blob: bd02a493bd3a29a858f02f509294ab9172eba676 [file] [log] [blame]
/*
* Copyright (c) 2016 Douglas Gilbert.
* All rights reserved.
* Use of this source code is governed by a BSD-style
* license that can be found in the BSD_LICENSE file.
*/
#include <unistd.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include <string.h>
#include <ctype.h>
#include <getopt.h>
#define __STDC_FORMAT_MACROS 1
#include <inttypes.h>
#include <errno.h>
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "sg_lib.h"
#include "sg_lib_data.h"
#include "sg_pt.h"
#include "sg_cmds_basic.h"
#include "sg_unaligned.h"
#include "sg_pr2serr.h"
/* A utility program originally written for the Linux OS SCSI subsystem.
*
*
* This program issues the SCSI READ ATTRIBUTE command to the given SCSI device
* and decodes the response. Based on spc5r08.pdf
*/
static const char * version_str = "1.00 20160207";
#define MAX_RATTR_BUFF_LEN (1024 * 1024)
#define DEF_RATTR_BUFF_LEN (1024 * 8)
#define SG_READ_ATTRIBUTE_CMD 0x8c
#define SG_READ_ATTRIBUTE_CMDLEN 16
#define RA_ATTR_VAL_SA 0x0
#define RA_ATTR_LIST_SA 0x1
#define RA_LV_LIST_SA 0x2
#define RA_PART_LIST_SA 0x3
#define RA_SMC2_SA 0x4
#define RA_SUP_ATTR_SA 0x5
#define RA_HIGHEST_SA 0x5
#define RA_FMT_BINARY 0x0
#define RA_FMT_ASCII 0x1
#define RA_FMT_TEXT 0x2 /* takes into account locale */
#define RA_FMT_RES 0x3 /* reserved */
#define SENSE_BUFF_LEN 64 /* Arbitrary, could be larger */
#define DEF_PT_TIMEOUT 60 /* 60 seconds */
struct opts_t {
int cache;
int ea;
int enumerate;
int filter;
int fai;
int do_hex;
int lvn;
int maxlen;
int pn;
int quiet;
int do_raw;
int o_readonly;
int sa;
int verbose;
};
struct acron_nv_t {
const char * acron;
const char * name;
int val;
};
struct attr_name_info_t {
int id;
const char * name; /* tab ('\t') suggest line break */
int format; /* RA_FMT_BINARY and friends, -1 --> unknown */
int len; /* -1 --> not fixed (variable) */
int process; /* 0 --> print decimal if binary, 1 --> print hex,
* 2 --> further processing */
};
static struct option long_options[] = {
{"cache", no_argument, 0, 'c'},
{"enumerate", no_argument, 0, 'e'},
{"element", required_argument, 0, 'E'}, /* SMC-3 element address */
{"filter", required_argument, 0, 'f'},
{"first", required_argument, 0, 'F'},
{"help", no_argument, 0, 'h'},
{"hex", no_argument, 0, 'H'},
{"in", required_argument, 0, 'i'},
{"lvn", required_argument, 0, 'l'},
{"maxlen", required_argument, 0, 'm'},
{"partition", required_argument, 0, 'p'},
{"quiet", required_argument, 0, 'q'},
{"raw", no_argument, 0, 'r'},
{"readonly", no_argument, 0, 'R'},
{"sa", required_argument, 0, 's'},
{"verbose", no_argument, 0, 'v'},
{"version", no_argument, 0, 'V'},
{0, 0, 0, 0}, /* sentinel */
};
static struct acron_nv_t sa_acron_arr[] = {
{"av", "attribute values", 0},
{"al", "attribute list", 1},
{"lvl", "logical volume list", 2},
{"pl", "partition list", 3},
{"smc", "SMC-2 should define this", 4},
{"sa", "supported attributes", 5},
{NULL, NULL, -1}, /* sentinel */
};
static struct attr_name_info_t attr_name_arr[] = {
/* Device type attributes */
{0x0, "Remaining capacity in partition [MiB]", RA_FMT_BINARY, 8, 0},
{0x1, "Maximum capacity in partition [MiB]", RA_FMT_BINARY, 8, 0},
{0x2, "TapeAlert flags", RA_FMT_BINARY, 8, 0}, /* SSC-4 */
{0x3, "Load count", RA_FMT_BINARY, 8, 0},
{0x4, "MAM space remaining [B]", RA_FMT_BINARY, 8, 0},
{0x5, "Assigning organization", RA_FMT_ASCII, 8, 0}, /* SSC-4 */
{0x6, "Format density code", RA_FMT_BINARY, 1, 1}, /* SSC-4 */
{0x7, "Initialization count", RA_FMT_BINARY, 2, 0},
{0x8, "Volume identifier", RA_FMT_ASCII, 32, 0},
{0x9, "Volume change reference", RA_FMT_BINARY, -1, 1}, /* SSC-4 */
