERROR:
pr_info("Received CM REP error for ch %s-%d.\n", ch->sess_name,
ch->qp->qp_num);
break;
case IB_CM_DREQ_ERROR:
pr_info("Received CM DREQ ERROR event.\n");
break;
case IB_CM_MRA_RECEIVED:
pr_info("Received CM MRA event\n");
break;
default:
pr_err("received unrecognized CM event %d\n", event->event);
break;
}
return ret;
}
static int srpt_rdma_cm_handler(struct rdma_cm_id *cm_id,
struct rdma_cm_event *event)
{
struct srpt_rdma_ch *ch = cm_id->context;
int ret = 0;
switch (event->event) {
case RDMA_CM_EVENT_CONNECT_REQUEST:
ret = srpt_rdma_cm_req_recv(cm_id, event);
break;
case RDMA_CM_EVENT_REJECTED:
srpt_cm_rej_recv(ch, event->status,
event->param.conn.private_data,
event->param.conn.private_data_len);
break;
case RDMA_CM_EVENT_ESTABLISHED:
srpt_cm_rtu_recv(ch);
break;
case RDMA_CM_EVENT_DISCONNECTED:
if (ch->state < CH_DISCONNECTING)
srpt_disconnect_ch(ch);
else
srpt_close_ch(ch);
break;
case RDMA_CM_EVENT_TIMEWAIT_EXIT:
srpt_close_ch(ch);
break;
case RDMA_CM_EVENT_UNREACHABLE:
pr_info("Received CM REP error for ch %s-%d.\n", ch->sess_name,
ch->qp->qp_num);
break;
case RDMA_CM_EVENT_DEVICE_REMOVAL:
case RDMA_CM_EVENT_ADDR_CHANGE:
break;
default:
pr_err("received unrecognized RDMA CM event %d\n",
event->event);
break;
}
return ret;
}
/*
* srpt_map_sg_to_ib_sge() - Map an SG list to an IB SGE list.
*/
static int srpt_map_sg_to_ib_sge(struct srpt_rdma_ch *ch,
struct srpt_send_ioctx *ioctx,
struct scst_cmd *cmd)
{
struct srpt_device *sdev = ch->sport->sdev;
struct ib_device *dev __maybe_unused = sdev->device;
struct scatterlist *sg, *cur_sg;
int sg_cnt;
scst_data_direction dir;
struct rdma_iu *riu;
struct srp_direct_buf *db;
dma_addr_t dma_addr;
struct ib_sge *sge_array, *sge;
u64 raddr;
u32 rsize;
u32 tsize;
u32 dma_len;
int count;
int i, j, k;
int max_sge, nsge;
max_sge = ch->max_send_sge;
dir = scst_cmd_get_data_direction(cmd);
BUG_ON(dir == SCST_DATA_NONE);
/*
* Cache 'dir' because it is needed in srpt_unmap_sg_to_ib_sge()
* and because scst_set_cmd_error_status() resets cmd->data_direction.
*/
ioctx->dir = dir;
if (dir == SCST_DATA_WRITE) {
scst_cmd_get_write_fields(cmd, &sg, &sg_cnt);
WARN_ON(!sg);
max_sge = min(max_sge, ch->sport->sdev->dev_attr.max_sge_rd);
} else {
sg = scst_cmd_get_sg(cmd);
sg_cnt = scst_cmd_get_sg_cnt(cmd);
WARN_ON(!sg);
}
ioctx->sg = sg;
ioctx->sg_cnt = sg_cnt;
count = ib_dma_map_sg(sdev->device, sg, sg_cnt,
scst_to_tgt_dma_dir(dir));
if (unlikely(!count))
return -EBUSY;
ioctx->mapped_sg_count = count;
{
int size, nrdma;
nrdma = (count + max_sge - 1) / max_sge + ioctx->n_rbuf;
nsge = count + ioctx->n_rbuf;
size = nrdma * sizeof(*riu) + nsge * sizeof(*sge);
ioctx->rdma_ius = size <= sizeof(ioctx->rdma_ius_buf) ?
ioctx->rdma_ius_buf : kmalloc(size,
scst_cmd_atomic(cmd) ? GFP_ATOMIC : GFP_KERNEL);
if (!ioctx->rdma_ius)
goto free_mem;
ioctx->n_rdma_ius = nrdma;
sge_array = (struct ib_sge *)(ioctx->rdma_ius + nrdma);
}
db = ioctx->rbufs;
tsize = (dir == SCST_DATA_READ)
? scst_cmd_get_adjusted_resp_data_len(cmd)
: scst_cmd_get_bufflen(cmd);
dma_len = ib_sg_dma_len(dev, &sg[0]);
riu = ioctx->rdma_ius;
sge = sge_array;
/*
* For each remote desc - calculate the #ib_sge.
* If #ib_sge < SRPT_DEF_SG_PER_WQE per rdma operation then
* each remote desc rdma_iu is required a rdma wr;
* else
* we need to allocate extra rdma_iu to carry extra #ib_sge in
* another rdma wr
*/
for (i = 0, j = 0, cur_sg = sg;
j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) {
rsize = be32_to_cpu(db->len);
raddr = be64_to_cpu(db->va);
riu->raddr = raddr;
riu->rkey = be32_to_cpu(db->key);
riu->sge_cnt = 0;
riu->sge = sge;
/* calculate how many sge required for this remote_buf */
while (rsize > 0 && tsize > 0) {
if (rsize >= dma_len) {
tsize -= dma_len;
rsize -= dma_len;
raddr += dma_len;
if (tsize > 0) {
++j;
if (j < count) {
cur_sg = __sg_next_inline(cur_sg);
dma_len = ib_sg_dma_len(dev, cur_sg);
}
}
} else {
tsize -= rsize;
dma_len -= rsize;
rsize = 0;
}
++riu->sge_cnt;
++sge;
if (rsize > 0 && riu->sge_cnt == max_sge) {
++riu;
riu->raddr = raddr;
riu->rkey = be32_to_cpu(db->key);
riu->sge_cnt = 0;
riu->sge = sge;
}
}
}
ioctx->n_rdma = riu - ioctx->rdma_ius;
EXTRACHECKS_WARN_ON(ioctx->n_rdma > ioctx->n_rdma_ius);
EXTRACHECKS_WARN_ON(sge - sge_array > nsge);
db = ioctx->rbufs;
tsize = (dir == SCST_DATA_READ)
? scst_cmd_get_adjusted_resp_data_len(cmd)
: scst_cmd_get_bufflen(cmd);
riu = ioctx->rdma_ius;
dma_len = ib_sg_dma_len(dev, &sg[0]);
dma_addr = ib_sg_dma_address(dev, &sg[0]);
/* this second loop is really mapped sg_address to rdma_iu->ib_sge */
for (i = 0, j = 0, cur_sg = sg;
j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) {
rsize = be32_to_cpu(db->len);
sge = riu->sge;
k = 0;
while (rsize > 0 && tsize > 0) {
sge->addr = dma_addr;
sge->lkey = sdev->lkey;
if (rsize >= dma_len) {
sge->length =
(tsize < dma_len) ? tsize : dma_len;
tsize -= dma_len;
rsize -= dma_len;
if (tsize > 0) {
++j;
if (j < count) {
cur_sg = __sg_next_inline(cur_sg);
dma_len = ib_sg_dma_len(dev, cur_sg);
dma_addr =
ib_sg_dma_address(dev, cur_sg);
}
}
} else {
sge->length = (tsize < rsize) ? tsize : rsize;
tsize -= rsize;
dma_len -= rsize;
dma_addr += rsize;
rsize = 0;
}
++k;
if (k == riu->sge_cnt && rsize > 0 && tsize > 0) {
++riu;
sge = riu->sge;
k = 0;
} else if (rsize > 0 && tsize > 0)
++sge;
}
}
EXTRACHECKS_WARN_ON(riu - ioctx->rdma_ius != ioctx->n_rdma);
return 0;
free_mem:
srpt_unmap_sg_to_ib_sge(ch, ioctx);
return -ENOMEM;
}
/*
* srpt_unmap_sg_to_ib_sge() - Unmap an IB SGE list.
