blob: 5df6d8f04c7885d91a6e7af8dc338178f07c18fd [file] [log] [blame]
// Copyright (c) 2010, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Original author: Jim Blandy <jimb@mozilla.com> <jimb@red-bean.com>
// dwarf2reader_cfi_unittest.cc: Unit tests for dwarf2reader::CallFrameInfo
#include <stdint.h>
#include <stdlib.h>
#include <string>
#include <vector>
// The '.eh_frame' format, used by the Linux C++ ABI for exception
// handling, is poorly specified. To help test our support for .eh_frame,
// if you #define WRITE_ELF while compiling this file, and add the
// 'include' directory from the binutils, gcc, or gdb source tree to the
// #include path, then each test that calls the
// PERHAPS_WRITE_DEBUG_FRAME_FILE or PERHAPS_WRITE_EH_FRAME_FILE will write
// an ELF file containing a .debug_frame or .eh_frame section; you can then
// use tools like readelf to examine the test data, and check the tools'
// interpretation against the test's intentions. Each ELF file is named
// "cfitest-TEST", where TEST identifies the particular test.
#ifdef WRITE_ELF
#include <errno.h>
#include <stdio.h>
#include <string.h>
extern "C" {
// To compile with WRITE_ELF, you should add the 'include' directory
// of the binutils, gcc, or gdb source tree to your #include path;
// that directory contains this header.
#include "elf/common.h"
}
#endif
#include "breakpad_googletest_includes.h"
#include "common/dwarf/bytereader-inl.h"
#include "common/dwarf/cfi_assembler.h"
#include "common/dwarf/dwarf2reader.h"
#include "common/using_std_string.h"
#include "google_breakpad/common/breakpad_types.h"
using google_breakpad::CFISection;
using google_breakpad::test_assembler::Label;
using google_breakpad::test_assembler::kBigEndian;
using google_breakpad::test_assembler::kLittleEndian;
using google_breakpad::test_assembler::Section;
using dwarf2reader::DwarfPointerEncoding;
using dwarf2reader::ENDIANNESS_BIG;
using dwarf2reader::ENDIANNESS_LITTLE;
using dwarf2reader::ByteReader;
using dwarf2reader::CallFrameInfo;
using std::vector;
using testing::InSequence;
using testing::Return;
using testing::Sequence;
using testing::Test;
using testing::_;
#ifdef WRITE_ELF
void WriteELFFrameSection(const char *filename, const char *section_name,
const CFISection &section);
#define PERHAPS_WRITE_DEBUG_FRAME_FILE(name, section) \
WriteELFFrameSection("cfitest-" name, ".debug_frame", section);
#define PERHAPS_WRITE_EH_FRAME_FILE(name, section) \
WriteELFFrameSection("cfitest-" name, ".eh_frame", section);
#else
#define PERHAPS_WRITE_DEBUG_FRAME_FILE(name, section)
#define PERHAPS_WRITE_EH_FRAME_FILE(name, section)
#endif
class MockCallFrameInfoHandler: public CallFrameInfo::Handler {
public:
MOCK_METHOD6(Entry, bool(size_t offset, uint64_t address, uint64_t length,
uint8_t version, const string &augmentation,
unsigned return_address));
MOCK_METHOD2(UndefinedRule, bool(uint64_t address, int reg));
MOCK_METHOD2(SameValueRule, bool(uint64_t address, int reg));
MOCK_METHOD4(OffsetRule, bool(uint64_t address, int reg, int base_register,
long offset));
MOCK_METHOD4(ValOffsetRule, bool(uint64_t address, int reg, int base_register,
long offset));
MOCK_METHOD3(RegisterRule, bool(uint64_t address, int reg, int base_register));
MOCK_METHOD3(ExpressionRule, bool(uint64_t address, int reg,
const string &expression));
MOCK_METHOD3(ValExpressionRule, bool(uint64_t address, int reg,
const string &expression));
MOCK_METHOD0(End, bool());
MOCK_METHOD2(PersonalityRoutine, bool(uint64_t address, bool indirect));
MOCK_METHOD2(LanguageSpecificDataArea, bool(uint64_t address, bool indirect));
MOCK_METHOD0(SignalHandler, bool());
};
class MockCallFrameErrorReporter: public CallFrameInfo::Reporter {
public:
MockCallFrameErrorReporter() : Reporter("mock filename", "mock section") { }
MOCK_METHOD2(Incomplete, void(uint64, CallFrameInfo::EntryKind));
MOCK_METHOD1(EarlyEHTerminator, void(uint64));
MOCK_METHOD2(CIEPointerOutOfRange, void(uint64, uint64));
MOCK_METHOD2(BadCIEId, void(uint64, uint64));
MOCK_METHOD2(UnexpectedAddressSize, void(uint64, uint8_t));
MOCK_METHOD2(UnexpectedSegmentSize, void(uint64, uint8_t));
MOCK_METHOD2(UnrecognizedVersion, void(uint64, int version));
MOCK_METHOD2(UnrecognizedAugmentation, void(uint64, const string &));
MOCK_METHOD2(InvalidPointerEncoding, void(uint64, uint8));
MOCK_METHOD2(UnusablePointerEncoding, void(uint64, uint8));
MOCK_METHOD2(RestoreInCIE, void(uint64, uint64));
MOCK_METHOD3(BadInstruction, void(uint64, CallFrameInfo::EntryKind, uint64));
MOCK_METHOD3(NoCFARule, void(uint64, CallFrameInfo::EntryKind, uint64));
MOCK_METHOD3(EmptyStateStack, void(uint64, CallFrameInfo::EntryKind, uint64));
};
struct CFIFixture {
enum { kCFARegister = CallFrameInfo::Handler::kCFARegister };
CFIFixture() {
// Default expectations for the data handler.
//
// - Leave Entry and End without expectations, as it's probably a
// good idea to set those explicitly in each test.
//
// - Expect the *Rule functions to not be called,
// so that each test can simply list the calls they expect.
//
// I gather I could use StrictMock for this, but the manual seems
// to suggest using that only as a last resort, and this isn't so
// bad.
EXPECT_CALL(handler, UndefinedRule(_, _)).Times(0);
EXPECT_CALL(handler, SameValueRule(_, _)).Times(0);
EXPECT_CALL(handler, OffsetRule(_, _, _, _)).Times(0);
EXPECT_CALL(handler, ValOffsetRule(_, _, _, _)).Times(0);
EXPECT_CALL(handler, RegisterRule(_, _, _)).Times(0);
EXPECT_CALL(handler, ExpressionRule(_, _, _)).Times(0);
EXPECT_CALL(handler, ValExpressionRule(_, _, _)).Times(0);
EXPECT_CALL(handler, PersonalityRoutine(_, _)).Times(0);
EXPECT_CALL(handler, LanguageSpecificDataArea(_, _)).Times(0);
EXPECT_CALL(handler, SignalHandler()).Times(0);
// Default expectations for the error/warning reporer.
EXPECT_CALL(reporter, Incomplete(_, _)).Times(0);
EXPECT_CALL(reporter, EarlyEHTerminator(_)).Times(0);
EXPECT_CALL(reporter, CIEPointerOutOfRange(_, _)).Times(0);
EXPECT_CALL(reporter, BadCIEId(_, _)).Times(0);
EXPECT_CALL(reporter, UnrecognizedVersion(_, _)).Times(0);
EXPECT_CALL(reporter, UnrecognizedAugmentation(_, _)).Times(0);
EXPECT_CALL(reporter, InvalidPointerEncoding(_, _)).Times(0);
EXPECT_CALL(reporter, UnusablePointerEncoding(_, _)).Times(0);
EXPECT_CALL(reporter, RestoreInCIE(_, _)).Times(0);
EXPECT_CALL(reporter, BadInstruction(_, _, _)).Times(0);
EXPECT_CALL(reporter, NoCFARule(_, _, _)).Times(0);
EXPECT_CALL(reporter, EmptyStateStack(_, _, _)).Times(0);
}
MockCallFrameInfoHandler handler;
MockCallFrameErrorReporter reporter;
};
class CFI: public CFIFixture, public Test { };
TEST_F(CFI, EmptyRegion) {
EXPECT_CALL(handler, Entry(_, _, _, _, _, _)).Times(0);
EXPECT_CALL(handler, End()).Times(0);
static const uint8_t data[] = { 42 };
ByteReader byte_reader(ENDIANNESS_BIG);
CallFrameInfo parser(data, 0, &byte_reader, &handler, &reporter);
EXPECT_TRUE(parser.Start());
}
TEST_F(CFI, IncompleteLength32) {
CFISection section(kBigEndian, 8);
section
// Not even long enough for an initial length.
.D16(0xa0f)
// Padding to keep valgrind happy. We subtract these off when we
// construct the parser.
.D16(0);
EXPECT_CALL(handler, Entry(_, _, _, _, _, _)).Times(0);
EXPECT_CALL(handler, End()).Times(0);
EXPECT_CALL(reporter, Incomplete(_, CallFrameInfo::kUnknown))
.WillOnce(Return());
string contents;
ASSERT_TRUE(section.GetContents(&contents));
ByteReader byte_reader(ENDIANNESS_BIG);
byte_reader.SetAddressSize(8);
CallFrameInfo parser(reinterpret_cast<const uint8_t *>(contents.data()),
contents.size() - 2,
&byte_reader, &handler, &reporter);
EXPECT_FALSE(parser.Start());
}
TEST_F(CFI, IncompleteLength64) {
CFISection section(kLittleEndian, 4);
section
// An incomplete 64-bit DWARF initial length.
.D32(0xffffffff).D32(0x71fbaec2)
// Padding to keep valgrind happy. We subtract these off when we
// construct the parser.