{0x20a, "Density vendor/serial number at last load", RA_FMT_ASCII, 40, 0},
{0x20b, "Density vendor/serial number at load-1", RA_FMT_ASCII, 40, 0},
{0x20c, "Density vendor/serial number at load-2", RA_FMT_ASCII, 40, 0},
{0x20d, "Density vendor/serial number at load-3", RA_FMT_ASCII, 40, 0},
{0x220, "Total MiB written in medium life", RA_FMT_BINARY, 8, 0},
{0x221, "Total MiB read in medium life", RA_FMT_BINARY, 8, 0},
{0x222, "Total MiB written in current/last load", RA_FMT_BINARY, 8, 0},
{0x223, "Total MiB read in current/last load", RA_FMT_BINARY, 8, 0},
{0x224, "Logical position of first encrypted block", RA_FMT_BINARY, 8, 2},
{0x225, "Logical position of first unencrypted block\tafter first "
"encrypted block", RA_FMT_BINARY, 8, 2},
{0x340, "Medium usage history", RA_FMT_BINARY, 90, 2},
{0x341, "Partition usage history", RA_FMT_BINARY, 60, 2},
/* Medium type attributes */
{0x400, "Medium manufacturer", RA_FMT_ASCII, 8, 0},
{0x401, "Medium serial number", RA_FMT_ASCII, 32, 0},
{0x402, "Medium length [m]", RA_FMT_BINARY, 4, 0}, /* SSC-4 */
{0x403, "Medium width [0.1 mm]", RA_FMT_BINARY, 4, 0}, /* SSC-4 */
{0x404, "Assigning organization", RA_FMT_ASCII, 8, 0}, /* SSC-4 */
{0x405, "Medium density code", RA_FMT_BINARY, 1, 1}, /* SSC-4 */
{0x406, "Medium manufacture date", RA_FMT_ASCII, 8, 0},
{0x407, "MAM capacity [B]", RA_FMT_BINARY, 8, 0},
{0x408, "Medium type", RA_FMT_BINARY, 1, 1},
{0x409, "Medium type information", RA_FMT_BINARY, 2, 1},
{0x40a, "Numeric medium serial number", -1, -1, 1},
/* Host type attributes */
{0x800, "Application vendor", RA_FMT_ASCII, 8, 0},
{0x801, "Application name", RA_FMT_ASCII, 32, 0},
{0x802, "Application version", RA_FMT_ASCII, 8, 0},
{0x803, "User medium text label", RA_FMT_TEXT, 160, 0},
{0x804, "Date and time last written", RA_FMT_ASCII, 12, 0},
{0x805, "Text localization identifier", RA_FMT_BINARY, 1, 0},
{0x806, "Barcode", RA_FMT_ASCII, 32, 0},
{0x807, "Owning host textual name", RA_FMT_TEXT, 80, 0},
{0x808, "Media pool", RA_FMT_TEXT, 160, 0},
{0x809, "Partition user text label", RA_FMT_ASCII, 16, 0},
{0x80a, "Load/unload at partition", RA_FMT_BINARY, 1, 0},
{0x80a, "Application format version", RA_FMT_ASCII, 16, 0},
{0x80c, "Volume coherency information", RA_FMT_BINARY, -1, 1},
/* SSC-5 */
{0x820, "Medium globally unique identifier", RA_FMT_BINARY, 36, 1},
{0x821, "Media pool globally unique identifier", RA_FMT_BINARY, 36, 1},
{-1, NULL, -1, -1, 0},
};
static void
usage()
{
pr2serr("Usage: sg_read_attr [--cache] [--element=EA] [--enumerate] "
"[--filter=FL]\n"
" [--first=FAI] [--help] [--hex] [--in=FN] "
"[--lvn-LVN]\n"
" [--maxlen=LEN] [--partition=PN] [--quiet] "
"[--raw]\n"
" [--readonly] [--sa=SA] [--verbose] "
"[--version]\n"
" DEVICE\n");
pr2serr(" where:\n"
" --cache|-c set CACHE bit in cdn (def: clear)\n"
" --enumerate|-e enumerate known attributes and service "
"actions\n"
" --element=EA|-E EA EA is placed in 'element address' "
"field in\n"
" cdb [SMC-3] (def: 0)\n"
" --filter=FL|-f FL FL is parameter code to match (def: "
"-1 -> all)\n"
" --first=FAI|-F FAI FAI is placed in 'first attribute "
"identifier'\n"
" field in cdb (def: 0)\n"
" --help|-h print out usage message\n"
" --hex|-H output response in hexadecimal; used "
"twice\n"
" shows decoded values in hex\n"
" --in=FN|-i FN FN is a filename containing attribute "
"values in\n"
" ASCII hex or binary if --raw also "
"given\n"
" --lvn=LVN|-l LVN logical volume number (LVN) (def:0)\n"
" --maxlen=LEN|-m LEN max response length (allocation "
"length in cdb)\n"
" (def: 0 -> 8192 bytes)\n"
" --partition=PN|-p PN partition number (PN) (def:0)\n"
" --quiet|-q reduce the amount of output, can use "
