| /* |
| * CDDL HEADER START |
| * |
| * The contents of this file are subject to the terms of the |
| * Common Development and Distribution License (the "License"). |
| * You may not use this file except in compliance with the License. |
| * |
| * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE |
| * or http://www.opensolaris.org/os/licensing. |
| * See the License for the specific language governing permissions |
| * and limitations under the License. |
| * |
| * When distributing Covered Code, include this CDDL HEADER in each |
| * file and include the License file at usr/src/OPENSOLARIS.LICENSE. |
| * If applicable, add the following below this CDDL HEADER, with the |
| * fields enclosed by brackets "[]" replaced with your own identifying |
| * information: Portions Copyright [yyyy] [name of copyright owner] |
| * |
| * CDDL HEADER END |
| */ |
| /* |
| * Copyright 2009 Sun Microsystems, Inc. All rights reserved. |
| * Use is subject to license terms. |
| * Copyright (C) 2016 Gvozden Nešković. All rights reserved. |
| */ |
| /* |
| * Copyright 2013 Saso Kiselkov. All rights reserved. |
| */ |
| |
| /* |
| * Copyright (c) 2016 by Delphix. All rights reserved. |
| */ |
| |
| /* |
| * Fletcher Checksums |
| * ------------------ |
| * |
| * ZFS's 2nd and 4th order Fletcher checksums are defined by the following |
| * recurrence relations: |
| * |
| * a = a + f |
| * i i-1 i-1 |
| * |
| * b = b + a |
| * i i-1 i |
| * |
| * c = c + b (fletcher-4 only) |
| * i i-1 i |
| * |
| * d = d + c (fletcher-4 only) |
| * i i-1 i |
| * |
| * Where |
| * a_0 = b_0 = c_0 = d_0 = 0 |
| * and |
| * f_0 .. f_(n-1) are the input data. |
| * |
| * Using standard techniques, these translate into the following series: |
| * |
| * __n_ __n_ |
| * \ | \ | |
| * a = > f b = > i * f |
| * n /___| n - i n /___| n - i |
| * i = 1 i = 1 |
| * |
| * |
| * __n_ __n_ |
| * \ | i*(i+1) \ | i*(i+1)*(i+2) |
| * c = > ------- f d = > ------------- f |
| * n /___| 2 n - i n /___| 6 n - i |
| * i = 1 i = 1 |
| * |
| * For fletcher-2, the f_is are 64-bit, and [ab]_i are 64-bit accumulators. |
| * Since the additions are done mod (2^64), errors in the high bits may not |
| * be noticed. For this reason, fletcher-2 is deprecated. |
| * |
| * For fletcher-4, the f_is are 32-bit, and [abcd]_i are 64-bit accumulators. |
| * A conservative estimate of how big the buffer can get before we overflow |
| * can be estimated using f_i = 0xffffffff for all i: |
| * |
| * % bc |
| * f=2^32-1;d=0; for (i = 1; d<2^64; i++) { d += f*i*(i+1)*(i+2)/6 }; (i-1)*4 |
| * 2264 |
| * quit |
| * % |
| * |
| * So blocks of up to 2k will not overflow. Our largest block size is |
| * 128k, which has 32k 4-byte words, so we can compute the largest possible |
| * accumulators, then divide by 2^64 to figure the max amount of overflow: |
| * |
| * % bc |
| * a=b=c=d=0; f=2^32-1; for (i=1; i<=32*1024; i++) { a+=f; b+=a; c+=b; d+=c } |
| * a/2^64;b/2^64;c/2^64;d/2^64 |
| * 0 |
| * 0 |
| * 1365 |
| * 11186858 |
| * quit |
| * % |
| * |
| * So a and b cannot overflow. To make sure each bit of input has some |
| * effect on the contents of c and d, we can look at what the factors of |
| * the coefficients in the equations for c_n and d_n are. The number of 2s |
| * in the factors determines the lowest set bit in the multiplier. Running |
| * through the cases for n*(n+1)/2 reveals that the highest power of 2 is |