*/
static void srpt_unmap_sg_to_ib_sge(struct srpt_rdma_ch *ch,
struct srpt_send_ioctx *ioctx)
{
struct scatterlist *sg;
scst_data_direction dir;
EXTRACHECKS_BUG_ON(!ch);
EXTRACHECKS_BUG_ON(!ioctx);
if (scst_cmd_get_tgt_sg(&ioctx->cmd) == &ioctx->imm_sg)
return;
EXTRACHECKS_BUG_ON(ioctx->n_rdma && !ioctx->rdma_ius);
if (ioctx->rdma_ius != (void *)ioctx->rdma_ius_buf)
kfree(ioctx->rdma_ius);
ioctx->rdma_ius = NULL;
ioctx->n_rdma = 0;
if (ioctx->mapped_sg_count) {
EXTRACHECKS_WARN_ON(ioctx
!= scst_cmd_get_tgt_priv(&ioctx->cmd));
sg = ioctx->sg;
EXTRACHECKS_WARN_ON(!sg);
dir = ioctx->dir;
EXTRACHECKS_BUG_ON(dir == SCST_DATA_NONE);
ib_dma_unmap_sg(ch->sport->sdev->device, sg, ioctx->sg_cnt,
scst_to_tgt_dma_dir(dir));
ioctx->mapped_sg_count = 0;
}
}
/*
* srpt_perform_rdmas() - Perform IB RDMA.
*
* Returns zero upon success or a negative number upon failure.
*/
static int srpt_perform_rdmas(struct srpt_rdma_ch *ch,
struct srpt_send_ioctx *ioctx,
scst_data_direction dir)
{
#ifdef USE_PRE_440_WR_STRUCTURE
struct ib_send_wr wr;
#else
struct ib_rdma_wr wr;
#endif
BAD_WR_MODIFIER struct ib_send_wr *bad_wr;
struct rdma_iu *riu;
int i;
int ret = -ENOMEM;
int sq_wr_avail;
const int n_rdma = ioctx->n_rdma;
sq_wr_avail = srpt_adjust_sq_wr_avail(ch, -n_rdma);
if (sq_wr_avail < 0) {
pr_warn("ch %s-%d send queue full (needed %d)\n",
ch->sess_name, ch->qp->qp_num, n_rdma);
goto out;
}
ioctx->rdma_aborted = false;
ret = 0;
riu = ioctx->rdma_ius;
memset(&wr, 0, sizeof(wr));
for (i = 0; i < n_rdma; ++i, ++riu) {
#ifdef USE_PRE_440_WR_STRUCTURE
if (dir == SCST_DATA_READ) {
wr.opcode = IB_WR_RDMA_WRITE;
wr.wr_id = encode_wr_id(i == n_rdma - 1 ?
SRPT_RDMA_WRITE_LAST :
SRPT_RDMA_MID,
ioctx->ioctx.index);
} else {
wr.opcode = IB_WR_RDMA_READ;
wr.wr_id = encode_wr_id(i == n_rdma - 1 ?
SRPT_RDMA_READ_LAST :
SRPT_RDMA_MID,
ioctx->ioctx.index);
}
wr.next = NULL;
wr.wr.rdma.remote_addr = riu->raddr;
wr.wr.rdma.rkey = riu->rkey;
wr.num_sge = riu->sge_cnt;
wr.sg_list = riu->sge;
/* only get completion event for the last rdma wr */
if (i == (n_rdma - 1) && dir == SCST_DATA_WRITE)
wr.send_flags = IB_SEND_SIGNALED;
ret = ib_post_send(ch->qp, &wr, &bad_wr);
#else
if (dir == SCST_DATA_READ) {
wr.wr.opcode = IB_WR_RDMA_WRITE;
wr.wr.wr_id = encode_wr_id(i == n_rdma - 1 ?
SRPT_RDMA_WRITE_LAST :
SRPT_RDMA_MID,
ioctx->ioctx.index);
} else {
wr.wr.opcode = IB_WR_RDMA_READ;
wr.wr.wr_id = encode_wr_id(i == n_rdma - 1 ?
SRPT_RDMA_READ_LAST :
SRPT_RDMA_MID,
ioctx->ioctx.index);
}
wr.wr.next = NULL;
wr.remote_addr = riu->raddr;
wr.rkey = riu->rkey;
wr.wr.num_sge = riu->sge_cnt;
wr.wr.sg_list = riu->sge;
/* only get completion event for the last rdma wr */
if (i == (n_rdma - 1) && dir == SCST_DATA_WRITE)
wr.wr.send_flags = IB_SEND_SIGNALED;
ret = ib_post_send(ch->qp, &wr.wr, &bad_wr);
#endif
if (ret)
break;
}
if (ret)
pr_err("%s: ib_post_send() returned %d for %d/%d\n", __func__,
ret, i, n_rdma);
if (ret && i > 0) {
#ifdef USE_PRE_440_WR_STRUCTURE
wr.num_sge = 0;
wr.wr_id = encode_wr_id(SRPT_RDMA_ABORT, ioctx->ioctx.index);
wr.send_flags = IB_SEND_SIGNALED;
pr_info("Trying to abort failed RDMA transfer [%d]\n",
ioctx->ioctx.index);
while (ch->state == CH_LIVE &&
ib_post_send(ch->qp, &wr, &bad_wr) != 0) {
pr_info("Trying to abort failed RDMA transfer [%d]\n",
ioctx->ioctx.index);
msleep(1000);
}
#else
wr.wr.num_sge = 0;
wr.wr.wr_id = encode_wr_id(SRPT_RDMA_ABORT, ioctx->ioctx.index);
wr.wr.send_flags = IB_SEND_SIGNALED;
pr_info("Trying to abort failed RDMA transfer [%d]\n",
ioctx->ioctx.index);
while (ch->state == CH_LIVE &&
ib_post_send(ch->qp, &wr.wr, &bad_wr) != 0) {
pr_info("Trying to abort failed RDMA transfer [%d]\n",
ioctx->ioctx.index);
msleep(1000);
}
#endif
pr_info("Waiting until RDMA abort finished [%d]\n",
ioctx->ioctx.index);
#ifdef USE_PRE_440_WR_STRUCTURE
while (ch->state < CH_DISCONNECTED && !ioctx->rdma_aborted) {
pr_info("Waiting until RDMA abort finished [%d]\n",
ioctx->ioctx.index);
msleep(1000);
}
#else
while (ch->state < CH_DISCONNECTED && !ioctx->rdma_aborted) {
pr_info("Waiting until RDMA abort finished [%d]\n",
ioctx->ioctx.index);
msleep(1000);
}
#endif
pr_info("%s[%d]: done\n", __func__, __LINE__);
}
out:
if (unlikely(ret < 0))
srpt_adjust_sq_wr_avail(ch, n_rdma);
return ret;
}
/*
* srpt_xfer_data() - Start data transfer from initiator to target.