.D32(0);
EXPECT_CALL(handler, Entry(_, _, _, _, _, _)).Times(0);
EXPECT_CALL(handler, End()).Times(0);
EXPECT_CALL(reporter, Incomplete(_, CallFrameInfo::kUnknown))
.WillOnce(Return());
string contents;
ASSERT_TRUE(section.GetContents(&contents));
ByteReader byte_reader(ENDIANNESS_LITTLE);
byte_reader.SetAddressSize(4);
CallFrameInfo parser(reinterpret_cast<const uint8_t *>(contents.data()),
contents.size() - 4,
&byte_reader, &handler, &reporter);
EXPECT_FALSE(parser.Start());
}
TEST_F(CFI, IncompleteId32) {
CFISection section(kBigEndian, 8);
section
.D32(3) // Initial length, not long enough for id
.D8(0xd7).D8(0xe5).D8(0xf1) // incomplete id
.CIEHeader(8727, 3983, 8889, 3, "")
.FinishEntry();
EXPECT_CALL(handler, Entry(_, _, _, _, _, _)).Times(0);
EXPECT_CALL(handler, End()).Times(0);
EXPECT_CALL(reporter, Incomplete(_, CallFrameInfo::kUnknown))
.WillOnce(Return());
string contents;
ASSERT_TRUE(section.GetContents(&contents));
ByteReader byte_reader(ENDIANNESS_BIG);
byte_reader.SetAddressSize(8);
CallFrameInfo parser(reinterpret_cast<const uint8_t *>(contents.data()),
contents.size(),
&byte_reader, &handler, &reporter);
EXPECT_FALSE(parser.Start());
}
TEST_F(CFI, BadId32) {
CFISection section(kBigEndian, 8);
section
.D32(0x100) // Initial length
.D32(0xe802fade) // bogus ID
.Append(0x100 - 4, 0x42); // make the length true
section
.CIEHeader(1672, 9872, 8529, 3, "")
.FinishEntry();
EXPECT_CALL(handler, Entry(_, _, _, _, _, _)).Times(0);
EXPECT_CALL(handler, End()).Times(0);
EXPECT_CALL(reporter, CIEPointerOutOfRange(_, 0xe802fade))
.WillOnce(Return());
string contents;
ASSERT_TRUE(section.GetContents(&contents));
ByteReader byte_reader(ENDIANNESS_BIG);
byte_reader.SetAddressSize(8);
CallFrameInfo parser(reinterpret_cast<const uint8_t *>(contents.data()),
contents.size(),
&byte_reader, &handler, &reporter);
EXPECT_FALSE(parser.Start());
}
// A lone CIE shouldn't cause any handler calls.
TEST_F(CFI, SingleCIE) {
CFISection section(kLittleEndian, 4);
section.CIEHeader(0xffe799a8, 0x3398dcdd, 0x6e9683de, 3, "");
section.Append(10, dwarf2reader::DW_CFA_nop);
section.FinishEntry();
PERHAPS_WRITE_DEBUG_FRAME_FILE("SingleCIE", section);
EXPECT_CALL(handler, Entry(_, _, _, _, _, _)).Times(0);
EXPECT_CALL(handler, End()).Times(0);
string contents;
EXPECT_TRUE(section.GetContents(&contents));
ByteReader byte_reader(ENDIANNESS_LITTLE);
byte_reader.SetAddressSize(4);
CallFrameInfo parser(reinterpret_cast<const uint8_t *>(contents.data()),
contents.size(),
&byte_reader, &handler, &reporter);
EXPECT_TRUE(parser.Start());
}
// One FDE, one CIE.
TEST_F(CFI, OneFDE) {
CFISection section(kBigEndian, 4);
Label cie;
section
.Mark(&cie)
.CIEHeader(0x4be22f75, 0x2492236e, 0x6b6efb87, 3, "")
.FinishEntry()
.FDEHeader(cie, 0x7714740d, 0x3d5a10cd)
.FinishEntry();
PERHAPS_WRITE_DEBUG_FRAME_FILE("OneFDE", section);
{
InSequence s;
EXPECT_CALL(handler,
Entry(_, 0x7714740d, 0x3d5a10cd, 3, "", 0x6b6efb87))
.WillOnce(Return(true));
EXPECT_CALL(handler, End()).WillOnce(Return(true));
}
string contents;
EXPECT_TRUE(section.GetContents(&contents));
ByteReader byte_reader(ENDIANNESS_BIG);
byte_reader.SetAddressSize(4);
CallFrameInfo parser(reinterpret_cast<const uint8_t *>(contents.data()),
contents.size(),
&byte_reader, &handler, &reporter);
EXPECT_TRUE(parser.Start());
}
// Two FDEs share a CIE.
TEST_F(CFI, TwoFDEsOneCIE) {
CFISection section(kBigEndian, 4);
Label cie;
section
// First FDE. readelf complains about this one because it makes
// a forward reference to its CIE.
.FDEHeader(cie, 0xa42744df, 0xa3b42121)
.FinishEntry()
// CIE.
.Mark(&cie)
.CIEHeader(0x04f7dc7b, 0x3d00c05f, 0xbd43cb59, 3, "")
.FinishEntry()
// Second FDE.
.FDEHeader(cie, 0x6057d391, 0x700f608d)
.FinishEntry();
PERHAPS_WRITE_DEBUG_FRAME_FILE("TwoFDEsOneCIE", section);
{
InSequence s;
EXPECT_CALL(handler,
Entry(_, 0xa42744df, 0xa3b42121, 3, "", 0xbd43cb59))
.WillOnce(Return(true));
EXPECT_CALL(handler, End()).WillOnce(Return(true));
}
{
InSequence s;
EXPECT_CALL(handler,
Entry(_, 0x6057d391, 0x700f608d, 3, "", 0xbd43cb59))
.WillOnce(Return(true));
EXPECT_CALL(handler, End()).WillOnce(Return(true));
}
string contents;
EXPECT_TRUE(section.GetContents(&contents));
ByteReader byte_reader(ENDIANNESS_BIG);
byte_reader.SetAddressSize(4);
CallFrameInfo parser(reinterpret_cast<const uint8_t *>(contents.data()),
contents.size(),
&byte_reader, &handler, &reporter);
EXPECT_TRUE(parser.Start());
}
// Two FDEs, two CIEs.
TEST_F(CFI, TwoFDEsTwoCIEs) {
CFISection section(kLittleEndian, 8);
Label cie1, cie2;
section
// First CIE.
.Mark(&cie1)
.CIEHeader(0x694d5d45, 0x4233221b, 0xbf45e65a, 3, "")
.FinishEntry()
// First FDE which cites second CIE. readelf complains about
// this one because it makes a forward reference to its CIE.
.FDEHeader(cie2, 0x778b27dfe5871f05ULL, 0x324ace3448070926ULL)
.FinishEntry()
// Second FDE, which cites first CIE.
.FDEHeader(cie1, 0xf6054ca18b10bf5fULL, 0x45fdb970d8bca342ULL)
.FinishEntry()
// Second CIE.
.Mark(&cie2)
.CIEHeader(0xfba3fad7, 0x6287e1fd, 0x61d2c581, 2, "")
.FinishEntry();
PERHAPS_WRITE_DEBUG_FRAME_FILE("TwoFDEsTwoCIEs", section);
{
InSequence s;
EXPECT_CALL(handler,
Entry(_, 0x778b27dfe5871f05ULL, 0x324ace3448070926ULL, 2,
"", 0x61d2c581))
.WillOnce(Return(true));
EXPECT_CALL(handler, End()).WillOnce(Return(true));
}
{
InSequence s;
EXPECT_CALL(handler,
Entry(_, 0xf6054ca18b10bf5fULL, 0x45fdb970d8bca342ULL, 3,
"", 0xbf45e65a))
.WillOnce(Return(true));
EXPECT_CALL(handler, End()).WillOnce(Return(true));
}
string contents;
EXPECT_TRUE(section.GetContents(&contents));
ByteReader byte_reader(ENDIANNESS_LITTLE);
byte_reader.SetAddressSize(8);
CallFrameInfo parser(reinterpret_cast<const uint8_t *>(contents.data()),
contents.size(),
&byte_reader, &handler, &reporter);
EXPECT_TRUE(parser.Start());
}
// An FDE whose CIE specifies a version we don't recognize.
TEST_F(CFI, BadVersion) {
CFISection section(kBigEndian, 4);
Label cie1, cie2;
section
.Mark(&cie1)
.CIEHeader(0xca878cf0, 0x7698ec04, 0x7b616f54, 0x52, "")
.FinishEntry()
// We should skip this entry, as its CIE specifies a version we
// don't recognize.
.FDEHeader(cie1, 0x08852292, 0x2204004a)
.FinishEntry()
// Despite the above, we should visit this entry.
.Mark(&cie2)
.CIEHeader(0x7c3ae7c9, 0xb9b9a512, 0x96cb3264, 3, "")
.FinishEntry()
.FDEHeader(cie2, 0x2094735a, 0x6e875501)
.FinishEntry();
PERHAPS_WRITE_DEBUG_FRAME_FILE("BadVersion", section);
EXPECT_CALL(reporter, UnrecognizedVersion(_, 0x52))
.WillOnce(Return());
{
InSequence s;
// We should see no mention of the first FDE, but we should get
// a call to Entry for the second.
EXPECT_CALL(handler, Entry(_, 0x2094735a, 0x6e875501, 3, "",
0x96cb3264))
.WillOnce(Return(true));
EXPECT_CALL(handler, End())
.WillOnce(Return(true));
}
string contents;
EXPECT_TRUE(section.GetContents(&contents));
ByteReader byte_reader(ENDIANNESS_BIG);
byte_reader.SetAddressSize(4);
CallFrameInfo parser(reinterpret_cast<const uint8_t *>(contents.data()),
contents.size(),
&byte_reader, &handler, &reporter);
EXPECT_FALSE(parser.Start());
}
// An FDE whose CIE specifies an augmentation we don't recognize.
TEST_F(CFI, BadAugmentation) {
CFISection section(kBigEndian, 4);
Label cie1, cie2;
section
.Mark(&cie1)
.CIEHeader(0x4be22f75, 0x2492236e, 0x6b6efb87, 3, "spaniels!")
.FinishEntry()
// We should skip this entry, as its CIE specifies an
// augmentation we don't recognize.
.FDEHeader(cie1, 0x7714740d, 0x3d5a10cd)
.FinishEntry()
// Despite the above, we should visit this entry.
.Mark(&cie2)
.CIEHeader(0xf8bc4399, 0x8cf09931, 0xf2f519b2, 3, "")
.FinishEntry()
.FDEHeader(cie2, 0x7bf0fda0, 0xcbcd28d8)
.FinishEntry();
PERHAPS_WRITE_DEBUG_FRAME_FILE("BadAugmentation", section);
EXPECT_CALL(reporter, UnrecognizedAugmentation(_, "spaniels!"))
.WillOnce(Return());
{
InSequence s;
// We should see no mention of the first FDE, but we should get
// a call to Entry for the second.