| * 2^14, and for n*(n+1)*(n+2)/6 it is 2^15. So while some data may overflow |
| * the 64-bit accumulators, every bit of every f_i effects every accumulator, |
| * even for 128k blocks. |
| * |
| * If we wanted to make a stronger version of fletcher4 (fletcher4c?), |
| * we could do our calculations mod (2^32 - 1) by adding in the carries |
| * periodically, and store the number of carries in the top 32-bits. |
| * |
| * -------------------- |
| * Checksum Performance |
| * -------------------- |
| * |
| * There are two interesting components to checksum performance: cached and |
| * uncached performance. With cached data, fletcher-2 is about four times |
| * faster than fletcher-4. With uncached data, the performance difference is |
| * negligible, since the cost of a cache fill dominates the processing time. |
| * Even though fletcher-4 is slower than fletcher-2, it is still a pretty |
| * efficient pass over the data. |
| * |
| * In normal operation, the data which is being checksummed is in a buffer |
| * which has been filled either by: |
| * |
| * 1. a compression step, which will be mostly cached, or |
| * 2. a bcopy() or copyin(), which will be uncached (because the |
| * copy is cache-bypassing). |
| * |
| * For both cached and uncached data, both fletcher checksums are much faster |
| * than sha-256, and slower than 'off', which doesn't touch the data at all. |
| */ |
| |
| #include <sys/types.h> |
| #include <sys/sysmacros.h> |
| #include <sys/byteorder.h> |
| #include <sys/spa.h> |
| #include <sys/zio_checksum.h> |
| #include <sys/zfs_context.h> |
| #include <zfs_fletcher.h> |
| #include <linux/simd.h> |
| |
| #define FLETCHER_MIN_SIMD_SIZE 64 |
| |
| static void fletcher_4_scalar_init(fletcher_4_ctx_t *ctx); |
| static void fletcher_4_scalar_fini(fletcher_4_ctx_t *ctx, zio_cksum_t *zcp); |
| static void fletcher_4_scalar_native(fletcher_4_ctx_t *ctx, |
| const void *buf, uint64_t size); |
| static void fletcher_4_scalar_byteswap(fletcher_4_ctx_t *ctx, |
| const void *buf, uint64_t size); |
| static boolean_t fletcher_4_scalar_valid(void); |
| |
| static const fletcher_4_ops_t fletcher_4_scalar_ops = { |
| .init_native = fletcher_4_scalar_init, |
| .fini_native = fletcher_4_scalar_fini, |
| .compute_native = fletcher_4_scalar_native, |
| .init_byteswap = fletcher_4_scalar_init, |
| .fini_byteswap = fletcher_4_scalar_fini, |
| .compute_byteswap = fletcher_4_scalar_byteswap, |
| .valid = fletcher_4_scalar_valid, |
| .name = "scalar" |
| }; |
| |
| static fletcher_4_ops_t fletcher_4_fastest_impl = { |
| .name = "fastest", |
| .valid = fletcher_4_scalar_valid |
| }; |
| |
| static const fletcher_4_ops_t *fletcher_4_impls[] = { |
| &fletcher_4_scalar_ops, |
| &fletcher_4_superscalar_ops, |
| &fletcher_4_superscalar4_ops, |
| #if defined(HAVE_SSE2) |
| &fletcher_4_sse2_ops, |
| #endif |
| #if defined(HAVE_SSE2) && defined(HAVE_SSSE3) |
| &fletcher_4_ssse3_ops, |
| #endif |
| #if defined(HAVE_AVX) && defined(HAVE_AVX2) |
| &fletcher_4_avx2_ops, |
| #endif |
| #if defined(__x86_64) && defined(HAVE_AVX512F) |
| &fletcher_4_avx512f_ops, |
| #endif |
| #if defined(__aarch64__) |
| &fletcher_4_aarch64_neon_ops, |
| #endif |
| }; |
| |
| /* Hold all supported implementations */ |
| static uint32_t fletcher_4_supp_impls_cnt = 0; |
| static fletcher_4_ops_t *fletcher_4_supp_impls[ARRAY_SIZE(fletcher_4_impls)]; |
| |
| /* Select fletcher4 implementation */ |