*
* Returns 0, -EAGAIN or -EIO.
*
* Note: Must not block.
*/
static int srpt_xfer_data(struct srpt_rdma_ch *ch,
struct srpt_send_ioctx *ioctx)
{
struct scst_cmd *cmd = &ioctx->cmd;
int ret;
if (scst_cmd_get_tgt_sg(&ioctx->cmd) == &ioctx->imm_sg) {
bool res;
res = srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA,
SRPT_STATE_DATA_IN);
BUG_ON(!res);
WARN_ON_ONCE(!scst_cmd_get_tgt_data_buff_alloced(cmd));
if (cmd->tgt_i_data_buf_alloced && cmd->dh_data_buf_alloced &&
scst_cmd_get_data_direction(cmd) & SCST_DATA_WRITE) {
scst_copy_sg(cmd, SCST_SG_COPY_FROM_TARGET);
}
scst_rx_data(cmd, SCST_RX_STATUS_SUCCESS,
in_irq() ? SCST_CONTEXT_TASKLET :
in_softirq() ? SCST_CONTEXT_DIRECT_ATOMIC :
SCST_CONTEXT_DIRECT);
ret = 0;
goto out;
}
ret = srpt_map_sg_to_ib_sge(ch, ioctx, cmd);
if (ret) {
pr_err("%s srpt_map_sg_to_ib_sge() ret=%d\n", __func__, ret);
ret = -EAGAIN;
goto out;
}
ret = srpt_perform_rdmas(ch, ioctx, scst_cmd_get_data_direction(cmd));
if (ret) {
if (ret == -EAGAIN || ret == -ENOMEM) {
pr_info("%s: queue full -- ret=%d\n", __func__, ret);
ret = -EAGAIN;
} else {
pr_err("%s: fatal error -- ret=%d\n", __func__, ret);
ret = -EIO;
}
goto out_unmap;
}
ret = 0;
out:
return ret;
out_unmap:
srpt_unmap_sg_to_ib_sge(ch, ioctx);
goto out;
}
/*
* srpt_pending_cmd_timeout() - SCST command HCA processing timeout callback.
*
* Called by the SCST core if no IB completion notification has been received
* within RDMA_COMPL_TIMEOUT_S seconds.
*/
static void srpt_pending_cmd_timeout(struct scst_cmd *cmd)
{
struct srpt_send_ioctx *ioctx;
enum srpt_command_state state;
ioctx = scst_cmd_get_tgt_priv(cmd);
BUG_ON(!ioctx);
state = ioctx->state;
switch (state) {
case SRPT_STATE_NEW:
case SRPT_STATE_DATA_IN:
case SRPT_STATE_DONE:
/*
* srpt_pending_cmd_timeout() should never be invoked for
* commands in this state.
*/
pr_err("Processing SCST command %p (SRPT state %d) took too long -- aborting\n",
cmd, state);
break;
case SRPT_STATE_NEED_DATA:
case SRPT_STATE_CMD_RSP_SENT:
case SRPT_STATE_MGMT_RSP_SENT:
default:
pr_err("Command %p: IB completion for idx %u has not been received in time (SRPT command state %d)\n",
cmd, ioctx->ioctx.index, state);
break;
}
srpt_abort_cmd(ioctx, SCST_CONTEXT_SAME);
}
/*
* srpt_rdy_to_xfer() - Transfers data from initiator to target.
*
* Called by the SCST core to transfer data from the initiator to the target
* (SCST_DATA_WRITE). Must not block.
*/
static int srpt_rdy_to_xfer(struct scst_cmd *cmd)
{
struct srpt_send_ioctx *ioctx = scst_cmd_get_tgt_priv(cmd);
enum srpt_command_state prev_cmd_state;
int ret;
prev_cmd_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA);
ret = srpt_xfer_data(ioctx->ch, ioctx);
switch (ret) {
case 0:
return SCST_TGT_RES_SUCCESS;
case -EAGAIN:
srpt_set_cmd_state(ioctx, prev_cmd_state);
return SCST_TGT_RES_QUEUE_FULL;
default:
srpt_set_cmd_state(ioctx, prev_cmd_state);
return SCST_TGT_RES_FATAL_ERROR;
}
}
/*
* srpt_xmit_response() - Transmits the response to a SCSI command.
*
* Callback function called by the SCST core. Must not block. Must ensure that
* scst_tgt_cmd_done() will get invoked when returning SCST_TGT_RES_SUCCESS.