"more than once\n"
" --raw|-r output response in binary\n"
" --readonly|-R open DEVICE read-only (def: read-write)\n"
" --sa=SA|-s SA SA is service action (def: 0)\n"
" --verbose|-v increase verbosity\n"
" --version|-V print version string and exit\n\n"
"Performs a SCSI READ ATTRIBUTE command. It is typically used "
"on tape\nsystems.\n");
}
/* Invokes a SCSI READ ATTRIBUTE command (SPC+SMC). Return of 0 -> success,
* various SG_LIB_CAT_* positive values or -1 -> other errors */
static int
sg_ll_read_attr(int sg_fd, void * resp, int * residp,
const struct opts_t * op)
{
int k, ret, res, sense_cat;
int noisy = 1;
unsigned char raCmdBlk[SG_READ_ATTRIBUTE_CMDLEN] =
{SG_READ_ATTRIBUTE_CMD, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0};
unsigned char sense_b[SENSE_BUFF_LEN];
struct sg_pt_base * ptvp;
raCmdBlk[1] = 0x1f & op->sa;
if (op->ea)
sg_put_unaligned_be16(op->ea, raCmdBlk + 2);
if (op->lvn)
raCmdBlk[5] = 0xff & op->lvn;
if (op->pn)
raCmdBlk[7] = 0xff & op->pn;
if (op->fai)
sg_put_unaligned_be16(op->fai, raCmdBlk + 8);
sg_put_unaligned_be32((uint32_t)op->maxlen, raCmdBlk + 10);
if (op->cache)
raCmdBlk[14] |= 0x1;
if (op->verbose) {
pr2serr(" Read attribute cdb: ");
for (k = 0; k < SG_READ_ATTRIBUTE_CMDLEN; ++k)
pr2serr("%02x ", raCmdBlk[k]);
pr2serr("\n");
}
ptvp = construct_scsi_pt_obj();
if (NULL == ptvp) {
pr2serr("%s: out of memory\n", __func__);
return -1;
}
set_scsi_pt_cdb(ptvp, raCmdBlk, sizeof(raCmdBlk));
set_scsi_pt_sense(ptvp, sense_b, sizeof(sense_b));
set_scsi_pt_data_in(ptvp, (unsigned char *)resp, op->maxlen);
res = do_scsi_pt(ptvp, sg_fd, DEF_PT_TIMEOUT, op->verbose);
ret = sg_cmds_process_resp(ptvp, "read attribute", res, op->maxlen,
sense_b, noisy, op->verbose, &sense_cat);
if (-1 == ret)
;
else if (-2 == ret) {
switch (sense_cat) {
case SG_LIB_CAT_RECOVERED:
case SG_LIB_CAT_NO_SENSE:
ret = 0;
break;
default:
ret = sense_cat;
break;
}
} else
ret = 0;
if (residp)
*residp = get_scsi_pt_resid(ptvp);
destruct_scsi_pt_obj(ptvp);
return ret;
}
static void
dStrRaw(const char* str, int len)
{
int k;
for (k = 0 ; k < len; ++k)
printf("%c", str[k]);
}
static int
find_sa_acron(const char * cp)
{
int k;
const struct acron_nv_t * anvp;
const char * mp;
for (anvp = sa_acron_arr; anvp->acron ; ++anvp) {
for (mp = cp, k = 0; *mp; ++mp, ++k) {
if (0 == anvp->acron[k])
return anvp->val;
if (tolower(*mp) != anvp->acron[k])
break;
}
if ((0 == *mp) && (0 == anvp->acron[k]))
return anvp->val;
}
return -1; /* not found */
}
const char * a_format[] = {
"binary",
"ascii",
"text",
"format[0x3]",
};
static void
enum_attributes(void)
{
const struct attr_name_info_t * anip;
const char * cp;
char b[32];
printf("Attribute ID\tLength\tFormat\tName\n");
printf("------------------------------------------\n");
for (anip = attr_name_arr; anip->name ; ++anip) {
if (anip->format < 0)
snprintf(b, sizeof(b), "unknown");
else
snprintf(b, sizeof(b), "%s", a_format[0x3 & anip->format]);
printf(" 0x%04x:\t%d\t%s\t", anip->id, anip->len, b);
cp = strchr(anip->name, '\t');
if (cp ) {
printf("%.*s\n", (int)(cp - anip->name), anip->name);
printf("\t\t\t\t%s\n", cp + 1);
} else
printf("%s\n", anip->name);
}
}
static void
enum_sa_acrons(void)
{
const struct acron_nv_t * anvp;
printf("SA_value\tAcronym\tDescription\n");
printf("------------------------------------------\n");
for (anvp = sa_acron_arr; anvp->acron ; ++anvp)
printf(" %d:\t\t%s\t%s\n", anvp->val, anvp->acron, anvp->name);
}
/* Read ASCII hex bytes or binary from fname (a file named '-' taken as
* stdin). If reading ASCII hex then there should be either one entry per
* line or a comma, space or tab separated list of bytes. If no_space is