| #define IMPL_FASTEST (UINT32_MAX) |
| #define IMPL_CYCLE (UINT32_MAX - 1) |
| #define IMPL_SCALAR (0) |
| |
| static uint32_t fletcher_4_impl_chosen = IMPL_FASTEST; |
| |
| #define IMPL_READ(i) (*(volatile uint32_t *) &(i)) |
| |
| static struct fletcher_4_impl_selector { |
| const char *fis_name; |
| uint32_t fis_sel; |
| } fletcher_4_impl_selectors[] = { |
| { "cycle", IMPL_CYCLE }, |
| { "fastest", IMPL_FASTEST }, |
| { "scalar", IMPL_SCALAR } |
| }; |
| |
| #if defined(_KERNEL) |
| static kstat_t *fletcher_4_kstat; |
| |
| static struct fletcher_4_kstat { |
| uint64_t native; |
| uint64_t byteswap; |
| } fletcher_4_stat_data[ARRAY_SIZE(fletcher_4_impls) + 1]; |
| #endif |
| |
| /* Indicate that benchmark has been completed */ |
| static boolean_t fletcher_4_initialized = B_FALSE; |
| |
| /*ARGSUSED*/ |
| void |
| fletcher_init(zio_cksum_t *zcp) |
| { |
| ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0); |
| } |
| |
| int |
| fletcher_2_incremental_native(void *buf, size_t size, void *data) |
| { |
| zio_cksum_t *zcp = data; |
| |
| const uint64_t *ip = buf; |
| const uint64_t *ipend = ip + (size / sizeof (uint64_t)); |
| uint64_t a0, b0, a1, b1; |
| |
| a0 = zcp->zc_word[0]; |
| a1 = zcp->zc_word[1]; |
| b0 = zcp->zc_word[2]; |
| b1 = zcp->zc_word[3]; |
| |
| for (; ip < ipend; ip += 2) { |
| a0 += ip[0]; |
| a1 += ip[1]; |
| b0 += a0; |
| b1 += a1; |
| } |
| |
| ZIO_SET_CHECKSUM(zcp, a0, a1, b0, b1); |
| return (0); |
| } |
| |
| /*ARGSUSED*/ |
| void |
| fletcher_2_native(const void *buf, uint64_t size, |
| const void *ctx_template, zio_cksum_t *zcp) |
| { |
| fletcher_init(zcp); |
| (void) fletcher_2_incremental_native((void *) buf, size, zcp); |
| } |
| |
| int |
| fletcher_2_incremental_byteswap(void *buf, size_t size, void *data) |
| { |
| zio_cksum_t *zcp = data; |
| |
| const uint64_t *ip = buf; |
| const uint64_t *ipend = ip + (size / sizeof (uint64_t)); |
| uint64_t a0, b0, a1, b1; |
| |
| a0 = zcp->zc_word[0]; |
| a1 = zcp->zc_word[1]; |
| b0 = zcp->zc_word[2]; |
| b1 = zcp->zc_word[3]; |
| |
| for (; ip < ipend; ip += 2) { |
| a0 += BSWAP_64(ip[0]); |
| a1 += BSWAP_64(ip[1]); |
| b0 += a0; |
| b1 += a1; |
| } |
| |
| ZIO_SET_CHECKSUM(zcp, a0, a1, b0, b1); |
| return (0); |
| } |
| |
| /*ARGSUSED*/ |
| void |
| fletcher_2_byteswap(const void *buf, uint64_t size, |
| const void *ctx_template, zio_cksum_t *zcp) |
| { |
| fletcher_init(zcp); |
| (void) fletcher_2_incremental_byteswap((void *) buf, size, zcp); |
| } |
| |
| static void |
| fletcher_4_scalar_init(fletcher_4_ctx_t *ctx) |
| { |
| ZIO_SET_CHECKSUM(&ctx->scalar, 0, 0, 0, 0); |
| } |
| |
| static void |
| fletcher_4_scalar_fini(fletcher_4_ctx_t *ctx, zio_cksum_t *zcp) |
| { |
| memcpy(zcp, &ctx->scalar, sizeof (zio_cksum_t)); |
| } |
| |
| static void |
| fletcher_4_scalar_native(fletcher_4_ctx_t *ctx, const void *buf, |
| uint64_t size) |
| { |
| const uint32_t *ip = buf; |
| const uint32_t *ipend = ip + (size / sizeof (uint32_t)); |
| uint64_t a, b, c, d; |
| |
| a = ctx->scalar.zc_word[0]; |
| b = ctx->scalar.zc_word[1]; |
| c = ctx->scalar.zc_word[2]; |
| d = ctx->scalar.zc_word[3]; |
| |
| for (; ip < ipend; ip++) { |
| a += ip[0]; |
| b += a; |
| c += b; |
| d += c; |
| } |
| |
| ZIO_SET_CHECKSUM(&ctx->scalar, a, b, c, d); |
| } |
| |
| static void |
| fletcher_4_scalar_byteswap(fletcher_4_ctx_t *ctx, const void *buf, |
| uint64_t size) |