EXPECT_CALL(handler, Entry(_, 0x7bf0fda0, 0xcbcd28d8, 3, "",
0xf2f519b2))
.WillOnce(Return(true));
EXPECT_CALL(handler, End())
.WillOnce(Return(true));
}
string contents;
EXPECT_TRUE(section.GetContents(&contents));
ByteReader byte_reader(ENDIANNESS_BIG);
byte_reader.SetAddressSize(4);
CallFrameInfo parser(reinterpret_cast<const uint8_t *>(contents.data()),
contents.size(),
&byte_reader, &handler, &reporter);
EXPECT_FALSE(parser.Start());
}
// The return address column field is a byte in CFI version 1
// (DWARF2), but a ULEB128 value in version 3 (DWARF3).
TEST_F(CFI, CIEVersion1ReturnColumn) {
CFISection section(kBigEndian, 4);
Label cie;
section
// CIE, using the version 1 format: return column is a ubyte.
.Mark(&cie)
// Use a value for the return column that is parsed differently
// as a ubyte and as a ULEB128.
.CIEHeader(0xbcdea24f, 0x5be28286, 0x9f, 1, "")
.FinishEntry()
// FDE, citing that CIE.
.FDEHeader(cie, 0xb8d347b5, 0x825e55dc)
.FinishEntry();
PERHAPS_WRITE_DEBUG_FRAME_FILE("CIEVersion1ReturnColumn", section);
{
InSequence s;
EXPECT_CALL(handler, Entry(_, 0xb8d347b5, 0x825e55dc, 1, "", 0x9f))
.WillOnce(Return(true));
EXPECT_CALL(handler, End()).WillOnce(Return(true));
}
string contents;
EXPECT_TRUE(section.GetContents(&contents));
ByteReader byte_reader(ENDIANNESS_BIG);
byte_reader.SetAddressSize(4);
CallFrameInfo parser(reinterpret_cast<const uint8_t *>(contents.data()),
contents.size(),
&byte_reader, &handler, &reporter);
EXPECT_TRUE(parser.Start());
}
// The return address column field is a byte in CFI version 1
// (DWARF2), but a ULEB128 value in version 3 (DWARF3).
TEST_F(CFI, CIEVersion3ReturnColumn) {
CFISection section(kBigEndian, 4);
Label cie;
section
// CIE, using the version 3 format: return column is a ULEB128.
.Mark(&cie)
// Use a value for the return column that is parsed differently
// as a ubyte and as a ULEB128.
.CIEHeader(0x0ab4758d, 0xc010fdf7, 0x89, 3, "")
.FinishEntry()
// FDE, citing that CIE.
.FDEHeader(cie, 0x86763f2b, 0x2a66dc23)
.FinishEntry();
PERHAPS_WRITE_DEBUG_FRAME_FILE("CIEVersion3ReturnColumn", section);
{
InSequence s;
EXPECT_CALL(handler, Entry(_, 0x86763f2b, 0x2a66dc23, 3, "", 0x89))
.WillOnce(Return(true));
EXPECT_CALL(handler, End()).WillOnce(Return(true));
}
string contents;
EXPECT_TRUE(section.GetContents(&contents));
ByteReader byte_reader(ENDIANNESS_BIG);
byte_reader.SetAddressSize(4);
CallFrameInfo parser(reinterpret_cast<const uint8_t *>(contents.data()),
contents.size(),
&byte_reader, &handler, &reporter);
EXPECT_TRUE(parser.Start());
}
TEST_F(CFI, CIEVersion4AdditionalFields) {
CFISection section(kBigEndian, 8);
Label cie;
section
.Mark(&cie)
// CIE version 4 with expected address (64bit) and segment size.
.CIEHeader(0x0ab4758d, 0xc010fdf7, 0x89, 4, "", true, 8, 0)
.FinishEntry()
// FDE, citing that CIE.
.FDEHeader(cie, 0x86763f2b, 0x2a66dc23)
.FinishEntry();
PERHAPS_WRITE_DEBUG_FRAME_FILE("CIEVersion3ReturnColumn", section);
{
InSequence s;
EXPECT_CALL(handler, Entry(_, 0x86763f2b, 0x2a66dc23, 4, "", 0x89))
.WillOnce(Return(true));
EXPECT_CALL(handler, End()).WillOnce(Return(true));
}
string contents;
EXPECT_TRUE(section.GetContents(&contents));
ByteReader byte_reader(ENDIANNESS_BIG);
CallFrameInfo parser(reinterpret_cast<const uint8_t *>(contents.data()),
contents.size(),
&byte_reader, &handler, &reporter);
EXPECT_TRUE(parser.Start());
}
TEST_F(CFI, CIEVersion4AdditionalFields32BitAddress) {
CFISection section(kBigEndian, 4);
Label cie;
section
.Mark(&cie)
// CIE version 4 with expected address (32bit) and segment size.
.CIEHeader(0x0ab4758d, 0xc010fdf7, 0x89, 4, "", true, 4, 0)
.FinishEntry()
// FDE, citing that CIE.
.FDEHeader(cie, 0x86763f2b, 0x2a66dc23)
.FinishEntry();
PERHAPS_WRITE_DEBUG_FRAME_FILE("CIEVersion3ReturnColumn", section);
{
InSequence s;
EXPECT_CALL(handler, Entry(_, 0x86763f2b, 0x2a66dc23, 4, "", 0x89))
.WillOnce(Return(true));
EXPECT_CALL(handler, End()).WillOnce(Return(true));
}
string contents;
EXPECT_TRUE(section.GetContents(&contents));
ByteReader byte_reader(ENDIANNESS_BIG);
CallFrameInfo parser(reinterpret_cast<const uint8_t *>(contents.data()),
contents.size(),
&byte_reader, &handler, &reporter);
EXPECT_TRUE(parser.Start());
}
TEST_F(CFI, CIEVersion4AdditionalFieldsUnexpectedAddressSize) {
CFISection section(kBigEndian, 4);
Label cie;
section
.Mark(&cie)
// Unexpected address size.
.CIEHeader(0x4be22f75, 0x2492236e, 0x6b6efb87, 4, "", true, 3, 0)
.FinishEntry()
// FDE, citing that CIE.
.FDEHeader(cie, 0x86763f2b, 0x2a66dc23)
.FinishEntry();
PERHAPS_WRITE_DEBUG_FRAME_FILE("AdditionalFieldsUnexpectedAddress", section);
EXPECT_CALL(reporter, UnexpectedAddressSize(_, 3))
.WillOnce(Return());
string contents;
EXPECT_TRUE(section.GetContents(&contents));
ByteReader byte_reader(ENDIANNESS_BIG);
CallFrameInfo parser(reinterpret_cast<const uint8_t *>(contents.data()),
contents.size(),
&byte_reader, &handler, &reporter);
EXPECT_FALSE(parser.Start());
}
TEST_F(CFI, CIEVersion4AdditionalFieldsUnexpectedSegmentSize) {
CFISection section(kBigEndian, 8);
Label cie;
section
.Mark(&cie)
.CIEHeader(0xf8bc4399, 0x8cf09931, 0xf2f519b2, 4, "", true, 8, 7)
.FinishEntry()
.FDEHeader(cie, 0x7bf0fda0, 0xcbcd28d8)
.FinishEntry();
PERHAPS_WRITE_DEBUG_FRAME_FILE("AdditionalFieldsUnexpectedSegment", section);
EXPECT_CALL(reporter, UnexpectedSegmentSize(_, 7))
.WillOnce(Return());
string contents;
EXPECT_TRUE(section.GetContents(&contents));
ByteReader byte_reader(ENDIANNESS_BIG);
CallFrameInfo parser(reinterpret_cast<const uint8_t *>(contents.data()),
contents.size(),
&byte_reader, &handler, &reporter);
EXPECT_FALSE(parser.Start());
}
struct CFIInsnFixture: public CFIFixture {
CFIInsnFixture() : CFIFixture() {
data_factor = 0xb6f;
return_register = 0x9be1ed9f;
version = 3;
cfa_base_register = 0x383a3aa;
cfa_offset = 0xf748;
}
// Prepare SECTION to receive FDE instructions.
//
// - Append a stock CIE header that establishes the fixture's
// code_factor, data_factor, return_register, version, and
// augmentation values.
// - Have the CIE set up a CFA rule using cfa_base_register and
// cfa_offset.
// - Append a stock FDE header, referring to the above CIE, for the
// fde_size bytes at fde_start. Choose fde_start and fde_size
// appropriately for the section's address size.
// - Set appropriate expectations on handler in sequence s for the
// frame description entry and the CIE's CFA rule.
//
// On return, SECTION is ready to have FDE instructions appended to
// it, and its FinishEntry member called.
void StockCIEAndFDE(CFISection *section) {
// Choose appropriate constants for our address size.
if (section->AddressSize() == 4) {
fde_start = 0xc628ecfbU;
fde_size = 0x5dee04a2;
code_factor = 0x60b;
} else {
assert(section->AddressSize() == 8);
fde_start = 0x0005c57ce7806bd3ULL;
fde_size = 0x2699521b5e333100ULL;
code_factor = 0x01008e32855274a8ULL;
}
// Create the CIE.
(*section)
.Mark(&cie_label)
.CIEHeader(code_factor, data_factor, return_register, version,
"")
.D8(dwarf2reader::DW_CFA_def_cfa)
.ULEB128(cfa_base_register)
.ULEB128(cfa_offset)
.FinishEntry();
// Create the FDE.
section->FDEHeader(cie_label, fde_start, fde_size);
// Expect an Entry call for the FDE and a ValOffsetRule call for the
// CIE's CFA rule.