* set then a string of ACSII hex digits is expected, 2 per byte. Everything
* from and including a '#' on a line is ignored. Returns 0 if ok, or 1 if
* error. */
static int
f2hex_arr(const char * fname, int as_binary, int no_space,
uint8_t * mp_arr, int * mp_arr_len, int max_arr_len)
{
int fn_len, in_len, k, j, m, split_line, fd, has_stdin;
unsigned int h;
const char * lcp;
FILE * fp;
char line[512];
char carry_over[4];
int off = 0;
if ((NULL == fname) || (NULL == mp_arr) || (NULL == mp_arr_len))
return 1;
fn_len = strlen(fname);
if (0 == fn_len)
return 1;
has_stdin = ((1 == fn_len) && ('-' == fname[0])); /* read from stdin */
if (as_binary) {
if (has_stdin) {
fd = STDIN_FILENO;
if (sg_set_binary_mode(STDIN_FILENO) < 0)
perror("sg_set_binary_mode");
} else {
fd = open(fname, O_RDONLY);
if (fd < 0) {
pr2serr("unable to open binary file %s: %s\n", fname,
safe_strerror(errno));
return 1;
} else if (sg_set_binary_mode(fd) < 0)
perror("sg_set_binary_mode");
}
k = read(fd, mp_arr, max_arr_len);
if (k <= 0) {
if (0 == k)
pr2serr("read 0 bytes from binary file %s\n", fname);
else
pr2serr("read from binary file %s: %s\n", fname,
safe_strerror(errno));
if (! has_stdin)
close(fd);
return 1;
}
*mp_arr_len = k;
if (! has_stdin)
close(fd);
return 0;
} else { /* So read the file as ASCII hex */
if (has_stdin)
fp = stdin;
else {
fp = fopen(fname, "r");
if (NULL == fp) {
pr2serr("Unable to open %s for reading\n", fname);
return 1;
}
}
}
carry_over[0] = 0;
for (j = 0; j < 512; ++j) {
if (NULL == fgets(line, sizeof(line), fp))
break;
in_len = strlen(line);
if (in_len > 0) {
if ('\n' == line[in_len - 1]) {
--in_len;
line[in_len] = '\0';
split_line = 0;
} else
split_line = 1;
}
if (in_len < 1) {
carry_over[0] = 0;
continue;
}
if (carry_over[0]) {
if (isxdigit(line[0])) {
carry_over[1] = line[0];
carry_over[2] = '\0';
if (1 == sscanf(carry_over, "%4x", &h))
mp_arr[off - 1] = h; /* back up and overwrite */
else {
pr2serr("%s: carry_over error ['%s'] around line %d\n",
__func__, carry_over, j + 1);
goto bad;
}
lcp = line + 1;
--in_len;
} else
lcp = line;
carry_over[0] = 0;
} else
lcp = line;
m = strspn(lcp, " \t");
if (m == in_len)
continue;
lcp += m;
in_len -= m;
if ('#' == *lcp)
continue;
k = strspn(lcp, "0123456789aAbBcCdDeEfF ,\t");
if ((k < in_len) && ('#' != lcp[k]) && ('\r' != lcp[k])) {
pr2serr("%s: syntax error at line %d, pos %d\n", __func__,
j + 1, m + k + 1);
goto bad;
}
if (no_space) {
for (k = 0; isxdigit(*lcp) && isxdigit(*(lcp + 1));
++k, lcp += 2) {
if (1 != sscanf(lcp, "%2x", &h)) {
pr2serr("%s: bad hex number in line %d, pos %d\n",
__func__, j + 1, (int)(lcp - line + 1));
goto bad;
}
if ((off + k) >= max_arr_len) {
pr2serr("%s: array length exceeded\n", __func__);
goto bad;
}
mp_arr[off + k] = h;
}
if (isxdigit(*lcp) && (! isxdigit(*(lcp + 1))))
carry_over[0] = *lcp;
off += k;
} else {
for (k = 0; k < 1024; ++k) {
if (1 == sscanf(lcp, "%4x", &h)) {
if (h > 0xff) {
pr2serr("%s: hex number larger than 0xff in line %d, "
"pos %d\n", __func__, j + 1,
(int)(lcp - line + 1));
goto bad;
}
if (split_line && (1 == strlen(lcp))) {
/* single trailing hex digit might be a split pair */
carry_over[0] = *lcp;
}
if ((off + k) >= max_arr_len) {
pr2serr("%s: array length exceeded\n", __func__);
goto bad;
}
mp_arr[off + k] = h;
lcp = strpbrk(lcp, " ,\t");
if (NULL == lcp)
break;
lcp += strspn(lcp, " ,\t");
if ('\0' == *lcp)
break;
} else {
if (('#' == *lcp) || ('\r' == *lcp)) {
--k;
break;
}
pr2serr("%s: error in line %d, at pos %d\n", __func__,
j + 1, (int)(lcp - line + 1));
goto bad;
}
}
off += (k + 1);
}
}
*mp_arr_len = off;
if (stdin != fp)
fclose(fp);
return 0;
bad:
if (stdin != fp)
fclose(fp);
return 1;
}
