blob: 180873f4051ef59d146bc71fc7f34a18b9b0e2e1 [file] [log] [blame]
// Copyright (c) 2014, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// This translation unit generates microdumps into the console (logcat on
// Android). See crbug.com/410294 for more info and design docs.
#include "client/linux/microdump_writer/microdump_writer.h"
#include <limits>
#include <sys/utsname.h>
#include "client/linux/dump_writer_common/thread_info.h"
#include "client/linux/dump_writer_common/ucontext_reader.h"
#include "client/linux/handler/exception_handler.h"
#include "client/linux/handler/microdump_extra_info.h"
#include "client/linux/log/log.h"
#include "client/linux/minidump_writer/linux_ptrace_dumper.h"
#include "common/linux/file_id.h"
#include "common/linux/linux_libc_support.h"
#include "common/memory_allocator.h"
namespace {
using google_breakpad::auto_wasteful_vector;
using google_breakpad::ExceptionHandler;
using google_breakpad::kDefaultBuildIdSize;
using google_breakpad::LinuxDumper;
using google_breakpad::LinuxPtraceDumper;
using google_breakpad::MappingInfo;
using google_breakpad::MappingList;
using google_breakpad::MicrodumpExtraInfo;
using google_breakpad::RawContextCPU;
using google_breakpad::ThreadInfo;
using google_breakpad::UContextReader;
const size_t kLineBufferSize = 2048;
#if !defined(__LP64__)
// The following are only used by DumpFreeSpace, so need to be compiled
// in conditionally in the same way.
template <typename Dst, typename Src>
Dst saturated_cast(Src src) {
if (src >= std::numeric_limits<Dst>::max())
return std::numeric_limits<Dst>::max();
if (src <= std::numeric_limits<Dst>::min())
return std::numeric_limits<Dst>::min();
return static_cast<Dst>(src);
}
int Log2Floor(uint64_t n) {
// Copied from chromium src/base/bits.h
if (n == 0)
return -1;
int log = 0;
uint64_t value = n;
for (int i = 5; i >= 0; --i) {
int shift = (1 << i);
uint64_t x = value >> shift;
if (x != 0) {
value = x;
log += shift;
}
}
assert(value == 1u);
return log;
}
bool MappingsAreAdjacent(const MappingInfo& a, const MappingInfo& b) {
// Because of load biasing, we can end up with a situation where two
// mappings actually overlap. So we will define adjacency to also include a
// b start address that lies within a's address range (including starting
// immediately after a).
// Because load biasing only ever moves the start address backwards, the end
// address should still increase.
return a.start_addr <= b.start_addr && a.start_addr + a.size >= b.start_addr;
}
bool MappingLessThan(const MappingInfo* a, const MappingInfo* b) {
// Return true if mapping a is before mapping b.
// For the same reason (load biasing) we compare end addresses, which - unlike
// start addresses - will not have been modified.
return a->start_addr + a->size < b->start_addr + b->size;
}
size_t NextOrderedMapping(
const google_breakpad::wasteful_vector<MappingInfo*>& mappings,
size_t curr) {
// Find the mapping that directly follows mappings[curr].
// If no such mapping exists, return |invalid| to indicate this.
const size_t invalid = std::numeric_limits<size_t>::max();
size_t best = invalid;
for (size_t next = 0; next < mappings.size(); ++next) {
if (MappingLessThan(mappings[curr], mappings[next]) &&
(best == invalid || MappingLessThan(mappings[next], mappings[best]))) {
best = next;
}
}
return best;
}
#endif // !__LP64__
class MicrodumpWriter {
public:
MicrodumpWriter(const ExceptionHandler::CrashContext* context,
const MappingList& mappings,
bool skip_dump_if_principal_mapping_not_referenced,
uintptr_t address_within_principal_mapping,
bool sanitize_stack,
const MicrodumpExtraInfo& microdump_extra_info,
LinuxDumper* dumper)
: ucontext_(context ? &context->context : NULL),
#if !defined(__ARM_EABI__) && !defined(__mips__)
float_state_(context ? &context->float_state : NULL),
#endif
dumper_(dumper),
mapping_list_(mappings),
skip_dump_if_principal_mapping_not_referenced_(
skip_dump_if_principal_mapping_not_referenced),
address_within_principal_mapping_(address_within_principal_mapping),
sanitize_stack_(sanitize_stack),
microdump_extra_info_(microdump_extra_info),
log_line_(NULL),
stack_copy_(NULL),
stack_len_(0),
stack_lower_bound_(0),
stack_pointer_(0) {
log_line_ = reinterpret_cast<char*>(Alloc(kLineBufferSize));
if (log_line_)
log_line_[0] = '\0'; // Clear out the log line buffer.