*/
static int srpt_xmit_response(struct scst_cmd *cmd)
{
struct srpt_rdma_ch *ch;
struct srpt_send_ioctx *ioctx;
enum srpt_command_state state;
int ret;
scst_data_direction dir;
int resp_len;
ret = SCST_TGT_RES_SUCCESS;
ioctx = scst_cmd_get_tgt_priv(cmd);
BUG_ON(!ioctx);
ch = scst_sess_get_tgt_priv(scst_cmd_get_session(cmd));
BUG_ON(!ch);
state = ioctx->state;
switch (state) {
case SRPT_STATE_NEW:
case SRPT_STATE_DATA_IN:
ioctx->state = SRPT_STATE_CMD_RSP_SENT;
break;
default:
WARN(true, "Unexpected command state %d\n", state);
break;
}
if (unlikely(scst_cmd_aborted_on_xmit(cmd))) {
srpt_adjust_req_lim(ch, 0, 1);
srpt_abort_cmd(ioctx, SCST_CONTEXT_SAME);
goto out;
}
EXTRACHECKS_BUG_ON(scst_cmd_atomic(cmd));
dir = scst_cmd_get_data_direction(cmd);
if (cmd->tgt_i_data_buf_alloced && cmd->dh_data_buf_alloced &&
dir & SCST_DATA_READ)
scst_copy_sg(cmd, SCST_SG_COPY_TO_TARGET);
/* For read commands, transfer the data to the initiator. */
if (dir == SCST_DATA_READ
&& scst_cmd_get_adjusted_resp_data_len(cmd)) {
ret = srpt_xfer_data(ch, ioctx);
if (unlikely(ret != 0)) {
srpt_set_cmd_state(ioctx, state);
pr_warn("xfer_data failed for tag %llu - %s\n",
scst_cmd_get_tag(cmd),
ret == -EAGAIN ? "retrying" :
"failing");
switch (ret) {
case -EAGAIN:
ret = SCST_TGT_RES_QUEUE_FULL;
break;
default:
WARN_ONCE(true,
"srpt_xfer_data() returned %d\n",
ret);
fallthrough;
case -EIO:
ret = SCST_TGT_RES_FATAL_ERROR;
break;
}
goto out;
}
}
ioctx->req_lim_delta = srpt_inc_req_lim(ch);
resp_len = srpt_build_cmd_rsp(ch, ioctx,
scst_cmd_get_tag(cmd),
scst_cmd_get_status(cmd),
scst_cmd_get_sense_buffer(cmd),
scst_cmd_get_sense_buffer_len(cmd));
if (srpt_post_send(ch, ioctx, resp_len)) {
srpt_unmap_sg_to_ib_sge(ch, ioctx);
srpt_set_cmd_state(ioctx, state);
srpt_undo_inc_req_lim(ch, ioctx->req_lim_delta);
pr_warn("sending response failed for tag %llu - retrying\n",
scst_cmd_get_tag(cmd));
ret = SCST_TGT_RES_QUEUE_FULL;
}
out:
return ret;
}
/*
* srpt_tsk_mgmt_done() - SCST callback function that sends back the response
* for a task management request.
*
* Must not block.
*/
static void srpt_tsk_mgmt_done(struct scst_mgmt_cmd *mcmnd)
{
struct srpt_rdma_ch *ch;
struct srpt_send_ioctx *ioctx;
int rsp_len;
ioctx = scst_mgmt_cmd_get_tgt_priv(mcmnd);
BUG_ON(!ioctx);
ch = ioctx->ch;
BUG_ON(!ch);
pr_debug("tsk_mgmt_done for tag= %lld status=%d\n", ioctx->tsk_mgmt.tag,
scst_mgmt_cmd_get_status(mcmnd));
WARN_ON(in_irq());
srpt_set_cmd_state(ioctx, SRPT_STATE_MGMT_RSP_SENT);
WARN_ON(ioctx->state == SRPT_STATE_DONE);
ioctx->req_lim_delta = srpt_inc_req_lim(ch);
rsp_len = srpt_build_tskmgmt_rsp(ch, ioctx,
scst_to_srp_tsk_mgmt_status(
scst_mgmt_cmd_get_status(mcmnd)),
ioctx->tsk_mgmt.tag);
/*
* Note: the srpt_post_send() call below sends the task management
* response asynchronously. It is possible that the SCST core has
* already freed the struct scst_mgmt_cmd structure before the
* response is sent. This is fine however.
*/
if (srpt_post_send(ch, ioctx, rsp_len)) {
pr_err("Sending SRP_RSP response failed.\n");
srpt_put_send_ioctx(ioctx);
srpt_undo_inc_req_lim(ch, ioctx->req_lim_delta);
}
}
/*
* srpt_get_initiator_port_transport_id() - SCST TransportID callback function.
*
* See also SPC-3, section 7.5.4.5, TransportID for initiator ports using SRP.
*/
static int srpt_get_initiator_port_transport_id(struct scst_tgt *tgt,
struct scst_session *sess, uint8_t **transport_id)
{
struct srpt_rdma_ch *ch;
struct spc_rdma_transport_id {
uint8_t protocol_identifier;
uint8_t reserved[7];
uint8_t i_port_id[16];
};
struct spc_rdma_transport_id *tr_id;
int res = SCSI_TRANSPORTID_PROTOCOLID_SRP;
if (!sess)
goto out;
ch = scst_sess_get_tgt_priv(sess);
BUG_ON(!ch);
BUILD_BUG_ON(sizeof(*tr_id) != 24);
res = -ENOMEM;
tr_id = kzalloc(sizeof(struct spc_rdma_transport_id), GFP_KERNEL);
if (!tr_id)
goto out;
res = 0;
tr_id->protocol_identifier = SCSI_TRANSPORTID_PROTOCOLID_SRP;
memcpy(tr_id->i_port_id, ch->nexus->i_port_id,
sizeof(tr_id->i_port_id));
*transport_id = (uint8_t *)tr_id;
out:
return res;
}
/*
* srpt_on_free_cmd() - Free command-private data.
*
* Called by the SCST core. May be called in IRQ context.
*/
static void srpt_on_free_cmd(struct scst_cmd *cmd)
{
struct srpt_send_ioctx *ioctx;
ioctx = scst_cmd_get_tgt_priv(cmd);
srpt_put_send_ioctx(ioctx);
}
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 20) && !defined(BACKPORT_LINUX_WORKQUEUE_TO_2_6_19)
/* A vanilla 2.6.19 or older kernel without backported OFED kernel headers. */
static void srpt_refresh_port_work(void *ctx)
#else
static void srpt_refresh_port_work(struct work_struct *work)
#endif
{
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 20) && !defined(BACKPORT_LINUX_WORKQUEUE_TO_2_6_19)
struct srpt_port *sport = ctx;
#else
struct srpt_port *sport = container_of(work, struct srpt_port, work);
#endif
srpt_refresh_port(sport);
}
static int srpt_close_session(struct scst_session *sess)
{
struct srpt_rdma_ch *ch = scst_sess_get_tgt_priv(sess);
struct srpt_port *sport = ch->sport;
mutex_lock(&sport->mutex);
srpt_disconnect_ch(ch);
mutex_unlock(&sport->mutex);
return 0;
}
static bool srpt_ch_list_empty(struct srpt_port *sport)
{
struct srpt_nexus *nexus;
bool res = true;
rcu_read_lock();
list_for_each_entry_rcu(nexus, &sport->nexus_list, entry)
if (!list_empty(&nexus->ch_list))
res = false;
rcu_read_unlock();
return res;
}
/**
* srpt_release_sport - disable login and wait for associated channels
* @sport: SRPT HCA port.