EXPECT_CALL(handler, Entry(_, fde_start, fde_size, version, "",
return_register))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, ValOffsetRule(fde_start, kCFARegister,
cfa_base_register, cfa_offset))
.InSequence(s)
.WillOnce(Return(true));
}
// Run the contents of SECTION through a CallFrameInfo parser,
// expecting parser.Start to return SUCCEEDS
void ParseSection(CFISection *section, bool succeeds = true) {
string contents;
EXPECT_TRUE(section->GetContents(&contents));
dwarf2reader::Endianness endianness;
if (section->endianness() == kBigEndian)
endianness = ENDIANNESS_BIG;
else {
assert(section->endianness() == kLittleEndian);
endianness = ENDIANNESS_LITTLE;
}
ByteReader byte_reader(endianness);
byte_reader.SetAddressSize(section->AddressSize());
CallFrameInfo parser(reinterpret_cast<const uint8_t *>(contents.data()),
contents.size(),
&byte_reader, &handler, &reporter);
if (succeeds)
EXPECT_TRUE(parser.Start());
else
EXPECT_FALSE(parser.Start());
}
Label cie_label;
Sequence s;
uint64_t code_factor;
int data_factor;
unsigned return_register;
unsigned version;
unsigned cfa_base_register;
int cfa_offset;
uint64_t fde_start, fde_size;
};
class CFIInsn: public CFIInsnFixture, public Test { };
TEST_F(CFIInsn, DW_CFA_set_loc) {
CFISection section(kBigEndian, 4);
StockCIEAndFDE(&section);
section
.D8(dwarf2reader::DW_CFA_set_loc).D32(0xb1ee3e7a)
// Use DW_CFA_def_cfa to force a handler call that we can use to
// check the effect of the DW_CFA_set_loc.
.D8(dwarf2reader::DW_CFA_def_cfa).ULEB128(0x4defb431).ULEB128(0x6d17b0ee)
.FinishEntry();
PERHAPS_WRITE_DEBUG_FRAME_FILE("DW_CFA_set_loc", section);
EXPECT_CALL(handler,
ValOffsetRule(0xb1ee3e7a, kCFARegister, 0x4defb431, 0x6d17b0ee))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
ParseSection(&section);
}
TEST_F(CFIInsn, DW_CFA_advance_loc) {
CFISection section(kBigEndian, 8);
StockCIEAndFDE(&section);
section
.D8(dwarf2reader::DW_CFA_advance_loc | 0x2a)
// Use DW_CFA_def_cfa to force a handler call that we can use to
// check the effect of the DW_CFA_advance_loc.
.D8(dwarf2reader::DW_CFA_def_cfa).ULEB128(0x5bbb3715).ULEB128(0x0186c7bf)
.FinishEntry();
PERHAPS_WRITE_DEBUG_FRAME_FILE("DW_CFA_advance_loc", section);
EXPECT_CALL(handler,
ValOffsetRule(fde_start + 0x2a * code_factor,
kCFARegister, 0x5bbb3715, 0x0186c7bf))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
ParseSection(&section);
}
TEST_F(CFIInsn, DW_CFA_advance_loc1) {
CFISection section(kLittleEndian, 8);
StockCIEAndFDE(&section);
section
.D8(dwarf2reader::DW_CFA_advance_loc1).D8(0xd8)
.D8(dwarf2reader::DW_CFA_def_cfa).ULEB128(0x69d5696a).ULEB128(0x1eb7fc93)
.FinishEntry();
PERHAPS_WRITE_DEBUG_FRAME_FILE("DW_CFA_advance_loc1", section);
EXPECT_CALL(handler,
ValOffsetRule((fde_start + 0xd8 * code_factor),
kCFARegister, 0x69d5696a, 0x1eb7fc93))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
ParseSection(&section);
}
TEST_F(CFIInsn, DW_CFA_advance_loc2) {
CFISection section(kLittleEndian, 4);
StockCIEAndFDE(&section);
section
.D8(dwarf2reader::DW_CFA_advance_loc2).D16(0x3adb)
.D8(dwarf2reader::DW_CFA_def_cfa).ULEB128(0x3a368bed).ULEB128(0x3194ee37)
.FinishEntry();
PERHAPS_WRITE_DEBUG_FRAME_FILE("DW_CFA_advance_loc2", section);
EXPECT_CALL(handler,
ValOffsetRule((fde_start + 0x3adb * code_factor),
kCFARegister, 0x3a368bed, 0x3194ee37))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
ParseSection(&section);
}
TEST_F(CFIInsn, DW_CFA_advance_loc4) {
CFISection section(kBigEndian, 8);
StockCIEAndFDE(&section);
section
.D8(dwarf2reader::DW_CFA_advance_loc4).D32(0x15813c88)
.D8(dwarf2reader::DW_CFA_def_cfa).ULEB128(0x135270c5).ULEB128(0x24bad7cb)
.FinishEntry();
PERHAPS_WRITE_DEBUG_FRAME_FILE("DW_CFA_advance_loc4", section);
EXPECT_CALL(handler,
ValOffsetRule((fde_start + 0x15813c88ULL * code_factor),
kCFARegister, 0x135270c5, 0x24bad7cb))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
ParseSection(&section);
}
TEST_F(CFIInsn, DW_CFA_MIPS_advance_loc8) {
code_factor = 0x2d;
CFISection section(kBigEndian, 8);
StockCIEAndFDE(&section);
section
.D8(dwarf2reader::DW_CFA_MIPS_advance_loc8).D64(0x3c4f3945b92c14ULL)
.D8(dwarf2reader::DW_CFA_def_cfa).ULEB128(0xe17ed602).ULEB128(0x3d162e7f)
.FinishEntry();
PERHAPS_WRITE_DEBUG_FRAME_FILE("DW_CFA_advance_loc8", section);
EXPECT_CALL(handler,
ValOffsetRule((fde_start + 0x3c4f3945b92c14ULL * code_factor),
kCFARegister, 0xe17ed602, 0x3d162e7f))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
ParseSection(&section);
}
TEST_F(CFIInsn, DW_CFA_def_cfa) {
CFISection section(kLittleEndian, 4);
StockCIEAndFDE(&section);
section
.D8(dwarf2reader::DW_CFA_def_cfa).ULEB128(0x4e363a85).ULEB128(0x815f9aa7)
.FinishEntry();
PERHAPS_WRITE_DEBUG_FRAME_FILE("DW_CFA_def_cfa", section);
EXPECT_CALL(handler,
ValOffsetRule(fde_start, kCFARegister, 0x4e363a85, 0x815f9aa7))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
ParseSection(&section);
}
TEST_F(CFIInsn, DW_CFA_def_cfa_sf) {
CFISection section(kBigEndian, 4);
StockCIEAndFDE(&section);
section
.D8(dwarf2reader::DW_CFA_def_cfa_sf).ULEB128(0x8ccb32b7).LEB128(0x9ea)
.D8(dwarf2reader::DW_CFA_def_cfa_sf).ULEB128(0x9b40f5da).LEB128(-0x40a2)
.FinishEntry();
EXPECT_CALL(handler,
ValOffsetRule(fde_start, kCFARegister, 0x8ccb32b7,
0x9ea * data_factor))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler,
ValOffsetRule(fde_start, kCFARegister, 0x9b40f5da,
-0x40a2 * data_factor))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
ParseSection(&section);
}
TEST_F(CFIInsn, DW_CFA_def_cfa_register) {
CFISection section(kLittleEndian, 8);
StockCIEAndFDE(&section);
section
.D8(dwarf2reader::DW_CFA_def_cfa_register).ULEB128(0x3e7e9363)
.FinishEntry();
EXPECT_CALL(handler,
ValOffsetRule(fde_start, kCFARegister, 0x3e7e9363, cfa_offset))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
ParseSection(&section);
}
// DW_CFA_def_cfa_register should have no effect when applied to a
// non-base/offset rule.
TEST_F(CFIInsn, DW_CFA_def_cfa_registerBadRule) {
CFISection section(kBigEndian, 4);
StockCIEAndFDE(&section);
section
.D8(dwarf2reader::DW_CFA_def_cfa_expression).Block("needle in a haystack")
.D8(dwarf2reader::DW_CFA_def_cfa_register).ULEB128(0xf1b49e49)
.FinishEntry();
EXPECT_CALL(handler,
ValExpressionRule(fde_start, kCFARegister,
"needle in a haystack"))
.WillRepeatedly(Return(true));
EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
ParseSection(&section);
}
TEST_F(CFIInsn, DW_CFA_def_cfa_offset) {
CFISection section(kBigEndian, 4);
StockCIEAndFDE(&section);
section
.D8(dwarf2reader::DW_CFA_def_cfa_offset).ULEB128(0x1e8e3b9b)
.FinishEntry();
EXPECT_CALL(handler,
ValOffsetRule(fde_start, kCFARegister, cfa_base_register,
0x1e8e3b9b))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
ParseSection(&section);
}
TEST_F(CFIInsn, DW_CFA_def_cfa_offset_sf) {
CFISection section(kLittleEndian, 4);
StockCIEAndFDE(&section);
section
.D8(dwarf2reader::DW_CFA_def_cfa_offset_sf).LEB128(0x970)
.D8(dwarf2reader::DW_CFA_def_cfa_offset_sf).LEB128(-0x2cd)
.FinishEntry();
EXPECT_CALL(handler,
ValOffsetRule(fde_start, kCFARegister, cfa_base_register,
0x970 * data_factor))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler,
ValOffsetRule(fde_start, kCFARegister, cfa_base_register,
-0x2cd * data_factor))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
ParseSection(&section);
}
// DW_CFA_def_cfa_offset should have no effect when applied to a
// non-base/offset rule.