}
~MicrodumpWriter() { dumper_->ThreadsResume(); }
bool Init() {
// In the exceptional case where the system was out of memory and there
// wasn't even room to allocate the line buffer, bail out. There is nothing
// useful we can possibly achieve without the ability to Log. At least let's
// try to not crash.
if (!dumper_->Init() || !log_line_)
return false;
return dumper_->ThreadsSuspend() && dumper_->LateInit();
}
void Dump() {
CaptureResult stack_capture_result = CaptureCrashingThreadStack(-1);
if (stack_capture_result == CAPTURE_UNINTERESTING) {
LogLine("Microdump skipped (uninteresting)");
return;
}
LogLine("-----BEGIN BREAKPAD MICRODUMP-----");
DumpProductInformation();
DumpOSInformation();
DumpProcessType();
DumpCrashReason();
DumpGPUInformation();
#if !defined(__LP64__)
DumpFreeSpace();
#endif
if (stack_capture_result == CAPTURE_OK)
DumpThreadStack();
DumpCPUState();
DumpMappings();
LogLine("-----END BREAKPAD MICRODUMP-----");
}
private:
enum CaptureResult { CAPTURE_OK, CAPTURE_FAILED, CAPTURE_UNINTERESTING };
// Writes one line to the system log.
void LogLine(const char* msg) {
#if defined(__ANDROID__)
logger::writeToCrashLog(msg);
#else
logger::write(msg, my_strlen(msg));
logger::write("\n", 1);
#endif
}
// Stages the given string in the current line buffer.
void LogAppend(const char* str) {
my_strlcat(log_line_, str, kLineBufferSize);
}
// As above (required to take precedence over template specialization below).
void LogAppend(char* str) {
LogAppend(const_cast<const char*>(str));
}
// Stages the hex repr. of the given int type in the current line buffer.
template<typename T>
void LogAppend(T value) {
// Make enough room to hex encode the largest int type + NUL.
static const char HEX[] = {'0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
'A', 'B', 'C', 'D', 'E', 'F'};
char hexstr[sizeof(T) * 2 + 1];
for (int i = sizeof(T) * 2 - 1; i >= 0; --i, value >>= 4)
hexstr[i] = HEX[static_cast<uint8_t>(value) & 0x0F];
hexstr[sizeof(T) * 2] = '\0';
LogAppend(hexstr);
}
// Stages the buffer content hex-encoded in the current line buffer.
void LogAppend(const void* buf, size_t length) {
const uint8_t* ptr = reinterpret_cast<const uint8_t*>(buf);
for (size_t i = 0; i < length; ++i, ++ptr)
LogAppend(*ptr);
}
// Writes out the current line buffer on the system log.
void LogCommitLine() {
LogLine(log_line_);
log_line_[0] = 0;
}
CaptureResult CaptureCrashingThreadStack(int max_stack_len) {
stack_pointer_ = UContextReader::GetStackPointer(ucontext_);
if (!dumper_->GetStackInfo(reinterpret_cast<const void**>(&stack_lower_bound_),
&stack_len_, stack_pointer_)) {
return CAPTURE_FAILED;
}
if (max_stack_len >= 0 &&
stack_len_ > static_cast<size_t>(max_stack_len)) {
stack_len_ = max_stack_len;
}
stack_copy_ = reinterpret_cast<uint8_t*>(Alloc(stack_len_));
dumper_->CopyFromProcess(stack_copy_, dumper_->crash_thread(),
reinterpret_cast<const void*>(stack_lower_bound_),
stack_len_);
if (!skip_dump_if_principal_mapping_not_referenced_) return CAPTURE_OK;
const MappingInfo* principal_mapping =
dumper_->FindMappingNoBias(address_within_principal_mapping_);
if (!principal_mapping) return CAPTURE_UNINTERESTING;
uintptr_t low_addr = principal_mapping->system_mapping_info.start_addr;
uintptr_t high_addr = principal_mapping->system_mapping_info.end_addr;
uintptr_t pc = UContextReader::GetInstructionPointer(ucontext_);
if (low_addr <= pc && pc <= high_addr) return CAPTURE_OK;
if (dumper_->StackHasPointerToMapping(stack_copy_, stack_len_,
stack_pointer_ - stack_lower_bound_,
*principal_mapping)) {