| { |
| const uint32_t *ip = buf; |
| const uint32_t *ipend = ip + (size / sizeof (uint32_t)); |
| uint64_t a, b, c, d; |
| |
| a = ctx->scalar.zc_word[0]; |
| b = ctx->scalar.zc_word[1]; |
| c = ctx->scalar.zc_word[2]; |
| d = ctx->scalar.zc_word[3]; |
| |
| for (; ip < ipend; ip++) { |
| a += BSWAP_32(ip[0]); |
| b += a; |
| c += b; |
| d += c; |
| } |
| |
| ZIO_SET_CHECKSUM(&ctx->scalar, a, b, c, d); |
| } |
| |
| static boolean_t |
| fletcher_4_scalar_valid(void) |
| { |
| return (B_TRUE); |
| } |
| |
| int |
| fletcher_4_impl_set(const char *val) |
| { |
| int err = -EINVAL; |
| uint32_t impl = IMPL_READ(fletcher_4_impl_chosen); |
| size_t i, val_len; |
| |
| val_len = strlen(val); |
| while ((val_len > 0) && !!isspace(val[val_len-1])) /* trim '\n' */ |
| val_len--; |
| |
| /* check mandatory implementations */ |
| for (i = 0; i < ARRAY_SIZE(fletcher_4_impl_selectors); i++) { |
| const char *name = fletcher_4_impl_selectors[i].fis_name; |
| |
| if (val_len == strlen(name) && |
| strncmp(val, name, val_len) == 0) { |
| impl = fletcher_4_impl_selectors[i].fis_sel; |
| err = 0; |
| break; |
| } |
| } |
| |
| if (err != 0 && fletcher_4_initialized) { |
| /* check all supported implementations */ |
| for (i = 0; i < fletcher_4_supp_impls_cnt; i++) { |
| const char *name = fletcher_4_supp_impls[i]->name; |
| |
| if (val_len == strlen(name) && |
| strncmp(val, name, val_len) == 0) { |
| impl = i; |
| err = 0; |
| break; |
| } |
| } |
| } |
| |
| if (err == 0) { |
| atomic_swap_32(&fletcher_4_impl_chosen, impl); |
| membar_producer(); |
| } |
| |
| return (err); |
| } |
| |
| /* |
| * Returns the Fletcher 4 operations for checksums. When a SIMD |
| * implementation is not allowed in the current context, then fallback |
| * to the fastest generic implementation. |
| */ |
| static inline const fletcher_4_ops_t * |
| fletcher_4_impl_get(void) |
| { |
| if (!kfpu_allowed()) |
| return (&fletcher_4_superscalar4_ops); |
| |
| const fletcher_4_ops_t *ops = NULL; |
| uint32_t impl = IMPL_READ(fletcher_4_impl_chosen); |
| |
| switch (impl) { |
| case IMPL_FASTEST: |
| ASSERT(fletcher_4_initialized); |
| ops = &fletcher_4_fastest_impl; |
| break; |
| case IMPL_CYCLE: |
| /* Cycle through supported implementations */ |
| ASSERT(fletcher_4_initialized); |
| ASSERT3U(fletcher_4_supp_impls_cnt, >, 0); |
| static uint32_t cycle_count = 0; |
| uint32_t idx = (++cycle_count) % fletcher_4_supp_impls_cnt; |
| ops = fletcher_4_supp_impls[idx]; |
| break; |
| default: |
| ASSERT3U(fletcher_4_supp_impls_cnt, >, 0); |
| ASSERT3U(impl, <, fletcher_4_supp_impls_cnt); |
| ops = fletcher_4_supp_impls[impl]; |
| break; |
| } |
| |
| ASSERT3P(ops, !=, NULL); |
| |
| return (ops); |
| } |
| |
| static inline void |
| fletcher_4_native_impl(const void *buf, uint64_t size, zio_cksum_t *zcp) |
| { |
| fletcher_4_ctx_t ctx; |
| const fletcher_4_ops_t *ops = fletcher_4_impl_get(); |
| |
| ops->init_native(&ctx); |
| ops->compute_native(&ctx, buf, size); |
| ops->fini_native(&ctx, zcp); |
| } |
| |
| /*ARGSUSED*/ |
| void |
| fletcher_4_native(const void *buf, uint64_t size, |
| const void *ctx_template, zio_cksum_t *zcp) |
| { |
| const uint64_t p2size = P2ALIGN(size, FLETCHER_MIN_SIMD_SIZE); |
| |
| ASSERT(IS_P2ALIGNED(size, sizeof (uint32_t))); |
| |
| if (size == 0 || p2size == 0) { |
| ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0); |
| |
| if (size > 0) |