TEST_F(CFIInsn, DW_CFA_def_cfa_offsetBadRule) {
CFISection section(kBigEndian, 4);
StockCIEAndFDE(&section);
section
.D8(dwarf2reader::DW_CFA_def_cfa_expression).Block("six ways to Sunday")
.D8(dwarf2reader::DW_CFA_def_cfa_offset).ULEB128(0x1e8e3b9b)
.FinishEntry();
EXPECT_CALL(handler,
ValExpressionRule(fde_start, kCFARegister, "six ways to Sunday"))
.WillRepeatedly(Return(true));
EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
ParseSection(&section);
}
TEST_F(CFIInsn, DW_CFA_def_cfa_expression) {
CFISection section(kLittleEndian, 8);
StockCIEAndFDE(&section);
section
.D8(dwarf2reader::DW_CFA_def_cfa_expression).Block("eating crow")
.FinishEntry();
EXPECT_CALL(handler, ValExpressionRule(fde_start, kCFARegister,
"eating crow"))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
ParseSection(&section);
}
TEST_F(CFIInsn, DW_CFA_undefined) {
CFISection section(kLittleEndian, 4);
StockCIEAndFDE(&section);
section
.D8(dwarf2reader::DW_CFA_undefined).ULEB128(0x300ce45d)
.FinishEntry();
EXPECT_CALL(handler, UndefinedRule(fde_start, 0x300ce45d))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
ParseSection(&section);
}
TEST_F(CFIInsn, DW_CFA_same_value) {
CFISection section(kLittleEndian, 4);
StockCIEAndFDE(&section);
section
.D8(dwarf2reader::DW_CFA_same_value).ULEB128(0x3865a760)
.FinishEntry();
EXPECT_CALL(handler, SameValueRule(fde_start, 0x3865a760))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
ParseSection(&section);
}
TEST_F(CFIInsn, DW_CFA_offset) {
CFISection section(kBigEndian, 4);
StockCIEAndFDE(&section);
section
.D8(dwarf2reader::DW_CFA_offset | 0x2c).ULEB128(0x9f6)
.FinishEntry();
EXPECT_CALL(handler,
OffsetRule(fde_start, 0x2c, kCFARegister, 0x9f6 * data_factor))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
ParseSection(&section);
}
TEST_F(CFIInsn, DW_CFA_offset_extended) {
CFISection section(kBigEndian, 4);
StockCIEAndFDE(&section);
section
.D8(dwarf2reader::DW_CFA_offset_extended).ULEB128(0x402b).ULEB128(0xb48)
.FinishEntry();
EXPECT_CALL(handler,
OffsetRule(fde_start, 0x402b, kCFARegister, 0xb48 * data_factor))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
ParseSection(&section);
}
TEST_F(CFIInsn, DW_CFA_offset_extended_sf) {
CFISection section(kBigEndian, 8);
StockCIEAndFDE(&section);
section
.D8(dwarf2reader::DW_CFA_offset_extended_sf)
.ULEB128(0x997c23ee).LEB128(0x2d00)
.D8(dwarf2reader::DW_CFA_offset_extended_sf)
.ULEB128(0x9519eb82).LEB128(-0xa77)
.FinishEntry();
EXPECT_CALL(handler,
OffsetRule(fde_start, 0x997c23ee,
kCFARegister, 0x2d00 * data_factor))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler,
OffsetRule(fde_start, 0x9519eb82,
kCFARegister, -0xa77 * data_factor))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
ParseSection(&section);
}
TEST_F(CFIInsn, DW_CFA_val_offset) {
CFISection section(kBigEndian, 4);
StockCIEAndFDE(&section);
section
.D8(dwarf2reader::DW_CFA_val_offset).ULEB128(0x623562fe).ULEB128(0x673)
.FinishEntry();
EXPECT_CALL(handler,
ValOffsetRule(fde_start, 0x623562fe,
kCFARegister, 0x673 * data_factor))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
ParseSection(&section);
}
TEST_F(CFIInsn, DW_CFA_val_offset_sf) {
CFISection section(kBigEndian, 4);
StockCIEAndFDE(&section);
section
.D8(dwarf2reader::DW_CFA_val_offset_sf).ULEB128(0x6f4f).LEB128(0xaab)
.D8(dwarf2reader::DW_CFA_val_offset_sf).ULEB128(0x2483).LEB128(-0x8a2)
.FinishEntry();
EXPECT_CALL(handler,
ValOffsetRule(fde_start, 0x6f4f,
kCFARegister, 0xaab * data_factor))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler,
ValOffsetRule(fde_start, 0x2483,
kCFARegister, -0x8a2 * data_factor))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
ParseSection(&section);
}
TEST_F(CFIInsn, DW_CFA_register) {
CFISection section(kLittleEndian, 8);
StockCIEAndFDE(&section);
section
.D8(dwarf2reader::DW_CFA_register).ULEB128(0x278d18f9).ULEB128(0x1a684414)
.FinishEntry();
EXPECT_CALL(handler, RegisterRule(fde_start, 0x278d18f9, 0x1a684414))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
ParseSection(&section);
}
TEST_F(CFIInsn, DW_CFA_expression) {
CFISection section(kBigEndian, 8);
StockCIEAndFDE(&section);
section
.D8(dwarf2reader::DW_CFA_expression).ULEB128(0xa1619fb2)
.Block("plus ça change, plus c'est la même chose")
.FinishEntry();
EXPECT_CALL(handler,
ExpressionRule(fde_start, 0xa1619fb2,
"plus ça change, plus c'est la même chose"))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
ParseSection(&section);
}
TEST_F(CFIInsn, DW_CFA_val_expression) {
CFISection section(kBigEndian, 4);
StockCIEAndFDE(&section);
section
.D8(dwarf2reader::DW_CFA_val_expression).ULEB128(0xc5e4a9e3)
.Block("he who has the gold makes the rules")
.FinishEntry();
EXPECT_CALL(handler,
ValExpressionRule(fde_start, 0xc5e4a9e3,
"he who has the gold makes the rules"))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
ParseSection(&section);
}
TEST_F(CFIInsn, DW_CFA_restore) {
CFISection section(kLittleEndian, 8);
code_factor = 0x01bd188a9b1fa083ULL;
data_factor = -0x1ac8;
return_register = 0x8c35b049;
version = 2;
fde_start = 0x2d70fe998298bbb1ULL;
fde_size = 0x46ccc2e63cf0b108ULL;
Label cie;
section
.Mark(&cie)
.CIEHeader(code_factor, data_factor, return_register, version,
"")
// Provide a CFA rule, because register rules require them.
.D8(dwarf2reader::DW_CFA_def_cfa).ULEB128(0x6ca1d50e).ULEB128(0x372e38e8)
// Provide an offset(N) rule for register 0x3c.
.D8(dwarf2reader::DW_CFA_offset | 0x3c).ULEB128(0xb348)
.FinishEntry()
// In the FDE...
.FDEHeader(cie, fde_start, fde_size)
// At a second address, provide a new offset(N) rule for register 0x3c.
.D8(dwarf2reader::DW_CFA_advance_loc | 0x13)
.D8(dwarf2reader::DW_CFA_offset | 0x3c).ULEB128(0x9a50)
// At a third address, restore the original rule for register 0x3c.
.D8(dwarf2reader::DW_CFA_advance_loc | 0x01)
.D8(dwarf2reader::DW_CFA_restore | 0x3c)
.FinishEntry();
{
InSequence s;
EXPECT_CALL(handler,
Entry(_, fde_start, fde_size, version, "", return_register))
.WillOnce(Return(true));
// CIE's CFA rule.
EXPECT_CALL(handler,
ValOffsetRule(fde_start, kCFARegister, 0x6ca1d50e, 0x372e38e8))
.WillOnce(Return(true));
// CIE's rule for register 0x3c.
EXPECT_CALL(handler,
OffsetRule(fde_start, 0x3c, kCFARegister, 0xb348 * data_factor))
.WillOnce(Return(true));
// FDE's rule for register 0x3c.
EXPECT_CALL(handler,
OffsetRule(fde_start + 0x13 * code_factor, 0x3c,
kCFARegister, 0x9a50 * data_factor))
.WillOnce(Return(true));
// Restore CIE's rule for register 0x3c.
EXPECT_CALL(handler,
OffsetRule(fde_start + (0x13 + 0x01) * code_factor, 0x3c,
kCFARegister, 0xb348 * data_factor))
.WillOnce(Return(true));
EXPECT_CALL(handler, End()).WillOnce(Return(true));
}
ParseSection(&section);
}
TEST_F(CFIInsn, DW_CFA_restoreNoRule) {
CFISection section(kBigEndian, 4);
code_factor = 0x005f78143c1c3b82ULL;
data_factor = 0x25d0;
return_register = 0xe8;
version = 1;
fde_start = 0x4062e30f;
fde_size = 0x5302a389;
Label cie;
section
.Mark(&cie)
.CIEHeader(code_factor, data_factor, return_register, version, "")
// Provide a CFA rule, because register rules require them.
.D8(dwarf2reader::DW_CFA_def_cfa).ULEB128(0x470aa334).ULEB128(0x099ef127)
.FinishEntry()
// In the FDE...
.FDEHeader(cie, fde_start, fde_size)
// At a second address, provide an offset(N) rule for register 0x2c.
.D8(dwarf2reader::DW_CFA_advance_loc | 0x7)
.D8(dwarf2reader::DW_CFA_offset | 0x2c).ULEB128(0x1f47)
// At a third address, restore the (missing) CIE rule for register 0x2c.
.D8(dwarf2reader::DW_CFA_advance_loc | 0xb)
.D8(dwarf2reader::DW_CFA_restore | 0x2c)
.FinishEntry();
{
InSequence s;
EXPECT_CALL(handler,
Entry(_, fde_start, fde_size, version, "", return_register))
.WillOnce(Return(true));
// CIE's CFA rule.
EXPECT_CALL(handler,
ValOffsetRule(fde_start, kCFARegister, 0x470aa334, 0x099ef127))
.WillOnce(Return(true));
// FDE's rule for register 0x2c.
EXPECT_CALL(handler,
OffsetRule(fde_start + 0x7 * code_factor, 0x2c,
kCFARegister, 0x1f47 * data_factor))
.WillOnce(Return(true));
// Restore CIE's (missing) rule for register 0x2c.
EXPECT_CALL(handler,
SameValueRule(fde_start + (0x7 + 0xb) * code_factor, 0x2c))
.WillOnce(Return(true));
EXPECT_CALL(handler, End()).WillOnce(Return(true));
}
ParseSection(&section);
}
TEST_F(CFIInsn, DW_CFA_restore_extended) {
CFISection section(kBigEndian, 4);
code_factor = 0x126e;
data_factor = -0xd8b;
return_register = 0x77711787;
version = 3;
fde_start = 0x01f55a45;
fde_size = 0x452adb80;
Label cie;
section
.Mark(&cie)
.CIEHeader(code_factor, data_factor, return_register, version,
"", true /* dwarf64 */ )
// Provide a CFA rule, because register rules require them.
.D8(dwarf2reader::DW_CFA_def_cfa).ULEB128(0x56fa0edd).ULEB128(0x097f78a5)
// Provide an offset(N) rule for register 0x0f9b8a1c.
.D8(dwarf2reader::DW_CFA_offset_extended)
.ULEB128(0x0f9b8a1c).ULEB128(0xc979)
.FinishEntry()
// In the FDE...
.FDEHeader(cie, fde_start, fde_size)
// At a second address, provide a new offset(N) rule for reg 0x0f9b8a1c.
.D8(dwarf2reader::DW_CFA_advance_loc | 0x3)
.D8(dwarf2reader::DW_CFA_offset_extended)
.ULEB128(0x0f9b8a1c).ULEB128(0x3b7b)
// At a third address, restore the original rule for register 0x0f9b8a1c.