return CAPTURE_OK;
}
return CAPTURE_UNINTERESTING;
}
void DumpProductInformation() {
LogAppend("V ");
if (microdump_extra_info_.product_info) {
LogAppend(microdump_extra_info_.product_info);
} else {
LogAppend("UNKNOWN:0.0.0.0");
}
LogCommitLine();
}
void DumpProcessType() {
LogAppend("P ");
if (microdump_extra_info_.process_type) {
LogAppend(microdump_extra_info_.process_type);
} else {
LogAppend("UNKNOWN");
}
LogCommitLine();
}
void DumpCrashReason() {
LogAppend("R ");
LogAppend(dumper_->crash_signal());
LogAppend(" ");
LogAppend(dumper_->GetCrashSignalString());
LogAppend(" ");
LogAppend(dumper_->crash_address());
LogCommitLine();
}
void DumpOSInformation() {
const uint8_t n_cpus = static_cast<uint8_t>(sysconf(_SC_NPROCESSORS_CONF));
#if defined(__ANDROID__)
const char kOSId[] = "A";
#else
const char kOSId[] = "L";
#endif
// Dump the runtime architecture. On multiarch devices it might not match the
// hw architecture (the one returned by uname()), for instance in the case of
// a 32-bit app running on a aarch64 device.
#if defined(__aarch64__)
const char kArch[] = "arm64";
#elif defined(__ARMEL__)
const char kArch[] = "arm";
#elif defined(__x86_64__)
const char kArch[] = "x86_64";
#elif defined(__i386__)
const char kArch[] = "x86";
#elif defined(__mips__)
# if _MIPS_SIM == _ABIO32
const char kArch[] = "mips";
# elif _MIPS_SIM == _ABI64
const char kArch[] = "mips64";
# else
# error "This mips ABI is currently not supported (n32)"
#endif
#else
#error "This code has not been ported to your platform yet"
#endif
LogAppend("O ");
LogAppend(kOSId);
LogAppend(" ");
LogAppend(kArch);
LogAppend(" ");
LogAppend(n_cpus);
LogAppend(" ");
// Dump the HW architecture (e.g., armv7l, aarch64).
struct utsname uts;
const bool has_uts_info = (uname(&uts) == 0);
const char* hwArch = has_uts_info ? uts.machine : "unknown_hw_arch";
LogAppend(hwArch);
LogAppend(" ");
// If the client has attached a build fingerprint to the MinidumpDescriptor
// use that one. Otherwise try to get some basic info from uname().
if (microdump_extra_info_.build_fingerprint) {
LogAppend(microdump_extra_info_.build_fingerprint);
} else if (has_uts_info) {
LogAppend(uts.release);
LogAppend(" ");
LogAppend(uts.version);
} else {
LogAppend("no build fingerprint available");
}
LogCommitLine();
}
void DumpGPUInformation() {
LogAppend("G ");
if (microdump_extra_info_.gpu_fingerprint) {
LogAppend(microdump_extra_info_.gpu_fingerprint);
} else {
LogAppend("UNKNOWN");
}
LogCommitLine();
}
void DumpThreadStack() {
if (sanitize_stack_) {
dumper_->SanitizeStackCopy(stack_copy_, stack_len_, stack_pointer_,
stack_pointer_ - stack_lower_bound_);
}
LogAppend("S 0 ");
LogAppend(stack_pointer_);
LogAppend(" ");
LogAppend(stack_lower_bound_);
LogAppend(" ");
LogAppend(stack_len_);
LogCommitLine();
const size_t STACK_DUMP_CHUNK_SIZE = 384;
for (size_t stack_off = 0; stack_off < stack_len_;
stack_off += STACK_DUMP_CHUNK_SIZE) {
LogAppend("S ");
LogAppend(stack_lower_bound_ + stack_off);
LogAppend(" ");
LogAppend(stack_copy_ + stack_off,
std::min(STACK_DUMP_CHUNK_SIZE, stack_len_ - stack_off));
LogCommitLine();
}
}
void DumpCPUState() {
RawContextCPU cpu;
my_memset(&cpu, 0, sizeof(RawContextCPU));
#if !defined(__ARM_EABI__) && !defined(__mips__)
UContextReader::FillCPUContext(&cpu, ucontext_, float_state_);
#else
UContextReader::FillCPUContext(&cpu, ucontext_);
#endif
LogAppend("C ");
LogAppend(&cpu, sizeof(cpu));
LogCommitLine();
}
// If there is caller-provided information about this mapping
// in the mapping_list_ list, return true. Otherwise, return false.