| fletcher_4_scalar_native((fletcher_4_ctx_t *)zcp, |
| buf, size); |
| } else { |
| fletcher_4_native_impl(buf, p2size, zcp); |
| |
| if (p2size < size) |
| fletcher_4_scalar_native((fletcher_4_ctx_t *)zcp, |
| (char *)buf + p2size, size - p2size); |
| } |
| } |
| |
| void |
| fletcher_4_native_varsize(const void *buf, uint64_t size, zio_cksum_t *zcp) |
| { |
| ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0); |
| fletcher_4_scalar_native((fletcher_4_ctx_t *)zcp, buf, size); |
| } |
| |
| static inline void |
| fletcher_4_byteswap_impl(const void *buf, uint64_t size, zio_cksum_t *zcp) |
| { |
| fletcher_4_ctx_t ctx; |
| const fletcher_4_ops_t *ops = fletcher_4_impl_get(); |
| |
| ops->init_byteswap(&ctx); |
| ops->compute_byteswap(&ctx, buf, size); |
| ops->fini_byteswap(&ctx, zcp); |
| } |
| |
| /*ARGSUSED*/ |
| void |
| fletcher_4_byteswap(const void *buf, uint64_t size, |
| const void *ctx_template, zio_cksum_t *zcp) |
| { |
| const uint64_t p2size = P2ALIGN(size, FLETCHER_MIN_SIMD_SIZE); |
| |
| ASSERT(IS_P2ALIGNED(size, sizeof (uint32_t))); |
| |
| if (size == 0 || p2size == 0) { |
| ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0); |
| |
| if (size > 0) |
| fletcher_4_scalar_byteswap((fletcher_4_ctx_t *)zcp, |
| buf, size); |
| } else { |
| fletcher_4_byteswap_impl(buf, p2size, zcp); |
| |
| if (p2size < size) |
| fletcher_4_scalar_byteswap((fletcher_4_ctx_t *)zcp, |
| (char *)buf + p2size, size - p2size); |
| } |
| } |
| |
| /* Incremental Fletcher 4 */ |
| |
| #define ZFS_FLETCHER_4_INC_MAX_SIZE (8ULL << 20) |
| |
| static inline void |
| fletcher_4_incremental_combine(zio_cksum_t *zcp, const uint64_t size, |
| const zio_cksum_t *nzcp) |
| { |
| const uint64_t c1 = size / sizeof (uint32_t); |
| const uint64_t c2 = c1 * (c1 + 1) / 2; |
| const uint64_t c3 = c2 * (c1 + 2) / 3; |
| |
| /* |
| * Value of 'c3' overflows on buffer sizes close to 16MiB. For that |
| * reason we split incremental fletcher4 computation of large buffers |
| * to steps of (ZFS_FLETCHER_4_INC_MAX_SIZE) size. |
| */ |
| ASSERT3U(size, <=, ZFS_FLETCHER_4_INC_MAX_SIZE); |
| |
| zcp->zc_word[3] += nzcp->zc_word[3] + c1 * zcp->zc_word[2] + |
| c2 * zcp->zc_word[1] + c3 * zcp->zc_word[0]; |
| zcp->zc_word[2] += nzcp->zc_word[2] + c1 * zcp->zc_word[1] + |
| c2 * zcp->zc_word[0]; |
| zcp->zc_word[1] += nzcp->zc_word[1] + c1 * zcp->zc_word[0]; |
| zcp->zc_word[0] += nzcp->zc_word[0]; |
| } |
| |
| static inline void |
| fletcher_4_incremental_impl(boolean_t native, const void *buf, uint64_t size, |
| zio_cksum_t *zcp) |
| { |
| while (size > 0) { |
| zio_cksum_t nzc; |
| uint64_t len = MIN(size, ZFS_FLETCHER_4_INC_MAX_SIZE); |
| |
| if (native) |
| fletcher_4_native(buf, len, NULL, &nzc); |
| else |
| fletcher_4_byteswap(buf, len, NULL, &nzc); |
| |
| fletcher_4_incremental_combine(zcp, len, &nzc); |
| |
| size -= len; |
| buf += len; |
| } |
| } |
| |
| int |
| fletcher_4_incremental_native(void *buf, size_t size, void *data) |
| { |
| zio_cksum_t *zcp = data; |
| /* Use scalar impl to directly update cksum of small blocks */ |
| if (size < SPA_MINBLOCKSIZE) |
| fletcher_4_scalar_native((fletcher_4_ctx_t *)zcp, buf, size); |
| else |
| fletcher_4_incremental_impl(B_TRUE, buf, size, zcp); |
| return (0); |
| } |
| |
| int |
| fletcher_4_incremental_byteswap(void *buf, size_t size, void *data) |
| { |
| zio_cksum_t *zcp = data; |
| /* Use scalar impl to directly update cksum of small blocks */ |