/* Returns 1 if 'ucp' all 0xff bytes, returns 2 is all 0xff bytes apart
* from last being 0xfe; otherwise returns 0. */
static int
all_ffs_or_last_fe(const unsigned char * ucp, int len)
{
for ( ; len > 0; ++ucp, --len) {
if (*ucp < 0xfe)
return 0;
if (0xfe == *ucp)
return (1 == len) ? 2 : 0;
}
return 1;
}
static char *
attr_id_lookup(unsigned int id, const struct attr_name_info_t ** anipp,
int blen, char * b)
{
const struct attr_name_info_t * anip;
for (anip = attr_name_arr; anip->name; ++anip) {
if (id == (unsigned int)anip->id)
break;
}
if (anip->name) {
snprintf(b, blen, "%s", anip->name);
if (anipp)
*anipp = anip;
return b;
}
if (anipp)
*anipp = NULL;
if (id < 0x400)
snprintf(b, blen, "Unknown device attribute 0x%x", id);
else if (id < 0x800)
snprintf(b, blen, "Unknown medium attribute 0x%x", id);
else if (id < 0xc00)
snprintf(b, blen, "Unknown host attribute 0x%x", id);
else if (id < 0x1000)
snprintf(b, blen, "Vendor specific device attribute 0x%x", id);
else if (id < 0x1400)
snprintf(b, blen, "Vendor specific medium attribute 0x%x", id);
else if (id < 0x1800)
snprintf(b, blen, "Vendor specific host attribute 0x%x", id);
else
snprintf(b, blen, "Reserved attribute 0x%x", id);
return b;
}
static void
decode_attr_list(const unsigned char * alp, int len, bool supported,
const struct opts_t * op)
{
int id;
char b[160];
char * cp;
char * c2p;
const char * leadin = supported ? "Supported a" : "A";
if (op->verbose)
printf("%sttribute list: [len=%d]\n", leadin, len);
else if (0 == op->quiet)
printf("%sttribute list:\n", leadin);
if (op->do_hex) {
dStrHex((const char *)alp, len, 0);
return;
}
for ( ; len > 0; alp += 2, len -= 2) {
id = sg_get_unaligned_be16(alp + 0);
if ((op->filter >= 0) && (op->filter != id))
continue;
if (op->verbose)
printf(" 0x%.4x:\t", id);
cp = attr_id_lookup(id, NULL, sizeof(b), b);
c2p = strchr(cp, '\t');
if (c2p) {
printf(" %.*s -\n", (int)(c2p - cp), cp);
if (op->verbose)
printf("\t\t %s\n", c2p + 1);
else
printf(" %s\n", c2p + 1);
} else
printf(" %s\n", cp);
}
}
static void
helper_full_attr(const unsigned char * alp, int len, int id,
const struct attr_name_info_t * anip,
const struct opts_t * op)
{
int k;
const unsigned char * ucp;
if (op->verbose)
printf("[r%c] ", (0x80 & alp[2]) ? 'o' : 'w');
if (op->verbose > 3)
pr2serr("%s: id=0x%x, len=%d, anip->format=%d, anip->len=%d\n",
__func__, id, len, anip->format, anip->len);
switch (id) {
case 0x224: /* logical position of first encrypted block */
k = all_ffs_or_last_fe(alp + 5, len - 5);
if (1 == k)
printf("<unknown> [ff]\n");
else if (2 == k)
printf("<unknown [fe]>\n");
else {
if ((len - 5) <= 8)
printf("%" PRIx64, sg_get_unaligned_be(len - 5, alp + 5));
else {
printf("\n");
dStrHex((const char *)(alp + 5), len - 5, 0);
}
}
break;
case 0x225: /* logical position of first unencrypted block
* after first encrypted block */
k = all_ffs_or_last_fe(alp + 5, len - 5);
if (1 == k)
printf("<unknown> [ff]\n");
else if (2 == k)
printf("<unknown [fe]>\n");
else {
if ((len - 5) <= 8)
printf("%" PRIx64, sg_get_unaligned_be(len - 5, alp + 5));
else {
printf("\n");
dStrHex((const char *)(alp + 5), len - 5, 0);
}
}
break;
case 0x340: /* Medium Usage history */
ucp = alp + 5;
printf("\n");
if ((len - 5) < 90) {
pr2serr("%s: expected 90 bytes, got %d\n", __func__, len - 5);
break;
}
printf(" Current amount of data written [MiB]: %" PRIu64 "\n",
sg_get_unaligned_be48(ucp + 0));
printf(" Current write retry count: %" PRIu64 "\n",
sg_get_unaligned_be48(ucp + 6));
printf(" Current amount of data read [MiB]: %" PRIu64 "\n",
sg_get_unaligned_be48(ucp + 12));
printf(" Current read retry count: %" PRIu64 "\n",
sg_get_unaligned_be48(ucp + 18));
printf(" Previous amount of data written [MiB]: %" PRIu64 "\n",