*/
static int srpt_release_sport(struct srpt_port *sport)
{
struct srpt_nexus *nexus, *next_n;
struct srpt_rdma_ch *ch;
WARN_ON_ONCE(irqs_disabled());
/* Disallow new logins and close all active sessions. */
mutex_lock(&sport->mutex);
sport->enabled = false;
__srpt_close_all_ch(sport);
mutex_unlock(&sport->mutex);
while (wait_event_timeout(sport->ch_releaseQ,
srpt_ch_list_empty(sport), 5 * HZ) <= 0) {
pr_info("%s: waiting for session unregistration ...\n",
sport->scst_tgt->tgt_name);
rcu_read_lock();
list_for_each_entry_rcu(nexus, &sport->nexus_list, entry) {
list_for_each_entry(ch, &nexus->ch_list, list) {
pr_info("%s-%d: state %s; %d commands in progress\n",
ch->sess_name, ch->qp->qp_num,
get_ch_state_name(ch->state),
atomic_read(&ch->sess->sess_cmd_count));
}
}
rcu_read_unlock();
}
mutex_lock(&sport->mutex);
list_for_each_entry_safe(nexus, next_n, &sport->nexus_list, entry) {
list_del_rcu(&nexus->entry);
kfree_rcu(nexus, rcu);
}
mutex_unlock(&sport->mutex);
return 0;
}
/*
* srpt_release() - Free the resources associated with an SCST target.
*
* Callback function called by the SCST core from scst_unregister_target().
*/
static int srpt_release(struct scst_tgt *scst_tgt)
{
struct srpt_port *sport = scst_tgt_get_tgt_priv(scst_tgt);
EXTRACHECKS_WARN_ON_ONCE(irqs_disabled());
BUG_ON(!scst_tgt);
BUG_ON(!sport);
srpt_release_sport(sport);
scst_tgt_set_tgt_priv(scst_tgt, NULL);
return 0;
}
/*
* srpt_get_scsi_transport_version() - Returns the SCSI transport version.
* This function is called from scst_pres.c, the code that implements
* persistent reservation support.
*/
static uint16_t srpt_get_scsi_transport_version(struct scst_tgt *scst_tgt)
{
return 0x0940; /* SRP */
}
static ssize_t show_comp_v_mask(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
struct scst_tgt *scst_tgt = container_of(kobj, struct scst_tgt,
tgt_kobj);
struct srpt_port *sport = scst_tgt_get_tgt_priv(scst_tgt);
int res = -E_TGT_PRIV_NOT_YET_SET;
if (!sport)
goto out;
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 28)
res = cpumask_scnprintf(buf, PAGE_SIZE, sport->comp_v_mask);
#elif LINUX_VERSION_CODE < KERNEL_VERSION(4, 0, 0)
res = cpumask_scnprintf(buf, PAGE_SIZE, &sport->comp_v_mask);
#else
res = scnprintf(buf, PAGE_SIZE, "%*pb",
cpumask_pr_args(&sport->comp_v_mask));
#endif
res += scnprintf(&buf[res], PAGE_SIZE - res, "\n%s\n",
SCST_SYSFS_KEY_MARK);
out:
return res;
}
static ssize_t store_comp_v_mask(struct kobject *kobj,
struct kobj_attribute *attr, const char *buf,
size_t count)
{
struct scst_tgt *scst_tgt = container_of(kobj, struct scst_tgt,
tgt_kobj);
struct srpt_port *sport = scst_tgt_get_tgt_priv(scst_tgt);
struct srpt_device *sdev;
int res = -E_TGT_PRIV_NOT_YET_SET;
cpumask_var_t mask;
unsigned int i1, i2;
if (!sport)
goto out;
sdev = sport->sdev;
res = -ENOMEM;
if (!alloc_cpumask_var(&mask, GFP_KERNEL))
goto out;
#if LINUX_VERSION_CODE < KERNEL_VERSION(3, 10, 0)
res = bitmap_parse(buf, count, cpumask_bits(mask), nr_cpumask_bits);
#else
res = cpumask_parse(buf, mask);
#endif
if (res)
goto free_mask;
res = -EINVAL;
i1 = cpumask_next(-1, mask);
i2 = cpumask_next(sdev->device->num_comp_vectors - 1, mask);
if (i1 >= nr_cpu_ids ||
(i2 >= sdev->device->num_comp_vectors && i2 < nr_cpu_ids))
goto free_mask;
cpumask_copy(&sport->comp_v_mask, mask);
res = count;
free_mask:
free_cpumask_var(mask);
out:
return res;
}
static struct kobj_attribute srpt_show_comp_v_mask_attr =
__ATTR(comp_v_mask, S_IRUGO | S_IWUSR, show_comp_v_mask,
store_comp_v_mask);
static ssize_t srpt_show_device(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
struct scst_tgt *scst_tgt = container_of(kobj, struct scst_tgt,
tgt_kobj);
struct srpt_port *sport = scst_tgt_get_tgt_priv(scst_tgt);
struct srpt_device *sdev;
int res = -E_TGT_PRIV_NOT_YET_SET;
if (!sport)
goto out;
sdev = sport->sdev;
res = sprintf(buf, "%s\n", dev_name(&sdev->device->dev));
out:
return res;
}
static struct kobj_attribute srpt_device_attr =
__ATTR(device, S_IRUGO, srpt_show_device, NULL);
/*
* The link layer names in this function match those used by the IB core.
* See also link_layer_show() in drivers/infiniband/core/sysfs.c
*/
static ssize_t srpt_show_link_layer(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
struct scst_tgt *scst_tgt = container_of(kobj, struct scst_tgt,
tgt_kobj);
struct srpt_port *sport = scst_tgt_get_tgt_priv(scst_tgt);
const char *lln = "Unknown";
int res = -E_TGT_PRIV_NOT_YET_SET;
if (!sport)
goto out;
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 37) /* commit a3f5adaf4 */
switch (rdma_port_get_link_layer(sport->sdev->device, sport->port)) {
case IB_LINK_LAYER_INFINIBAND:
lln = "InfiniBand";
break;
case IB_LINK_LAYER_ETHERNET:
lln = "Ethernet";
break;
case IB_LINK_LAYER_UNSPECIFIED:
default:
break;
}
#endif
res = sprintf(buf, "%s\n", lln);
out:
return res;
}
static struct kobj_attribute srpt_link_layer_attr =
__ATTR(link_layer, S_IRUGO, srpt_show_link_layer, NULL);
static ssize_t show_port_id(struct kobject *kobj, struct kobj_attribute *attr,
char *buf)
{
struct scst_tgt *scst_tgt = container_of(kobj, struct scst_tgt,
tgt_kobj);
struct srpt_port *sport = scst_tgt_get_tgt_priv(scst_tgt);
int res = -E_TGT_PRIV_NOT_YET_SET;
if (!sport)
goto out;
mutex_lock(&sport->mutex);
snprintf(buf, PAGE_SIZE, "%s\n%s", sport->port_id,
strcmp(sport->port_id, DEFAULT_SRPT_ID_STRING) ?