| if (size < SPA_MINBLOCKSIZE) |
| fletcher_4_scalar_byteswap((fletcher_4_ctx_t *)zcp, buf, size); |
| else |
| fletcher_4_incremental_impl(B_FALSE, buf, size, zcp); |
| return (0); |
| } |
| |
| #if defined(_KERNEL) |
| /* |
| * Fletcher 4 kstats |
| */ |
| static int |
| fletcher_4_kstat_headers(char *buf, size_t size) |
| { |
| ssize_t off = 0; |
| |
| off += snprintf(buf + off, size, "%-17s", "implementation"); |
| off += snprintf(buf + off, size - off, "%-15s", "native"); |
| (void) snprintf(buf + off, size - off, "%-15s\n", "byteswap"); |
| |
| return (0); |
| } |
| |
| static int |
| fletcher_4_kstat_data(char *buf, size_t size, void *data) |
| { |
| struct fletcher_4_kstat *fastest_stat = |
| &fletcher_4_stat_data[fletcher_4_supp_impls_cnt]; |
| struct fletcher_4_kstat *curr_stat = (struct fletcher_4_kstat *)data; |
| ssize_t off = 0; |
| |
| if (curr_stat == fastest_stat) { |
| off += snprintf(buf + off, size - off, "%-17s", "fastest"); |
| off += snprintf(buf + off, size - off, "%-15s", |
| fletcher_4_supp_impls[fastest_stat->native]->name); |
| off += snprintf(buf + off, size - off, "%-15s\n", |
| fletcher_4_supp_impls[fastest_stat->byteswap]->name); |
| } else { |
| ptrdiff_t id = curr_stat - fletcher_4_stat_data; |
| |
| off += snprintf(buf + off, size - off, "%-17s", |
| fletcher_4_supp_impls[id]->name); |
| off += snprintf(buf + off, size - off, "%-15llu", |
| (u_longlong_t)curr_stat->native); |
| off += snprintf(buf + off, size - off, "%-15llu\n", |
| (u_longlong_t)curr_stat->byteswap); |
| } |
| |
| return (0); |
| } |
| |
| static void * |
| fletcher_4_kstat_addr(kstat_t *ksp, loff_t n) |
| { |
| if (n <= fletcher_4_supp_impls_cnt) |
| ksp->ks_private = (void *) (fletcher_4_stat_data + n); |
| else |
| ksp->ks_private = NULL; |
| |
| return (ksp->ks_private); |
| } |
| #endif |
| |
| #define FLETCHER_4_FASTEST_FN_COPY(type, src) \ |
| { \ |
| fletcher_4_fastest_impl.init_ ## type = src->init_ ## type; \ |
| fletcher_4_fastest_impl.fini_ ## type = src->fini_ ## type; \ |
| fletcher_4_fastest_impl.compute_ ## type = src->compute_ ## type; \ |
| } |
| |
| #define FLETCHER_4_BENCH_NS (MSEC2NSEC(50)) /* 50ms */ |
| |
| typedef void fletcher_checksum_func_t(const void *, uint64_t, const void *, |
| zio_cksum_t *); |
| |
| #if defined(_KERNEL) |
| static void |
| fletcher_4_benchmark_impl(boolean_t native, char *data, uint64_t data_size) |
| { |
| |
| struct fletcher_4_kstat *fastest_stat = |
| &fletcher_4_stat_data[fletcher_4_supp_impls_cnt]; |
| hrtime_t start; |
| uint64_t run_bw, run_time_ns, best_run = 0; |
| zio_cksum_t zc; |
| uint32_t i, l, sel_save = IMPL_READ(fletcher_4_impl_chosen); |
| |
| fletcher_checksum_func_t *fletcher_4_test = native ? |
| fletcher_4_native : fletcher_4_byteswap; |
| |
| for (i = 0; i < fletcher_4_supp_impls_cnt; i++) { |
| struct fletcher_4_kstat *stat = &fletcher_4_stat_data[i]; |
| uint64_t run_count = 0; |
| |
| /* temporary set an implementation */ |
| fletcher_4_impl_chosen = i; |
| |
| kpreempt_disable(); |
| start = gethrtime(); |
| do { |
| for (l = 0; l < 32; l++, run_count++) |
| fletcher_4_test(data, data_size, NULL, &zc); |
| |
| run_time_ns = gethrtime() - start; |
| } while (run_time_ns < FLETCHER_4_BENCH_NS); |
| kpreempt_enable(); |
| |
| run_bw = data_size * run_count * NANOSEC; |
| run_bw /= run_time_ns; /* B/s */ |
| |
| if (native) |
| stat->native = run_bw; |