sg_get_unaligned_be48(ucp + 24));
printf(" Previous write retry count: %" PRIu64 "\n",
sg_get_unaligned_be48(ucp + 30));
printf(" Previous amount of data read [MiB]: %" PRIu64 "\n",
sg_get_unaligned_be48(ucp + 36));
printf(" Previous read retry count: %" PRIu64 "\n",
sg_get_unaligned_be48(ucp + 42));
printf(" Total amount of data written [MiB]: %" PRIu64 "\n",
sg_get_unaligned_be48(ucp + 48));
printf(" Total write retry count: %" PRIu64 "\n",
sg_get_unaligned_be48(ucp + 54));
printf(" Total amount of data read [MiB]: %" PRIu64 "\n",
sg_get_unaligned_be48(ucp + 60));
printf(" Total read retry count: %" PRIu64 "\n",
sg_get_unaligned_be48(ucp + 66));
printf(" Load count: %" PRIu64 "\n",
sg_get_unaligned_be48(ucp + 72));
printf(" Total change partition count: %" PRIu64 "\n",
sg_get_unaligned_be48(ucp + 78));
printf(" Total partition initialization count: %" PRIu64 "\n",
sg_get_unaligned_be48(ucp + 84));
break;
case 0x341: /* Partition Usage history */
ucp = alp + 5;
printf("\n");
if ((len - 5) < 60) {
pr2serr("%s: expected 60 bytes, got %d\n", __func__, len - 5);
break;
}
printf(" Current amount of data written [MiB]: %" PRIu32 "\n",
sg_get_unaligned_be32(ucp + 0));
printf(" Current write retry count: %" PRIu32 "\n",
sg_get_unaligned_be32(ucp + 4));
printf(" Current amount of data read [MiB]: %" PRIu32 "\n",
sg_get_unaligned_be32(ucp + 8));
printf(" Current read retry count: %" PRIu32 "\n",
sg_get_unaligned_be32(ucp + 12));
printf(" Previous amount of data written [MiB]: %" PRIu32 "\n",
sg_get_unaligned_be32(ucp + 16));
printf(" Previous write retry count: %" PRIu32 "\n",
sg_get_unaligned_be32(ucp + 20));
printf(" Previous amount of data read [MiB]: %" PRIu32 "\n",
sg_get_unaligned_be32(ucp + 24));
printf(" Previous read retry count: %" PRIu32 "\n",
sg_get_unaligned_be32(ucp + 28));
printf(" Total amount of data written [MiB]: %" PRIu32 "\n",
sg_get_unaligned_be32(ucp + 32));
printf(" Total write retry count: %" PRIu32 "\n",
sg_get_unaligned_be32(ucp + 36));
printf(" Total amount of data read [MiB]: %" PRIu32 "\n",
sg_get_unaligned_be32(ucp + 40));
printf(" Total read retry count: %" PRIu32 "\n",
sg_get_unaligned_be32(ucp + 44));
printf(" Load count: %" PRIu32 "\n",
sg_get_unaligned_be32(ucp + 48));
printf(" change partition count: %" PRIu32 "\n",
sg_get_unaligned_be32(ucp + 52));
printf(" partition initialization count: %" PRIu32 "\n",
sg_get_unaligned_be32(ucp + 56));
break;
default:
pr2serr("%s: unknown attribute id: 0x%x\n", __func__, id);
printf(" In hex:\n");
dStrHex((const char *)alp, len, 0);
break;
}
}
static void
decode_attr_vals(const unsigned char * alp, int len, const struct opts_t * op)
{
int bump, id, alen;
uint64_t ull;
char * cp;
char * c2p;
const struct attr_name_info_t * anip;
char b[160];
if (op->verbose)
printf("Attribute values: [len=%d]\n", len);
else if (op->filter < 0) {
if (0 == op->quiet)
printf("Attribute values:\n");
if (op->do_hex) { /* only expect -HH to get through here */
dStrHex((const char *)alp, len, 0);
return;
}
}
for ( ; len > 4; alp += bump, len -= bump) {
id = sg_get_unaligned_be16(alp + 0);
bump = sg_get_unaligned_be16(alp + 3) + 5;
alen = bump - 5;
if ((op->filter >= 0) && (op->filter != id)) {
if (id < op->filter)
continue;
else
break; /* Assume array is ascending id order */
}
anip = NULL;
cp = attr_id_lookup(id, &anip, sizeof(b), b);
if (op->quiet < 2) {
c2p = strchr(cp, '\t');
if (c2p) {
printf(" %.*s -\n", (int)(c2p - cp), cp);
printf(" %s: ", c2p + 1);
} else
printf(" %s: ", cp);
}
if (op->verbose)
printf("[r%c] ", (0x80 & alp[2]) ? 'o' : 'w');
if (anip) {
if ((RA_FMT_BINARY == anip->format) && (bump <= 13)) {