SCST_SYSFS_KEY_MARK "\n" : "");
mutex_unlock(&sport->mutex);
res = strlen(buf);
out:
return res;
}
static ssize_t store_port_id(struct kobject *kobj, struct kobj_attribute *attr,
const char *buf, size_t count)
{
struct scst_tgt *scst_tgt = container_of(kobj, struct scst_tgt,
tgt_kobj);
struct srpt_port *sport = scst_tgt_get_tgt_priv(scst_tgt);
const char *end;
int res = -E_TGT_PRIV_NOT_YET_SET;
if (!sport)
goto out;
end = buf + count;
while (end > buf && isspace(((unsigned char *)end)[-1]))
--end;
res = -E2BIG;
if (end - buf >= sizeof(sport->port_id))
goto out;
mutex_lock(&sport->mutex);
sprintf(sport->port_id, "%.*s", (int)(end - buf), buf);
mutex_unlock(&sport->mutex);
res = count;
out:
return res;
}
static struct kobj_attribute srpt_port_id_attr =
__ATTR(port_id, S_IRUGO | S_IWUSR, show_port_id, store_port_id);
static ssize_t show_login_info(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
struct scst_tgt *scst_tgt = container_of(kobj, struct scst_tgt,
tgt_kobj);
struct srpt_port *sport = scst_tgt_get_tgt_priv(scst_tgt);
int res = -E_TGT_PRIV_NOT_YET_SET;
if (!sport)
goto out;
res = sprintf(buf,
"tid_ext=%016llx,ioc_guid=%016llx,pkey=ffff,"
"dgid=%04x%04x%04x%04x%04x%04x%04x%04x,"
"service_id=%016llx\n",
srpt_service_guid, srpt_service_guid,
be16_to_cpu(((__be16 *) sport->gid.raw)[0]),
be16_to_cpu(((__be16 *) sport->gid.raw)[1]),
be16_to_cpu(((__be16 *) sport->gid.raw)[2]),
be16_to_cpu(((__be16 *) sport->gid.raw)[3]),
be16_to_cpu(((__be16 *) sport->gid.raw)[4]),
be16_to_cpu(((__be16 *) sport->gid.raw)[5]),
be16_to_cpu(((__be16 *) sport->gid.raw)[6]),
be16_to_cpu(((__be16 *) sport->gid.raw)[7]),
srpt_service_guid);
out:
return res;
}
static struct kobj_attribute srpt_show_login_info_attr =
__ATTR(login_info, S_IRUGO, show_login_info, NULL);
static const struct attribute *srpt_tgt_attrs[] = {
&srpt_show_comp_v_mask_attr.attr,
&srpt_device_attr.attr,
&srpt_link_layer_attr.attr,
&srpt_port_id_attr.attr,
&srpt_show_login_info_attr.attr,
NULL
};
static ssize_t show_req_lim(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
struct scst_session *sess;
struct srpt_rdma_ch *ch;
sess = container_of(kobj, struct scst_session, sess_kobj);
ch = scst_sess_get_tgt_priv(sess);
if (!ch)
return -ENOENT;
return sprintf(buf, "%d\n", ch->req_lim);
}
static ssize_t show_req_lim_delta(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
struct scst_session *sess;
struct srpt_rdma_ch *ch;
sess = container_of(kobj, struct scst_session, sess_kobj);
ch = scst_sess_get_tgt_priv(sess);
if (!ch)
return -ENOENT;
return sprintf(buf, "%d\n", ch->req_lim_delta);
}
static ssize_t show_ch_state(struct kobject *kobj, struct kobj_attribute *attr,
char *buf)
{
struct scst_session *sess;
struct srpt_rdma_ch *ch;
sess = container_of(kobj, struct scst_session, sess_kobj);
ch = scst_sess_get_tgt_priv(sess);
if (!ch)
return -ENOENT;
return sprintf(buf, "%s\n", get_ch_state_name(ch->state));
}
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 20) || defined(RHEL_RELEASE_CODE)
static ssize_t show_comp_vector(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
struct scst_session *sess;
struct srpt_rdma_ch *ch;
sess = container_of(kobj, struct scst_session, sess_kobj);
ch = scst_sess_get_tgt_priv(sess);
return ch ? sprintf(buf, "%u\n", ch->comp_vector) : -ENOENT;
}
#endif
static const struct kobj_attribute srpt_req_lim_attr =
__ATTR(req_lim, S_IRUGO, show_req_lim, NULL);
static const struct kobj_attribute srpt_req_lim_delta_attr =
__ATTR(req_lim_delta, S_IRUGO, show_req_lim_delta, NULL);
static const struct kobj_attribute srpt_ch_state_attr =
__ATTR(ch_state, S_IRUGO, show_ch_state, NULL);
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 20) || defined(RHEL_RELEASE_CODE)
static const struct kobj_attribute srpt_comp_vector_attr =
__ATTR(comp_vector, S_IRUGO, show_comp_vector, NULL);
#endif
static const struct attribute *srpt_sess_attrs[] = {
&srpt_req_lim_attr.attr,
&srpt_req_lim_delta_attr.attr,
&srpt_ch_state_attr.attr,
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 20) || defined(RHEL_RELEASE_CODE)
&srpt_comp_vector_attr.attr,
#endif
NULL
};
/* SCST target template for the SRP target implementation. */
static struct scst_tgt_template srpt_template = {
.name = DRV_NAME,
.sg_tablesize = 1 << 16,
.use_clustering = true,
.max_hw_pending_time = RDMA_COMPL_TIMEOUT_S,
.enable_target = srpt_enable_target,
.is_target_enabled = srpt_is_target_enabled,
.tgt_attrs = srpt_tgt_attrs,
.sess_attrs = srpt_sess_attrs,
.release = srpt_release,
.close_session = srpt_close_session,
.xmit_response = srpt_xmit_response,
.rdy_to_xfer = srpt_rdy_to_xfer,
.on_hw_pending_cmd_timeout = srpt_pending_cmd_timeout,
.on_free_cmd = srpt_on_free_cmd,
.task_mgmt_fn_done = srpt_tsk_mgmt_done,
.get_initiator_port_transport_id = srpt_get_initiator_port_transport_id,
.get_scsi_transport_version = srpt_get_scsi_transport_version,
};
/* Note: the caller must have zero-initialized *@sport. */
static void srpt_init_sport(struct srpt_port *sport, struct ib_device *ib_dev)
{
int i;
INIT_LIST_HEAD(&sport->nexus_list);
init_waitqueue_head(&sport->ch_releaseQ);
mutex_init(&sport->mutex);
strlcpy(sport->port_id, DEFAULT_SRPT_ID_STRING,
sizeof(sport->port_id));
for (i = 0; i < ib_dev->num_comp_vectors; i++)
cpumask_set_cpu(i, &sport->comp_v_mask);
}
/*
* srpt_add_one() - Infiniband device addition callback function.