| else |
| stat->byteswap = run_bw; |
| |
| if (run_bw > best_run) { |
| best_run = run_bw; |
| |
| if (native) { |
| fastest_stat->native = i; |
| FLETCHER_4_FASTEST_FN_COPY(native, |
| fletcher_4_supp_impls[i]); |
| } else { |
| fastest_stat->byteswap = i; |
| FLETCHER_4_FASTEST_FN_COPY(byteswap, |
| fletcher_4_supp_impls[i]); |
| } |
| } |
| } |
| |
| /* restore original selection */ |
| atomic_swap_32(&fletcher_4_impl_chosen, sel_save); |
| } |
| #endif /* _KERNEL */ |
| |
| /* |
| * Initialize and benchmark all supported implementations. |
| */ |
| static void |
| fletcher_4_benchmark(void) |
| { |
| fletcher_4_ops_t *curr_impl; |
| int i, c; |
| |
| /* Move supported implementations into fletcher_4_supp_impls */ |
| for (i = 0, c = 0; i < ARRAY_SIZE(fletcher_4_impls); i++) { |
| curr_impl = (fletcher_4_ops_t *)fletcher_4_impls[i]; |
| |
| if (curr_impl->valid && curr_impl->valid()) |
| fletcher_4_supp_impls[c++] = curr_impl; |
| } |
| membar_producer(); /* complete fletcher_4_supp_impls[] init */ |
| fletcher_4_supp_impls_cnt = c; /* number of supported impl */ |
| |
| #if defined(_KERNEL) |
| static const size_t data_size = 1 << SPA_OLD_MAXBLOCKSHIFT; /* 128kiB */ |
| char *databuf = vmem_alloc(data_size, KM_SLEEP); |
| |
| for (i = 0; i < data_size / sizeof (uint64_t); i++) |
| ((uint64_t *)databuf)[i] = (uintptr_t)(databuf+i); /* warm-up */ |
| |
| fletcher_4_benchmark_impl(B_FALSE, databuf, data_size); |
| fletcher_4_benchmark_impl(B_TRUE, databuf, data_size); |
| |
| vmem_free(databuf, data_size); |
| #else |
| /* |
| * Skip the benchmark in user space to avoid impacting libzpool |
| * consumers (zdb, zhack, zinject, ztest). The last implementation |
| * is assumed to be the fastest and used by default. |
| */ |
| memcpy(&fletcher_4_fastest_impl, |
| fletcher_4_supp_impls[fletcher_4_supp_impls_cnt - 1], |
| sizeof (fletcher_4_fastest_impl)); |
| fletcher_4_fastest_impl.name = "fastest"; |
| membar_producer(); |
| #endif /* _KERNEL */ |
| } |
| |
| void |
| fletcher_4_init(void) |
| { |
| /* Determine the fastest available implementation. */ |
| fletcher_4_benchmark(); |
| |
| #if defined(_KERNEL) |
| /* Install kstats for all implementations */ |
| fletcher_4_kstat = kstat_create("zfs", 0, "fletcher_4_bench", "misc", |
| KSTAT_TYPE_RAW, 0, KSTAT_FLAG_VIRTUAL); |
| if (fletcher_4_kstat != NULL) { |
| fletcher_4_kstat->ks_data = NULL; |
| fletcher_4_kstat->ks_ndata = UINT32_MAX; |
| kstat_set_raw_ops(fletcher_4_kstat, |
| fletcher_4_kstat_headers, |
| fletcher_4_kstat_data, |
| fletcher_4_kstat_addr); |
| kstat_install(fletcher_4_kstat); |
| } |
| #endif |
| |
| /* Finish initialization */ |
| fletcher_4_initialized = B_TRUE; |
| } |
| |
| void |
| fletcher_4_fini(void) |
| { |
| #if defined(_KERNEL) |
| if (fletcher_4_kstat != NULL) { |
| kstat_delete(fletcher_4_kstat); |
| fletcher_4_kstat = NULL; |
| } |
| #endif |
| } |
| |
| /* ABD adapters */ |
| |
| static void |
| abd_fletcher_4_init(zio_abd_checksum_data_t *cdp) |
| { |
| const fletcher_4_ops_t *ops = fletcher_4_impl_get(); |
| cdp->acd_private = (void *) ops; |
| |
| if (cdp->acd_byteorder == ZIO_CHECKSUM_NATIVE) |
| ops->init_native(cdp->acd_ctx); |
| else |
| ops->init_byteswap(cdp->acd_ctx); |
| } |
| |
| static void |
| abd_fletcher_4_fini(zio_abd_checksum_data_t *cdp) |
| { |
| fletcher_4_ops_t *ops = (fletcher_4_ops_t *)cdp->acd_private; |
| |
| ASSERT(ops); |