ull = sg_get_unaligned_be(alen, alp + 5);
if (0 == anip->process)
printf("%" PRIu64 "\n", ull);
else if (1 == anip->process)
printf("0x%" PRIx64 "\n", ull);
else
helper_full_attr(alp, bump, id, anip, op);
if (op->verbose) {
if ((anip->len > 0) && (alen > 0) && (alen != anip->len))
printf(" <<< T10 length (%d) differs from length in "
"response (%d) >>>\n", anip->len, alen);
}
} else if (RA_FMT_BINARY == anip->format) {
if (2 == anip->process)
helper_full_attr(alp, bump, id, anip, op);
else {
printf("\n");
dStrHex((const char *)(alp + 5), alen, 0);
}
} else {
if (2 == anip->process)
helper_full_attr(alp, bump, id, anip, op);
else {
printf("%.*s\n", alen, alp + 5);
if (op->verbose) {
if ((anip->len > 0) && (alen > 0) &&
(alen != anip->len))
printf(" <<< T10 length (%d) differs from length "
"in response (%d) >>>\n", anip->len, alen);
}
}
}
} else {
if (op->verbose > 1)
printf("Attribute id lookup failed, in hex:\n");
else
printf("\n");
dStrHex((const char *)(alp + 5), alen, 0);
}
}
if (op->verbose && (len > 0) && (len <= 4))
pr2serr("warning: iterate of attributes should end a residual of "
"%d\n", len);
}
static void
decode_all_sa_s(const unsigned char * rabp, int len, const struct opts_t * op)
{
if (op->do_hex && (2 != op->do_hex)) {
dStrHex((const char *)rabp, len, ((1 == op->do_hex) ? 1 : -1));
return;
}
switch (op->sa) {
case RA_ATTR_VAL_SA:
decode_attr_vals(rabp + 4, len - 4, op);
break;
case RA_ATTR_LIST_SA:
decode_attr_list(rabp + 4, len - 4, false, op);
break;
case RA_LV_LIST_SA:
if ((0 == op->quiet) || op->verbose)
printf("Logical volume list:\n");
if (len < 4) {
pr2serr(">>> response length unexpectedly short: %d bytes\n",
len);
break;
}
printf(" First logical volume number: %u\n", rabp[2]);
printf(" Number of logical volumes available: %u\n", rabp[3]);
break;
case RA_PART_LIST_SA:
if ((0 == op->quiet) || op->verbose)
printf("Partition number list:\n");
if (len < 4) {
pr2serr(">>> response length unexpectedly short: %d bytes\n",
len);
break;
}
printf(" First partition number: %u\n", rabp[2]);
printf(" Number of partitions available: %u\n", rabp[3]);
break;
case RA_SMC2_SA:
printf("Used by SMC-2, not information, output in hex:\n");
dStrHex((const char *)rabp, len, 0);
break;
case RA_SUP_ATTR_SA:
decode_attr_list(rabp + 4, len - 4, true, op);
break;
default:
printf("Unrecognized service action [0x%x], response in hex:\n",
op->sa);
dStrHex((const char *)rabp, len, 0);
break;
}
}
int
main(int argc, char * argv[])
{
int sg_fd, res, c, len, resid, rlen, in_len;
unsigned int ra_len;
int ret = 0;
const char * device_name = NULL;
const char * fname = NULL;
unsigned char * rabp = NULL;
struct opts_t opts;
struct opts_t * op;
char b[80];
op = &opts;
memset(op, 0, sizeof(opts));
op->filter = -1;
while (1) {
int option_index = 0;
c = getopt_long(argc, argv, "ceE:f:F:hHi:l:m:p:qrRs:vV",
long_options, &option_index);
if (c == -1)
break;
switch (c) {
case 'c':
++op->cache;
break;
case 'e':
++op->enumerate;
break;
case 'E':
op->ea = sg_get_num(optarg);
if ((op->ea < 0) || (op->ea > 65535)) {
pr2serr("bad argument to '--ea=EA', expect 0 to 65535\n");
return SG_LIB_SYNTAX_ERROR;
}
break;
case 'f':
op->filter = sg_get_num(optarg);
if ((op->filter < -3) || (op->filter > 65535)) {
pr2serr("bad argument to '--filter=FL', expect -3 to "
"65535\n");
return SG_LIB_SYNTAX_ERROR;
}
break;
case 'F':
op->fai = sg_get_num(optarg);
if ((op->fai < 0) || (op->fai > 65535)) {
pr2serr("bad argument to '--first=FAI', expect 0 to 65535\n");
return SG_LIB_SYNTAX_ERROR;
}
break;
case 'h':
case '?':
usage();
return 0;
case 'H':
++op->do_hex;
break;
case 'i':
fname = optarg;
break;
case 'l':
op->lvn = sg_get_num(optarg);