*/
static int srpt_add_one(struct ib_device *device)
{
struct ib_cm_id *cm_id;
struct srpt_device *sdev;
struct srpt_port *sport;
struct ib_srq_init_attr srq_attr;
int i, ret;
pr_debug("device = %p\n", device);
sdev = kzalloc(sizeof(*sdev), GFP_KERNEL);
if (!sdev) {
ret = -ENOMEM;
goto err;
}
sdev->device = device;
#ifdef HAVE_IB_QUERY_DEVICE
ret = ib_query_device(device, &sdev->dev_attr);
if (ret) {
pr_err("ib_query_device() failed: %d\n", ret);
goto free_dev;
}
#else
sdev->dev_attr = device->attrs;
#endif
sdev->pd = ib_alloc_pd(device, 0);
if (IS_ERR(sdev->pd)) {
ret = PTR_ERR(sdev->pd);
pr_err("ib_alloc_pd() failed: %d\n", ret);
goto free_dev;
}
#ifndef IB_PD_HAS_LOCAL_DMA_LKEY
sdev->mr = ib_get_dma_mr(sdev->pd, IB_ACCESS_LOCAL_WRITE);
if (IS_ERR(sdev->mr)) {
ret = PTR_ERR(sdev->mr);
pr_err("ib_get_dma_mr() failed: %ld\n", PTR_ERR(sdev->mr));
goto err_pd;
}
sdev->lkey = sdev->mr->lkey;
#else
sdev->lkey = sdev->pd->local_dma_lkey;
#endif
sdev->srq_size = min(max(srpt_srq_size, MIN_SRPT_SRQ_SIZE),
sdev->dev_attr.max_srq_wr);
memset(&srq_attr, 0, sizeof(srq_attr));
srq_attr.event_handler = srpt_srq_event;
srq_attr.srq_context = (void *)sdev;
srq_attr.attr.max_wr = sdev->srq_size;
srq_attr.attr.max_sge = 1;
srq_attr.attr.srq_limit = 0;
#if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 2, 0)
srq_attr.srq_type = IB_SRQT_BASIC;
#endif
sdev->srq = use_srq ? ib_create_srq(sdev->pd, &srq_attr) :
ERR_PTR(-EOPNOTSUPP);
if (IS_ERR(sdev->srq)) {
if (use_srq)
pr_debug("ib_create_srq() failed: %ld\n",
PTR_ERR(sdev->srq));
/* SRQ disabled or not supported. */
sdev->use_srq = false;
} else {
pr_debug("create SRQ #wr= %d max_allow=%d dev= %s\n",
sdev->srq_size, sdev->dev_attr.max_srq_wr,
device->name);
sdev->req_buf_cache = kmem_cache_create("srpt-srq-req-buf",
srp_max_req_size, 0, 0, NULL);
if (!sdev->req_buf_cache) {
ret = -ENOMEM;
goto free_srq;
}
sdev->ioctx_ring = (struct srpt_recv_ioctx **)
srpt_alloc_ioctx_ring(sdev, sdev->srq_size,
sizeof(*sdev->ioctx_ring[0]),
sdev->req_buf_cache,
0, DMA_FROM_DEVICE);
if (!sdev->ioctx_ring) {
ret = -ENOMEM;
pr_err("srpt_alloc_ioctx_ring() failed\n");
goto free_cache;
}
sdev->use_srq = true;
for (i = 0; i < sdev->srq_size; ++i) {
INIT_LIST_HEAD(&sdev->ioctx_ring[i]->wait_list);
srpt_post_recv(sdev, NULL, sdev->ioctx_ring[i]);
}
}
WARN_ON(sdev->device->phys_port_cnt > ARRAY_SIZE(sdev->port));
for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
sport = &sdev->port[i - 1];
sport->sdev = sdev;
sport->port = i;
srpt_init_sport(sport, sdev->device);
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 20) && !defined(BACKPORT_LINUX_WORKQUEUE_TO_2_6_19)
/*
* A vanilla 2.6.19 or older kernel without backported OFED
* kernel headers.
*/
INIT_WORK(&sport->work, srpt_refresh_port_work, sport);
#else
INIT_WORK(&sport->work, srpt_refresh_port_work);
#endif
ret = srpt_refresh_port(sport);
if (ret) {
pr_err("MAD registration failed for %s-%d.\n",
dev_name(&sdev->device->dev), i);
goto err_ring;
}
}
if (!srpt_service_guid)
srpt_service_guid = be64_to_cpu(device->node_guid) &
~be64_to_cpu(IB_SERVICE_ID_AGN_MASK);
cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev);
if (IS_ERR(cm_id)) {
ret = PTR_ERR(cm_id);
pr_err("ib_create_cm_id() failed: %d\n", ret);
goto err_ring;
}
sdev->cm_id = cm_id;
/* print out target login information */
pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx,pkey=ffff,service_id=%016llx\n",
srpt_service_guid, srpt_service_guid, srpt_service_guid);
/*
* We do not have a consistent service_id (ie. also id_ext of target_id)
* to identify this target. We currently use the guid of the first HCA
* in the system as service_id; therefore, the target_id will change
* if this HCA is gone bad and replaced by different HCA
*/
ret = ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid), 0
#ifdef IB_CM_LISTEN_TAKES_FOURTH_ARG
, NULL
#endif
);
if (ret) {
pr_err("ib_cm_listen() failed: %d (cm_id state = %d)\n", ret,
sdev->cm_id->state);
goto err_cm;
}
INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device,
srpt_event_handler);
ib_register_event_handler(&sdev->event_handler);
atomic_inc(&srpt_device_count);
ret = 0;
out:
ib_set_client_data(device, &srpt_client, sdev);
return ret;
err_cm:
ib_destroy_cm_id(sdev->cm_id);
err_ring:
srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
sdev->srq_size, sdev->req_buf_cache,
DMA_FROM_DEVICE);
free_cache:
kmem_cache_destroy(sdev->req_buf_cache);
free_srq:
if (sdev->use_srq)
ib_destroy_srq(sdev->srq);
#ifndef IB_PD_HAS_LOCAL_DMA_LKEY
ib_dereg_mr(sdev->mr);
err_pd:
#endif
ib_dealloc_pd(sdev->pd);
free_dev:
kfree(sdev);
err:
sdev = NULL;
pr_info("%s(%s) failed.\n", __func__, device->name);
goto out;
}
#if !IB_CLIENT_ADD_ONE_RETURNS_INT
static void srpt_add_one_void(struct ib_device *device)
{
srpt_add_one(device);
}
#endif
/*
* srpt_remove_one() - InfiniBand device removal callback function.