| |
| if (cdp->acd_byteorder == ZIO_CHECKSUM_NATIVE) |
| ops->fini_native(cdp->acd_ctx, cdp->acd_zcp); |
| else |
| ops->fini_byteswap(cdp->acd_ctx, cdp->acd_zcp); |
| } |
| |
| static void |
| abd_fletcher_4_simd2scalar(boolean_t native, void *data, size_t size, |
| zio_abd_checksum_data_t *cdp) |
| { |
| zio_cksum_t *zcp = cdp->acd_zcp; |
| |
| ASSERT3U(size, <, FLETCHER_MIN_SIMD_SIZE); |
| |
| abd_fletcher_4_fini(cdp); |
| cdp->acd_private = (void *)&fletcher_4_scalar_ops; |
| |
| if (native) |
| fletcher_4_incremental_native(data, size, zcp); |
| else |
| fletcher_4_incremental_byteswap(data, size, zcp); |
| } |
| |
| static int |
| abd_fletcher_4_iter(void *data, size_t size, void *private) |
| { |
| zio_abd_checksum_data_t *cdp = (zio_abd_checksum_data_t *)private; |
| fletcher_4_ctx_t *ctx = cdp->acd_ctx; |
| fletcher_4_ops_t *ops = (fletcher_4_ops_t *)cdp->acd_private; |
| boolean_t native = cdp->acd_byteorder == ZIO_CHECKSUM_NATIVE; |
| uint64_t asize = P2ALIGN(size, FLETCHER_MIN_SIMD_SIZE); |
| |
| ASSERT(IS_P2ALIGNED(size, sizeof (uint32_t))); |
| |
| if (asize > 0) { |
| if (native) |
| ops->compute_native(ctx, data, asize); |
| else |
| ops->compute_byteswap(ctx, data, asize); |
| |
| size -= asize; |
| data = (char *)data + asize; |
| } |
| |
| if (size > 0) { |
| ASSERT3U(size, <, FLETCHER_MIN_SIMD_SIZE); |
| /* At this point we have to switch to scalar impl */ |
| abd_fletcher_4_simd2scalar(native, data, size, cdp); |
| } |
| |
| return (0); |
| } |
| |
| zio_abd_checksum_func_t fletcher_4_abd_ops = { |
| .acf_init = abd_fletcher_4_init, |
| .acf_fini = abd_fletcher_4_fini, |
| .acf_iter = abd_fletcher_4_iter |
| }; |
| |
| |
| #if defined(_KERNEL) |
| #include <linux/mod_compat.h> |
| |
| static int |
| fletcher_4_param_get(char *buffer, zfs_kernel_param_t *unused) |
| { |
| const uint32_t impl = IMPL_READ(fletcher_4_impl_chosen); |
| char *fmt; |
| int i, cnt = 0; |
| |
| /* list fastest */ |
| fmt = (impl == IMPL_FASTEST) ? "[%s] " : "%s "; |
| cnt += sprintf(buffer + cnt, fmt, "fastest"); |
| |
| /* list all supported implementations */ |
| for (i = 0; i < fletcher_4_supp_impls_cnt; i++) { |
| fmt = (i == impl) ? "[%s] " : "%s "; |
| cnt += sprintf(buffer + cnt, fmt, |
| fletcher_4_supp_impls[i]->name); |
| } |
| |
| return (cnt); |
| } |
| |
| static int |
| fletcher_4_param_set(const char *val, zfs_kernel_param_t *unused) |
| { |
| return (fletcher_4_impl_set(val)); |
| } |
| |
| /* |
| * Choose a fletcher 4 implementation in ZFS. |
| * Users can choose "cycle" to exercise all implementations, but this is |
| * for testing purpose therefore it can only be set in user space. |
| */ |
| module_param_call(zfs_fletcher_4_impl, |
| fletcher_4_param_set, fletcher_4_param_get, NULL, 0644); |
| MODULE_PARM_DESC(zfs_fletcher_4_impl, "Select fletcher 4 implementation."); |
| |
| EXPORT_SYMBOL(fletcher_init); |
| EXPORT_SYMBOL(fletcher_2_incremental_native); |
| EXPORT_SYMBOL(fletcher_2_incremental_byteswap); |
| EXPORT_SYMBOL(fletcher_4_init); |
| EXPORT_SYMBOL(fletcher_4_fini); |
| EXPORT_SYMBOL(fletcher_2_native); |
| EXPORT_SYMBOL(fletcher_2_byteswap); |
| EXPORT_SYMBOL(fletcher_4_native); |
| EXPORT_SYMBOL(fletcher_4_native_varsize); |
| EXPORT_SYMBOL(fletcher_4_byteswap); |
| EXPORT_SYMBOL(fletcher_4_incremental_native); |
| EXPORT_SYMBOL(fletcher_4_incremental_byteswap); |
| EXPORT_SYMBOL(fletcher_4_abd_ops); |
| #endif |