.D8(dwarf2reader::DW_CFA_advance_loc | 0x04)
.D8(dwarf2reader::DW_CFA_restore_extended).ULEB128(0x0f9b8a1c)
.FinishEntry();
{
InSequence s;
EXPECT_CALL(handler,
Entry(_, fde_start, fde_size, version, "", return_register))
.WillOnce(Return(true));
// CIE's CFA rule.
EXPECT_CALL(handler,
ValOffsetRule(fde_start, kCFARegister, 0x56fa0edd, 0x097f78a5))
.WillOnce(Return(true));
// CIE's rule for register 0x0f9b8a1c.
EXPECT_CALL(handler,
OffsetRule(fde_start, 0x0f9b8a1c, kCFARegister,
0xc979 * data_factor))
.WillOnce(Return(true));
// FDE's rule for register 0x0f9b8a1c.
EXPECT_CALL(handler,
OffsetRule(fde_start + 0x3 * code_factor, 0x0f9b8a1c,
kCFARegister, 0x3b7b * data_factor))
.WillOnce(Return(true));
// Restore CIE's rule for register 0x0f9b8a1c.
EXPECT_CALL(handler,
OffsetRule(fde_start + (0x3 + 0x4) * code_factor, 0x0f9b8a1c,
kCFARegister, 0xc979 * data_factor))
.WillOnce(Return(true));
EXPECT_CALL(handler, End()).WillOnce(Return(true));
}
ParseSection(&section);
}
TEST_F(CFIInsn, DW_CFA_remember_and_restore_state) {
CFISection section(kLittleEndian, 8);
StockCIEAndFDE(&section);
// We create a state, save it, modify it, and then restore. We
// refer to the state that is overridden the restore as the
// "outgoing" state, and the restored state the "incoming" state.
//
// Register outgoing incoming expect
// 1 offset(N) no rule new "same value" rule
// 2 register(R) offset(N) report changed rule
// 3 offset(N) offset(M) report changed offset
// 4 offset(N) offset(N) no report
// 5 offset(N) no rule new "same value" rule
section
// Create the "incoming" state, which we will save and later restore.
.D8(dwarf2reader::DW_CFA_offset | 2).ULEB128(0x9806)
.D8(dwarf2reader::DW_CFA_offset | 3).ULEB128(0x995d)
.D8(dwarf2reader::DW_CFA_offset | 4).ULEB128(0x7055)
.D8(dwarf2reader::DW_CFA_remember_state)
// Advance to a new instruction; an implementation could legitimately
// ignore all but the final rule for a given register at a given address.
.D8(dwarf2reader::DW_CFA_advance_loc | 1)
// Create the "outgoing" state, which we will discard.
.D8(dwarf2reader::DW_CFA_offset | 1).ULEB128(0xea1a)
.D8(dwarf2reader::DW_CFA_register).ULEB128(2).ULEB128(0x1d2a3767)
.D8(dwarf2reader::DW_CFA_offset | 3).ULEB128(0xdd29)
.D8(dwarf2reader::DW_CFA_offset | 5).ULEB128(0xf1ce)
// At a third address, restore the incoming state.
.D8(dwarf2reader::DW_CFA_advance_loc | 1)
.D8(dwarf2reader::DW_CFA_restore_state)
.FinishEntry();
uint64_t addr = fde_start;
// Expect the incoming rules to be reported.
EXPECT_CALL(handler, OffsetRule(addr, 2, kCFARegister, 0x9806 * data_factor))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, OffsetRule(addr, 3, kCFARegister, 0x995d * data_factor))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, OffsetRule(addr, 4, kCFARegister, 0x7055 * data_factor))
.InSequence(s).WillOnce(Return(true));
addr += code_factor;
// After the save, we establish the outgoing rule set.
EXPECT_CALL(handler, OffsetRule(addr, 1, kCFARegister, 0xea1a * data_factor))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, RegisterRule(addr, 2, 0x1d2a3767))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, OffsetRule(addr, 3, kCFARegister, 0xdd29 * data_factor))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, OffsetRule(addr, 5, kCFARegister, 0xf1ce * data_factor))
.InSequence(s).WillOnce(Return(true));
addr += code_factor;
// Finally, after the restore, expect to see the differences from
// the outgoing to the incoming rules reported.
EXPECT_CALL(handler, SameValueRule(addr, 1))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, OffsetRule(addr, 2, kCFARegister, 0x9806 * data_factor))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, OffsetRule(addr, 3, kCFARegister, 0x995d * data_factor))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, SameValueRule(addr, 5))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, End()).WillOnce(Return(true));
ParseSection(&section);
}
// Check that restoring a rule set reports changes to the CFA rule.
TEST_F(CFIInsn, DW_CFA_remember_and_restore_stateCFA) {
CFISection section(kBigEndian, 4);
StockCIEAndFDE(&section);
section
.D8(dwarf2reader::DW_CFA_remember_state)
.D8(dwarf2reader::DW_CFA_advance_loc | 1)
.D8(dwarf2reader::DW_CFA_def_cfa_offset).ULEB128(0x90481102)
.D8(dwarf2reader::DW_CFA_advance_loc | 1)
.D8(dwarf2reader::DW_CFA_restore_state)
.FinishEntry();
EXPECT_CALL(handler, ValOffsetRule(fde_start + code_factor, kCFARegister,
cfa_base_register, 0x90481102))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, ValOffsetRule(fde_start + code_factor * 2, kCFARegister,
cfa_base_register, cfa_offset))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, End()).WillOnce(Return(true));
ParseSection(&section);
}
TEST_F(CFIInsn, DW_CFA_nop) {
CFISection section(kLittleEndian, 4);
StockCIEAndFDE(&section);
section
.D8(dwarf2reader::DW_CFA_nop)
.D8(dwarf2reader::DW_CFA_def_cfa).ULEB128(0x3fb8d4f1).ULEB128(0x078dc67b)
.D8(dwarf2reader::DW_CFA_nop)
.FinishEntry();
EXPECT_CALL(handler,
ValOffsetRule(fde_start, kCFARegister, 0x3fb8d4f1, 0x078dc67b))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
ParseSection(&section);
}
TEST_F(CFIInsn, DW_CFA_GNU_window_save) {
CFISection section(kBigEndian, 4);
StockCIEAndFDE(&section);
section
.D8(dwarf2reader::DW_CFA_GNU_window_save)
.FinishEntry();
// Don't include all the rules in any particular sequence.
// The caller's %o0-%o7 have become the callee's %i0-%i7. This is
// the GCC register numbering.
for (int i = 8; i < 16; i++)
EXPECT_CALL(handler, RegisterRule(fde_start, i, i + 16))
.WillOnce(Return(true));
// The caller's %l0-%l7 and %i0-%i7 have been saved at the top of
// its frame.
for (int i = 16; i < 32; i++)
EXPECT_CALL(handler, OffsetRule(fde_start, i, kCFARegister, (i-16) * 4))
.WillOnce(Return(true));
EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
ParseSection(&section);
}
TEST_F(CFIInsn, DW_CFA_GNU_args_size) {
CFISection section(kLittleEndian, 8);
StockCIEAndFDE(&section);
section
.D8(dwarf2reader::DW_CFA_GNU_args_size).ULEB128(0xeddfa520)
// Verify that we see this, meaning we parsed the above properly.
.D8(dwarf2reader::DW_CFA_offset | 0x23).ULEB128(0x269)
.FinishEntry();
EXPECT_CALL(handler,
OffsetRule(fde_start, 0x23, kCFARegister, 0x269 * data_factor))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
ParseSection(&section);
}
TEST_F(CFIInsn, DW_CFA_GNU_negative_offset_extended) {
CFISection section(kLittleEndian, 4);
StockCIEAndFDE(&section);
section
.D8(dwarf2reader::DW_CFA_GNU_negative_offset_extended)
.ULEB128(0x430cc87a).ULEB128(0x613)
.FinishEntry();
EXPECT_CALL(handler,
OffsetRule(fde_start, 0x430cc87a,
kCFARegister, -0x613 * data_factor))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true));
ParseSection(&section);
}
// Three FDEs: skip the second
TEST_F(CFIInsn, SkipFDE) {
CFISection section(kBigEndian, 4);
Label cie;
section
// CIE, used by all FDEs.
.Mark(&cie)
.CIEHeader(0x010269f2, 0x9177, 0xedca5849, 2, "")
.D8(dwarf2reader::DW_CFA_def_cfa).ULEB128(0x42ed390b).ULEB128(0x98f43aad)
.FinishEntry()
// First FDE.
.FDEHeader(cie, 0xa870ebdd, 0x60f6aa4)
.D8(dwarf2reader::DW_CFA_register).ULEB128(0x3a860351).ULEB128(0x6c9a6bcf)
.FinishEntry()
// Second FDE.
.FDEHeader(cie, 0xc534f7c0, 0xf6552e9, true /* dwarf64 */)
.D8(dwarf2reader::DW_CFA_register).ULEB128(0x1b62c234).ULEB128(0x26586b18)
.FinishEntry()
// Third FDE.
.FDEHeader(cie, 0xf681cfc8, 0x7e4594e)
.D8(dwarf2reader::DW_CFA_register).ULEB128(0x26c53934).ULEB128(0x18eeb8a4)
.FinishEntry();
{
InSequence s;
// Process the first FDE.
EXPECT_CALL(handler, Entry(_, 0xa870ebdd, 0x60f6aa4, 2, "", 0xedca5849))
.WillOnce(Return(true));
EXPECT_CALL(handler, ValOffsetRule(0xa870ebdd, kCFARegister,
0x42ed390b, 0x98f43aad))
.WillOnce(Return(true));
EXPECT_CALL(handler, RegisterRule(0xa870ebdd, 0x3a860351, 0x6c9a6bcf))
.WillOnce(Return(true));
EXPECT_CALL(handler, End())
.WillOnce(Return(true));
// Skip the second FDE.
EXPECT_CALL(handler, Entry(_, 0xc534f7c0, 0xf6552e9, 2, "", 0xedca5849))
.WillOnce(Return(false));
// Process the third FDE.