*/
#ifndef IB_CLIENT_REMOVE_TAKES_TWO_ARGS
static void srpt_remove_one(struct ib_device *device)
{
void *client_data = ib_get_client_data(device, &srpt_client);
#else
static void srpt_remove_one(struct ib_device *device, void *client_data)
{
#endif
struct srpt_device *sdev;
int i;
sdev = client_data;
if (!sdev) {
pr_info("%s(%s): nothing to do.\n", __func__, device->name);
return;
}
srpt_unregister_mad_agent(sdev);
ib_unregister_event_handler(&sdev->event_handler);
/* Cancel any work queued by the just unregistered IB event handler. */
for (i = 0; i < sdev->device->phys_port_cnt; i++)
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 22)
cancel_work_sync(&sdev->port[i].work);
#else
/*
* cancel_work_sync() was introduced in kernel 2.6.22. Older
* kernels do not have a facility to cancel scheduled work, so
* wait until the scheduled work finished.
*/
flush_scheduled_work();
#endif
ib_destroy_cm_id(sdev->cm_id);
ib_set_client_data(device, &srpt_client, NULL);
/*
* SCST target unregistration must happen after sdev->cm_id has been
* destroyed and after the client data has been reset such that no new
* SRP_LOGIN_REQ information units can arrive while unregistering the
* SCST target.
*/
for (i = 0; i < sdev->device->phys_port_cnt; i++) {
struct srpt_port *sport = &sdev->port[i];
if (sport->scst_tgt) {
scst_unregister_target(sport->scst_tgt);
sport->scst_tgt = NULL;
}
}
if (sdev->use_srq)
ib_destroy_srq(sdev->srq);
srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
sdev->srq_size, sdev->req_buf_cache,
DMA_FROM_DEVICE);
kmem_cache_destroy(sdev->req_buf_cache);
#ifndef IB_PD_HAS_LOCAL_DMA_LKEY
ib_dereg_mr(sdev->mr);
#endif
ib_dealloc_pd(sdev->pd);
kfree(sdev);
}
static struct ib_client srpt_client = {
.name = DRV_NAME,
#if IB_CLIENT_ADD_ONE_RETURNS_INT
.add = srpt_add_one,
#else
.add = srpt_add_one_void,
#endif
.remove = srpt_remove_one
};
/**
* srpt_init_module - kernel module initialization
*
* Note: Since ib_register_client() registers callback functions, and since at
* least one of these callback functions (srpt_add_one()) calls target core
* functions, this driver must be registered with the target core before
* ib_register_client() is called.
*/
static int __init srpt_init_module(void)
{
int ret;
ret = -EINVAL;
if (srp_max_req_size < MIN_MAX_REQ_SIZE) {
pr_err("invalid value %d for kernel module parameter srp_max_req_size -- must be at least %d.\n",
srp_max_req_size, MIN_MAX_REQ_SIZE);
goto out;
}
if (srp_max_rsp_size < MIN_MAX_RSP_SIZE) {
pr_err("invalid value %d for kernel module parameter srp_max_rsp_size -- must be at least %d.\n",
srp_max_rsp_size, MIN_MAX_RSP_SIZE);
goto out;
}
if (srpt_srq_size < MIN_SRPT_SRQ_SIZE
|| srpt_srq_size > MAX_SRPT_SRQ_SIZE) {
pr_err("invalid value %d for kernel module parameter srpt_srq_size -- must be in the range [%d..%d].\n",
srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE);
goto out;
}
if (srpt_sq_size < MIN_SRPT_SQ_SIZE) {
pr_err("invalid value %d for kernel module parameter srpt_sq_size -- must be at least %d.\n",
srpt_sq_size, MIN_SRPT_SQ_SIZE);
goto out;
}
ret = scst_register_target_template(&srpt_template);
if (ret < 0) {
pr_err("couldn't register target template\n");
ret = -ENODEV;
goto out;
}
srpt_wq = alloc_workqueue("srpt", WQ_SYSFS | WQ_NON_REENTRANT, 0);
if (!srpt_wq) {
pr_err("Couldn't allocate the ib_srpt workqueue\n");
ret = -ENOMEM;
goto out_unregister_target;
}
ret = ib_register_client(&srpt_client);
if (ret) {
pr_err("couldn't register IB client\n");
goto destroy_wq;
}
srpt_net_ns = kobj_ns_grab_current(KOBJ_NS_TYPE_NET);
if (rdma_cm_port) {
struct sockaddr_in addr;
#if LINUX_VERSION_CODE < KERNEL_VERSION(3, 0, 0) && \
(!defined(RHEL_MAJOR) || RHEL_MAJOR -0 < 6)
rdma_cm_id = rdma_create_id(srpt_rdma_cm_handler, NULL,
RDMA_PS_TCP);
#elif !RDMA_CREATE_ID_TAKES_NET_ARG
rdma_cm_id = rdma_create_id(srpt_rdma_cm_handler, NULL,
RDMA_PS_TCP, IB_QPT_RC);
#else
rdma_cm_id = rdma_create_id(srpt_net_ns, srpt_rdma_cm_handler,
NULL, RDMA_PS_TCP, IB_QPT_RC);
#endif
if (IS_ERR(rdma_cm_id)) {
ret = PTR_ERR(rdma_cm_id);
rdma_cm_id = NULL;
pr_err("RDMA/CM ID creation failed\n");
goto drop_ns;
}
/* We will listen on any RDMA device. */
memset(&addr, 0, sizeof(addr));
addr.sin_family = AF_INET;
addr.sin_port = cpu_to_be16(rdma_cm_port);
ret = rdma_bind_addr(rdma_cm_id, (void *)&addr);
if (ret) {
pr_err("Binding RDMA/CM ID to port %u failed\n",
rdma_cm_port);
goto destroy_id;
}
ret = rdma_listen(rdma_cm_id, 128);
if (ret) {
pr_err("rdma_listen() failed\n");
goto destroy_id;
}
}
return 0;
destroy_id:
if (rdma_cm_id)
rdma_destroy_id(rdma_cm_id);
drop_ns:
kobj_ns_drop(KOBJ_NS_TYPE_NET, srpt_net_ns);
srpt_net_ns = NULL;
ib_unregister_client(&srpt_client);
destroy_wq:
destroy_workqueue(srpt_wq);
out_unregister_target:
scst_unregister_target_template(&srpt_template);
out:
return ret;
}
static void __exit srpt_cleanup_module(void)
{
if (rdma_cm_id)
rdma_destroy_id(rdma_cm_id);
kobj_ns_drop(KOBJ_NS_TYPE_NET, srpt_net_ns);
srpt_net_ns = NULL;
ib_unregister_client(&srpt_client);
destroy_workqueue(srpt_wq);
rcu_barrier();
scst_unregister_target_template(&srpt_template);
}
module_init(srpt_init_module);
module_exit(srpt_cleanup_module);