bool HaveMappingInfo(const MappingInfo& mapping) {
for (MappingList::const_iterator iter = mapping_list_.begin();
iter != mapping_list_.end();
++iter) {
// Ignore any mappings that are wholly contained within
// mappings in the mapping_info_ list.
if (mapping.start_addr >= iter->first.start_addr &&
(mapping.start_addr + mapping.size) <=
(iter->first.start_addr + iter->first.size)) {
return true;
}
}
return false;
}
// Dump information about the provided |mapping|. If |identifier| is non-NULL,
// use it instead of calculating a file ID from the mapping.
void DumpModule(const MappingInfo& mapping,
bool member,
unsigned int mapping_id,
const uint8_t* identifier) {
auto_wasteful_vector<uint8_t, kDefaultBuildIdSize> identifier_bytes(
dumper_->allocator());
if (identifier) {
// GUID was provided by caller.
identifier_bytes.insert(identifier_bytes.end(),
identifier,
identifier + sizeof(MDGUID));
} else {
dumper_->ElfFileIdentifierForMapping(
mapping,
member,
mapping_id,
identifier_bytes);
}
// Copy as many bytes of |identifier| as will fit into a MDGUID
MDGUID module_identifier = {0};
memcpy(&module_identifier, &identifier_bytes[0],
std::min(sizeof(MDGUID), identifier_bytes.size()));
char file_name[NAME_MAX];
char file_path[NAME_MAX];
dumper_->GetMappingEffectiveNameAndPath(
mapping, file_path, sizeof(file_path), file_name, sizeof(file_name));
LogAppend("M ");
LogAppend(static_cast<uintptr_t>(mapping.start_addr));
LogAppend(" ");
LogAppend(mapping.offset);
LogAppend(" ");
LogAppend(mapping.size);
LogAppend(" ");
LogAppend(module_identifier.data1);
LogAppend(module_identifier.data2);
LogAppend(module_identifier.data3);
LogAppend(module_identifier.data4[0]);
LogAppend(module_identifier.data4[1]);
LogAppend(module_identifier.data4[2]);
LogAppend(module_identifier.data4[3]);
LogAppend(module_identifier.data4[4]);
LogAppend(module_identifier.data4[5]);
LogAppend(module_identifier.data4[6]);
LogAppend(module_identifier.data4[7]);
LogAppend("0 "); // Age is always 0 on Linux.
LogAppend(file_name);
LogCommitLine();
}
#if !defined(__LP64__)
void DumpFreeSpace() {
const MappingInfo* stack_mapping = nullptr;
ThreadInfo info;
if (dumper_->GetThreadInfoByIndex(dumper_->GetMainThreadIndex(), &info)) {
stack_mapping = dumper_->FindMappingNoBias(info.stack_pointer);
}
const google_breakpad::wasteful_vector<MappingInfo*>& mappings =
dumper_->mappings();
if (mappings.size() == 0) return;
// This is complicated by the fact that mappings is not in order. It should
// be mostly in order, however the mapping that contains the entry point for
// the process is always at the front of the vector.
static const int HBITS = sizeof(size_t) * 8;
size_t hole_histogram[HBITS];
my_memset(hole_histogram, 0, sizeof(hole_histogram));
// Find the lowest address mapping.
size_t curr = 0;
for (size_t i = 1; i < mappings.size(); ++i) {
if (mappings[i]->start_addr < mappings[curr]->start_addr) curr = i;
}
uintptr_t lo_addr = mappings[curr]->start_addr;
size_t hole_cnt = 0;
size_t hole_max = 0;
size_t hole_sum = 0;
while (true) {
// Skip to the end of an adjacent run of mappings. This is an optimization
// for the fact that mappings is mostly sorted.
while (curr != mappings.size() - 1 &&
MappingsAreAdjacent(*mappings[curr], *mappings[curr + 1])) {
++curr;
}
if (mappings[curr] == stack_mapping) {
// Because we can't determine the top of userspace mappable
// memory we treat the start of the process stack as the top
// of the allocatable address space. Once we reach
// |stack_mapping| we are done scanning for free space regions.