EXPECT_CALL(handler, Entry(_, 0xf681cfc8, 0x7e4594e, 2, "", 0xedca5849))
.WillOnce(Return(true));
EXPECT_CALL(handler, ValOffsetRule(0xf681cfc8, kCFARegister,
0x42ed390b, 0x98f43aad))
.WillOnce(Return(true));
EXPECT_CALL(handler, RegisterRule(0xf681cfc8, 0x26c53934, 0x18eeb8a4))
.WillOnce(Return(true));
EXPECT_CALL(handler, End())
.WillOnce(Return(true));
}
ParseSection(&section);
}
// Quit processing in the middle of an entry's instructions.
TEST_F(CFIInsn, QuitMidentry) {
CFISection section(kLittleEndian, 8);
StockCIEAndFDE(&section);
section
.D8(dwarf2reader::DW_CFA_register).ULEB128(0xe0cf850d).ULEB128(0x15aab431)
.D8(dwarf2reader::DW_CFA_expression).ULEB128(0x46750aa5).Block("meat")
.FinishEntry();
EXPECT_CALL(handler, RegisterRule(fde_start, 0xe0cf850d, 0x15aab431))
.InSequence(s).WillOnce(Return(false));
EXPECT_CALL(handler, End())
.InSequence(s).WillOnce(Return(true));
ParseSection(&section, false);
}
class CFIRestore: public CFIInsnFixture, public Test { };
TEST_F(CFIRestore, RestoreUndefinedRuleUnchanged) {
CFISection section(kLittleEndian, 4);
StockCIEAndFDE(&section);
section
.D8(dwarf2reader::DW_CFA_undefined).ULEB128(0x0bac878e)
.D8(dwarf2reader::DW_CFA_remember_state)
.D8(dwarf2reader::DW_CFA_advance_loc | 1)
.D8(dwarf2reader::DW_CFA_restore_state)
.FinishEntry();
EXPECT_CALL(handler, UndefinedRule(fde_start, 0x0bac878e))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, End()).WillOnce(Return(true));
ParseSection(&section);
}
TEST_F(CFIRestore, RestoreUndefinedRuleChanged) {
CFISection section(kLittleEndian, 4);
StockCIEAndFDE(&section);
section
.D8(dwarf2reader::DW_CFA_undefined).ULEB128(0x7dedff5f)
.D8(dwarf2reader::DW_CFA_remember_state)
.D8(dwarf2reader::DW_CFA_advance_loc | 1)
.D8(dwarf2reader::DW_CFA_same_value).ULEB128(0x7dedff5f)
.D8(dwarf2reader::DW_CFA_advance_loc | 1)
.D8(dwarf2reader::DW_CFA_restore_state)
.FinishEntry();
EXPECT_CALL(handler, UndefinedRule(fde_start, 0x7dedff5f))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, SameValueRule(fde_start + code_factor, 0x7dedff5f))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, UndefinedRule(fde_start + 2 * code_factor, 0x7dedff5f))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, End()).WillOnce(Return(true));
ParseSection(&section);
}
TEST_F(CFIRestore, RestoreSameValueRuleUnchanged) {
CFISection section(kLittleEndian, 4);
StockCIEAndFDE(&section);
section
.D8(dwarf2reader::DW_CFA_same_value).ULEB128(0xadbc9b3a)
.D8(dwarf2reader::DW_CFA_remember_state)
.D8(dwarf2reader::DW_CFA_advance_loc | 1)
.D8(dwarf2reader::DW_CFA_restore_state)
.FinishEntry();
EXPECT_CALL(handler, SameValueRule(fde_start, 0xadbc9b3a))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, End()).WillOnce(Return(true));
ParseSection(&section);
}
TEST_F(CFIRestore, RestoreSameValueRuleChanged) {
CFISection section(kLittleEndian, 4);
StockCIEAndFDE(&section);
section
.D8(dwarf2reader::DW_CFA_same_value).ULEB128(0x3d90dcb5)
.D8(dwarf2reader::DW_CFA_remember_state)
.D8(dwarf2reader::DW_CFA_advance_loc | 1)
.D8(dwarf2reader::DW_CFA_undefined).ULEB128(0x3d90dcb5)
.D8(dwarf2reader::DW_CFA_advance_loc | 1)
.D8(dwarf2reader::DW_CFA_restore_state)
.FinishEntry();
EXPECT_CALL(handler, SameValueRule(fde_start, 0x3d90dcb5))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, UndefinedRule(fde_start + code_factor, 0x3d90dcb5))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, SameValueRule(fde_start + 2 * code_factor, 0x3d90dcb5))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, End()).WillOnce(Return(true));
ParseSection(&section);
}
TEST_F(CFIRestore, RestoreOffsetRuleUnchanged) {
CFISection section(kLittleEndian, 4);
StockCIEAndFDE(&section);
section
.D8(dwarf2reader::DW_CFA_offset | 0x14).ULEB128(0xb6f)
.D8(dwarf2reader::DW_CFA_remember_state)
.D8(dwarf2reader::DW_CFA_advance_loc | 1)
.D8(dwarf2reader::DW_CFA_restore_state)
.FinishEntry();
EXPECT_CALL(handler, OffsetRule(fde_start, 0x14,
kCFARegister, 0xb6f * data_factor))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, End()).WillOnce(Return(true));
ParseSection(&section);
}
TEST_F(CFIRestore, RestoreOffsetRuleChanged) {
CFISection section(kLittleEndian, 4);
StockCIEAndFDE(&section);
section
.D8(dwarf2reader::DW_CFA_offset | 0x21).ULEB128(0xeb7)
.D8(dwarf2reader::DW_CFA_remember_state)
.D8(dwarf2reader::DW_CFA_advance_loc | 1)
.D8(dwarf2reader::DW_CFA_undefined).ULEB128(0x21)
.D8(dwarf2reader::DW_CFA_advance_loc | 1)
.D8(dwarf2reader::DW_CFA_restore_state)
.FinishEntry();
EXPECT_CALL(handler, OffsetRule(fde_start, 0x21,
kCFARegister, 0xeb7 * data_factor))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, UndefinedRule(fde_start + code_factor, 0x21))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, OffsetRule(fde_start + 2 * code_factor, 0x21,
kCFARegister, 0xeb7 * data_factor))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, End()).WillOnce(Return(true));
ParseSection(&section);
}
TEST_F(CFIRestore, RestoreOffsetRuleChangedOffset) {
CFISection section(kLittleEndian, 4);
StockCIEAndFDE(&section);
section
.D8(dwarf2reader::DW_CFA_offset | 0x21).ULEB128(0x134)
.D8(dwarf2reader::DW_CFA_remember_state)
.D8(dwarf2reader::DW_CFA_advance_loc | 1)
.D8(dwarf2reader::DW_CFA_offset | 0x21).ULEB128(0xf4f)
.D8(dwarf2reader::DW_CFA_advance_loc | 1)
.D8(dwarf2reader::DW_CFA_restore_state)
.FinishEntry();
EXPECT_CALL(handler, OffsetRule(fde_start, 0x21,
kCFARegister, 0x134 * data_factor))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, OffsetRule(fde_start + code_factor, 0x21,
kCFARegister, 0xf4f * data_factor))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, OffsetRule(fde_start + 2 * code_factor, 0x21,
kCFARegister, 0x134 * data_factor))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, End()).WillOnce(Return(true));
ParseSection(&section);
}
TEST_F(CFIRestore, RestoreValOffsetRuleUnchanged) {
CFISection section(kLittleEndian, 4);
StockCIEAndFDE(&section);
section
.D8(dwarf2reader::DW_CFA_val_offset).ULEB128(0x829caee6).ULEB128(0xe4c)
.D8(dwarf2reader::DW_CFA_remember_state)
.D8(dwarf2reader::DW_CFA_advance_loc | 1)
.D8(dwarf2reader::DW_CFA_restore_state)
.FinishEntry();
EXPECT_CALL(handler, ValOffsetRule(fde_start, 0x829caee6,
kCFARegister, 0xe4c * data_factor))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, End()).WillOnce(Return(true));
ParseSection(&section);
}
TEST_F(CFIRestore, RestoreValOffsetRuleChanged) {
CFISection section(kLittleEndian, 4);
StockCIEAndFDE(&section);
section
.D8(dwarf2reader::DW_CFA_val_offset).ULEB128(0xf17c36d6).ULEB128(0xeb7)
.D8(dwarf2reader::DW_CFA_remember_state)
.D8(dwarf2reader::DW_CFA_advance_loc | 1)
.D8(dwarf2reader::DW_CFA_undefined).ULEB128(0xf17c36d6)
.D8(dwarf2reader::DW_CFA_advance_loc | 1)
.D8(dwarf2reader::DW_CFA_restore_state)
.FinishEntry();
EXPECT_CALL(handler, ValOffsetRule(fde_start, 0xf17c36d6,
kCFARegister, 0xeb7 * data_factor))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, UndefinedRule(fde_start + code_factor, 0xf17c36d6))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, ValOffsetRule(fde_start + 2 * code_factor, 0xf17c36d6,
kCFARegister, 0xeb7 * data_factor))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, End()).WillOnce(Return(true));
ParseSection(&section);
}
TEST_F(CFIRestore, RestoreValOffsetRuleChangedValOffset) {
CFISection section(kLittleEndian, 4);
StockCIEAndFDE(&section);
section
.D8(dwarf2reader::DW_CFA_val_offset).ULEB128(0x2cf0ab1b).ULEB128(0x562)
.D8(dwarf2reader::DW_CFA_remember_state)
.D8(dwarf2reader::DW_CFA_advance_loc | 1)
.D8(dwarf2reader::DW_CFA_val_offset).ULEB128(0x2cf0ab1b).ULEB128(0xe88)
.D8(dwarf2reader::DW_CFA_advance_loc | 1)
.D8(dwarf2reader::DW_CFA_restore_state)
.FinishEntry();
EXPECT_CALL(handler, ValOffsetRule(fde_start, 0x2cf0ab1b,
kCFARegister, 0x562 * data_factor))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, ValOffsetRule(fde_start + code_factor, 0x2cf0ab1b,
kCFARegister, 0xe88 * data_factor))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, ValOffsetRule(fde_start + 2 * code_factor, 0x2cf0ab1b,
kCFARegister, 0x562 * data_factor))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, End()).WillOnce(Return(true));
ParseSection(&section);
}
TEST_F(CFIRestore, RestoreRegisterRuleUnchanged) {
CFISection section(kLittleEndian, 4);
StockCIEAndFDE(&section);
section
.D8(dwarf2reader::DW_CFA_register).ULEB128(0x77514acc).ULEB128(0x464de4ce)