if ((op->lvn < 0) || (op->lvn > 255)) {
pr2serr("bad argument to '--lvn=LVN', expect 0 to 255\n");
return SG_LIB_SYNTAX_ERROR;
}
break;
case 'm':
op->maxlen = sg_get_num(optarg);
if ((op->maxlen < 0) || (op->maxlen > MAX_RATTR_BUFF_LEN)) {
pr2serr("argument to '--maxlen' should be %d or "
"less\n", MAX_RATTR_BUFF_LEN);
return SG_LIB_SYNTAX_ERROR;
}
break;
case 'p':
op->pn = sg_get_num(optarg);
if ((op->pn < 0) || (op->pn > 255)) {
pr2serr("bad argument to '--pn=PN', expect 0 to 255\n");
return SG_LIB_SYNTAX_ERROR;
}
break;
case 'q':
++op->quiet;
break;
case 'r':
++op->do_raw;
break;
case 'R':
++op->o_readonly;
break;
case 's':
if (isdigit(*optarg)) {
op->sa = sg_get_num(optarg);
if ((op->sa < 0) || (op->sa > 63)) {
pr2serr("bad argument to '--sa=SA', expect 0 to 63\n");
return SG_LIB_SYNTAX_ERROR;
}
} else {
res = find_sa_acron(optarg);
if (res < 0) {
enum_sa_acrons();
return SG_LIB_SYNTAX_ERROR;
}
op->sa = res;
}
break;
case 'v':
++op->verbose;
break;
case 'V':
pr2serr("version: %s\n", version_str);
return 0;
default:
pr2serr("unrecognised option code 0x%x ??\n", c);
usage();
return SG_LIB_SYNTAX_ERROR;
}
}
if (optind < argc) {
if (NULL == device_name) {
device_name = argv[optind];
++optind;
}
if (optind < argc) {
for (; optind < argc; ++optind)
pr2serr("Unexpected extra argument: %s\n", argv[optind]);
usage();
return SG_LIB_SYNTAX_ERROR;
}
}
if (op->enumerate) {
enum_attributes();
printf("\n");
enum_sa_acrons();
return 0;
}
if (fname && device_name) {
pr2serr("since '--in=FN' given, ignoring DEVICE\n");
device_name = NULL;
}
if (0 == op->maxlen)
op->maxlen = DEF_RATTR_BUFF_LEN;
rabp = (unsigned char *)calloc(1, op->maxlen);
if (NULL == rabp) {
pr2serr("unable to calloc %d bytes\n", op->maxlen);
return SG_LIB_CAT_OTHER;
}
if (NULL == device_name) {
if (fname) {
if (f2hex_arr(fname, op->do_raw, 0, rabp, &in_len, op->maxlen))
return SG_LIB_FILE_ERROR;
if (op->do_raw)
op->do_raw = 0; /* can interfere on decode */
if (in_len < 4) {
pr2serr("--in=%s only decoded %d bytes (needs 4 at least)\n",
fname, in_len);
return SG_LIB_SYNTAX_ERROR;
}
decode_all_sa_s(rabp, in_len, op);
goto clean_up;
}
pr2serr("missing device name!\n");
usage();
return SG_LIB_SYNTAX_ERROR;
}
if (op->do_raw) {
if (sg_set_binary_mode(STDOUT_FILENO) < 0) {
perror("sg_set_binary_mode");
return SG_LIB_FILE_ERROR;
}
}
sg_fd = sg_cmds_open_device(device_name, op->o_readonly, op->verbose);
if (sg_fd < 0) {
pr2serr("open error: %s: %s\n", device_name,
safe_strerror(-sg_fd));
return SG_LIB_FILE_ERROR;
}
res = sg_ll_read_attr(sg_fd, rabp, &resid, op);
ret = res;
if (0 == res) {
rlen = op->maxlen - resid;
if (rlen < 4) {
pr2serr("Response length (%d) too short\n", rlen);
ret = SG_LIB_CAT_MALFORMED;
goto close_then_end;
}
if ((op->sa <= RA_HIGHEST_SA) && (op->sa != RA_SMC2_SA)) {
ra_len = ((RA_LV_LIST_SA == op->sa) ||
(RA_PART_LIST_SA == op->sa)) ?
(unsigned int)sg_get_unaligned_be16(rabp + 0) :
sg_get_unaligned_be32(rabp + 0) + 2;
ra_len += 2;
} else
ra_len = rlen;
if ((int)ra_len > rlen) {
if (op->verbose)
pr2serr("ra_len available is %d, response length is %d\n",
ra_len, rlen);
len = rlen;
} else
len = (int)ra_len;
if (op->do_raw) {
dStrRaw((const char *)rabp, len);
goto close_then_end;
}
decode_all_sa_s(rabp, len, op);
} else if (SG_LIB_CAT_INVALID_OP == res)
pr2serr("Read attribute command not supported\n");
else {
sg_get_category_sense_str(res, sizeof(b), b, op->verbose);
pr2serr("Read attribute command: %s\n", b);
}
close_then_end:
res = sg_cmds_close_device(sg_fd);
if (res < 0) {
pr2serr("close error: %s\n", safe_strerror(-res));
if (0 == ret)
ret = SG_LIB_FILE_ERROR;
}
clean_up:
if (rabp)
free(rabp);
return (ret >= 0) ? ret : SG_LIB_CAT_OTHER;
}