break;
}
size_t next = NextOrderedMapping(mappings, curr);
if (next == std::numeric_limits<size_t>::max())
break;
uintptr_t hole_lo = mappings[curr]->start_addr + mappings[curr]->size;
uintptr_t hole_hi = mappings[next]->start_addr;
if (hole_hi > hole_lo) {
size_t hole_sz = hole_hi - hole_lo;
hole_sum += hole_sz;
hole_max = std::max(hole_sz, hole_max);
++hole_cnt;
++hole_histogram[Log2Floor(hole_sz)];
}
curr = next;
}
uintptr_t hi_addr = mappings[curr]->start_addr + mappings[curr]->size;
LogAppend("H ");
LogAppend(lo_addr);
LogAppend(" ");
LogAppend(hi_addr);
LogAppend(" ");
LogAppend(saturated_cast<uint16_t>(hole_cnt));
LogAppend(" ");
LogAppend(hole_max);
LogAppend(" ");
LogAppend(hole_sum);
for (unsigned int i = 0; i < HBITS; ++i) {
if (!hole_histogram[i]) continue;
LogAppend(" ");
LogAppend(saturated_cast<uint8_t>(i));
LogAppend(":");
LogAppend(saturated_cast<uint8_t>(hole_histogram[i]));
}
LogCommitLine();
}
#endif
// Write information about the mappings in effect.
void DumpMappings() {
// First write all the mappings from the dumper
for (unsigned i = 0; i < dumper_->mappings().size(); ++i) {
const MappingInfo& mapping = *dumper_->mappings()[i];
if (mapping.name[0] == 0 || // only want modules with filenames.
!mapping.exec || // only want executable mappings.
mapping.size < 4096 || // too small to get a signature for.
HaveMappingInfo(mapping)) {
continue;
}
DumpModule(mapping, true, i, NULL);
}
// Next write all the mappings provided by the caller
for (MappingList::const_iterator iter = mapping_list_.begin();
iter != mapping_list_.end();
++iter) {
DumpModule(iter->first, false, 0, iter->second);
}
}
void* Alloc(unsigned bytes) { return dumper_->allocator()->Alloc(bytes); }
const ucontext_t* const ucontext_;
#if !defined(__ARM_EABI__) && !defined(__mips__)
const google_breakpad::fpstate_t* const float_state_;
#endif
LinuxDumper* dumper_;
const MappingList& mapping_list_;
bool skip_dump_if_principal_mapping_not_referenced_;
uintptr_t address_within_principal_mapping_;
bool sanitize_stack_;
const MicrodumpExtraInfo microdump_extra_info_;
char* log_line_;
// The local copy of crashed process stack memory, beginning at
// |stack_lower_bound_|.
uint8_t* stack_copy_;
// The length of crashed process stack copy.
size_t stack_len_;
// The address of the page containing the stack pointer in the
// crashed process. |stack_lower_bound_| <= |stack_pointer_|
uintptr_t stack_lower_bound_;
// The stack pointer of the crashed thread.
uintptr_t stack_pointer_;
};
} // namespace
namespace google_breakpad {
bool WriteMicrodump(pid_t crashing_process,
const void* blob,
size_t blob_size,
const MappingList& mappings,
bool skip_dump_if_principal_mapping_not_referenced,
uintptr_t address_within_principal_mapping,
bool sanitize_stack,
const MicrodumpExtraInfo& microdump_extra_info) {
LinuxPtraceDumper dumper(crashing_process);
const ExceptionHandler::CrashContext* context = NULL;
if (blob) {
if (blob_size != sizeof(ExceptionHandler::CrashContext))
return false;
context = reinterpret_cast<const ExceptionHandler::CrashContext*>(blob);
dumper.set_crash_address(
reinterpret_cast<uintptr_t>(context->siginfo.si_addr));
dumper.set_crash_signal(context->siginfo.si_signo);
dumper.set_crash_thread(context->tid);
}
MicrodumpWriter writer(context, mappings,
skip_dump_if_principal_mapping_not_referenced,
address_within_principal_mapping, sanitize_stack,
microdump_extra_info, &dumper);
if (!writer.Init())
return false;
writer.Dump();
return true;
}
} // namespace google_breakpad