.D8(dwarf2reader::DW_CFA_remember_state)
.D8(dwarf2reader::DW_CFA_advance_loc | 1)
.D8(dwarf2reader::DW_CFA_restore_state)
.FinishEntry();
EXPECT_CALL(handler, RegisterRule(fde_start, 0x77514acc, 0x464de4ce))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, End()).WillOnce(Return(true));
ParseSection(&section);
}
TEST_F(CFIRestore, RestoreRegisterRuleChanged) {
CFISection section(kLittleEndian, 4);
StockCIEAndFDE(&section);
section
.D8(dwarf2reader::DW_CFA_register).ULEB128(0xe39acce5).ULEB128(0x095f1559)
.D8(dwarf2reader::DW_CFA_remember_state)
.D8(dwarf2reader::DW_CFA_advance_loc | 1)
.D8(dwarf2reader::DW_CFA_undefined).ULEB128(0xe39acce5)
.D8(dwarf2reader::DW_CFA_advance_loc | 1)
.D8(dwarf2reader::DW_CFA_restore_state)
.FinishEntry();
EXPECT_CALL(handler, RegisterRule(fde_start, 0xe39acce5, 0x095f1559))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, UndefinedRule(fde_start + code_factor, 0xe39acce5))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, RegisterRule(fde_start + 2 * code_factor, 0xe39acce5,
0x095f1559))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, End()).WillOnce(Return(true));
ParseSection(&section);
}
TEST_F(CFIRestore, RestoreRegisterRuleChangedRegister) {
CFISection section(kLittleEndian, 4);
StockCIEAndFDE(&section);
section
.D8(dwarf2reader::DW_CFA_register).ULEB128(0xd40e21b1).ULEB128(0x16607d6a)
.D8(dwarf2reader::DW_CFA_remember_state)
.D8(dwarf2reader::DW_CFA_advance_loc | 1)
.D8(dwarf2reader::DW_CFA_register).ULEB128(0xd40e21b1).ULEB128(0xbabb4742)
.D8(dwarf2reader::DW_CFA_advance_loc | 1)
.D8(dwarf2reader::DW_CFA_restore_state)
.FinishEntry();
EXPECT_CALL(handler, RegisterRule(fde_start, 0xd40e21b1, 0x16607d6a))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, RegisterRule(fde_start + code_factor, 0xd40e21b1,
0xbabb4742))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, RegisterRule(fde_start + 2 * code_factor, 0xd40e21b1,
0x16607d6a))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, End()).WillOnce(Return(true));
ParseSection(&section);
}
TEST_F(CFIRestore, RestoreExpressionRuleUnchanged) {
CFISection section(kLittleEndian, 4);
StockCIEAndFDE(&section);
section
.D8(dwarf2reader::DW_CFA_expression).ULEB128(0x666ae152).Block("dwarf")
.D8(dwarf2reader::DW_CFA_remember_state)
.D8(dwarf2reader::DW_CFA_advance_loc | 1)
.D8(dwarf2reader::DW_CFA_restore_state)
.FinishEntry();
EXPECT_CALL(handler, ExpressionRule(fde_start, 0x666ae152, "dwarf"))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, End()).WillOnce(Return(true));
ParseSection(&section);
}
TEST_F(CFIRestore, RestoreExpressionRuleChanged) {
CFISection section(kLittleEndian, 4);
StockCIEAndFDE(&section);
section
.D8(dwarf2reader::DW_CFA_expression).ULEB128(0xb5ca5c46).Block("elf")
.D8(dwarf2reader::DW_CFA_remember_state)
.D8(dwarf2reader::DW_CFA_advance_loc | 1)
.D8(dwarf2reader::DW_CFA_undefined).ULEB128(0xb5ca5c46)
.D8(dwarf2reader::DW_CFA_advance_loc | 1)
.D8(dwarf2reader::DW_CFA_restore_state)
.FinishEntry();
EXPECT_CALL(handler, ExpressionRule(fde_start, 0xb5ca5c46, "elf"))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, UndefinedRule(fde_start + code_factor, 0xb5ca5c46))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, ExpressionRule(fde_start + 2 * code_factor, 0xb5ca5c46,
"elf"))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, End()).WillOnce(Return(true));
ParseSection(&section);
}
TEST_F(CFIRestore, RestoreExpressionRuleChangedExpression) {
CFISection section(kLittleEndian, 4);
StockCIEAndFDE(&section);
section
.D8(dwarf2reader::DW_CFA_expression).ULEB128(0x500f5739).Block("smurf")
.D8(dwarf2reader::DW_CFA_remember_state)
.D8(dwarf2reader::DW_CFA_advance_loc | 1)
.D8(dwarf2reader::DW_CFA_expression).ULEB128(0x500f5739).Block("orc")
.D8(dwarf2reader::DW_CFA_advance_loc | 1)
.D8(dwarf2reader::DW_CFA_restore_state)
.FinishEntry();
EXPECT_CALL(handler, ExpressionRule(fde_start, 0x500f5739, "smurf"))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, ExpressionRule(fde_start + code_factor, 0x500f5739,
"orc"))
.InSequence(s).WillOnce(Return(true));
// Expectations are not wishes.
EXPECT_CALL(handler, ExpressionRule(fde_start + 2 * code_factor, 0x500f5739,
"smurf"))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, End()).WillOnce(Return(true));
ParseSection(&section);
}
TEST_F(CFIRestore, RestoreValExpressionRuleUnchanged) {
CFISection section(kLittleEndian, 4);
StockCIEAndFDE(&section);
section
.D8(dwarf2reader::DW_CFA_val_expression).ULEB128(0x666ae152)
.Block("hideous")
.D8(dwarf2reader::DW_CFA_remember_state)
.D8(dwarf2reader::DW_CFA_advance_loc | 1)
.D8(dwarf2reader::DW_CFA_restore_state)
.FinishEntry();
EXPECT_CALL(handler, ValExpressionRule(fde_start, 0x666ae152, "hideous"))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, End()).WillOnce(Return(true));
ParseSection(&section);
}
TEST_F(CFIRestore, RestoreValExpressionRuleChanged) {
CFISection section(kLittleEndian, 4);
StockCIEAndFDE(&section);
section
.D8(dwarf2reader::DW_CFA_val_expression).ULEB128(0xb5ca5c46)
.Block("revolting")
.D8(dwarf2reader::DW_CFA_remember_state)
.D8(dwarf2reader::DW_CFA_advance_loc | 1)
.D8(dwarf2reader::DW_CFA_undefined).ULEB128(0xb5ca5c46)
.D8(dwarf2reader::DW_CFA_advance_loc | 1)
.D8(dwarf2reader::DW_CFA_restore_state)
.FinishEntry();
PERHAPS_WRITE_DEBUG_FRAME_FILE("RestoreValExpressionRuleChanged", section);
EXPECT_CALL(handler, ValExpressionRule(fde_start, 0xb5ca5c46, "revolting"))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, UndefinedRule(fde_start + code_factor, 0xb5ca5c46))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, ValExpressionRule(fde_start + 2 * code_factor, 0xb5ca5c46,
"revolting"))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, End()).WillOnce(Return(true));
ParseSection(&section);
}
TEST_F(CFIRestore, RestoreValExpressionRuleChangedValExpression) {
CFISection section(kLittleEndian, 4);
StockCIEAndFDE(&section);
section
.D8(dwarf2reader::DW_CFA_val_expression).ULEB128(0x500f5739)
.Block("repulsive")
.D8(dwarf2reader::DW_CFA_remember_state)
.D8(dwarf2reader::DW_CFA_advance_loc | 1)
.D8(dwarf2reader::DW_CFA_val_expression).ULEB128(0x500f5739)
.Block("nauseous")
.D8(dwarf2reader::DW_CFA_advance_loc | 1)
.D8(dwarf2reader::DW_CFA_restore_state)
.FinishEntry();
PERHAPS_WRITE_DEBUG_FRAME_FILE("RestoreValExpressionRuleChangedValExpression",
section);
EXPECT_CALL(handler, ValExpressionRule(fde_start, 0x500f5739, "repulsive"))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, ValExpressionRule(fde_start + code_factor, 0x500f5739,
"nauseous"))
.InSequence(s).WillOnce(Return(true));
// Expectations are not wishes.
EXPECT_CALL(handler, ValExpressionRule(fde_start + 2 * code_factor, 0x500f5739,
"repulsive"))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, End()).WillOnce(Return(true));
ParseSection(&section);
}
struct EHFrameFixture: public CFIInsnFixture {
EHFrameFixture()
: CFIInsnFixture(), section(kBigEndian, 4, true) {
encoded_pointer_bases.cfi = 0x7f496cb2;
encoded_pointer_bases.text = 0x540f67b6;
encoded_pointer_bases.data = 0xe3eab768;
section.SetEncodedPointerBases(encoded_pointer_bases);
}
CFISection section;
CFISection::EncodedPointerBases encoded_pointer_bases;
// Parse CFIInsnFixture::ParseSection, but parse the section as
// .eh_frame data, supplying stock base addresses.
void ParseEHFrameSection(CFISection *section, bool succeeds = true) {
EXPECT_TRUE(section->ContainsEHFrame());
string contents;
EXPECT_TRUE(section->GetContents(&contents));
dwarf2reader::Endianness endianness;
if (section->endianness() == kBigEndian)
endianness = ENDIANNESS_BIG;
else {
assert(section->endianness() == kLittleEndian);
endianness = ENDIANNESS_LITTLE;
}
ByteReader byte_reader(endianness);
byte_reader.SetAddressSize(section->AddressSize());
byte_reader.SetCFIDataBase(encoded_pointer_bases.cfi,
reinterpret_cast<const uint8_t *>(contents.data()));
byte_reader.SetTextBase(encoded_pointer_bases.text);
byte_reader.SetDataBase(encoded_pointer_bases.data);
CallFrameInfo parser(reinterpret_cast<const uint8_t *>(contents.data()),
contents.size(),
&byte_reader, &handler, &reporter, true);
if (succeeds)
EXPECT_TRUE(parser.Start());
else
EXPECT_FALSE(parser.Start());
}
};
class EHFrame: public EHFrameFixture, public Test { };
// A simple CIE, an FDE, and a terminator.
TEST_F(EHFrame, Terminator) {
Label cie;
section
.Mark(&cie)
.CIEHeader(9968, 2466, 67, 1, "")
.D8(dwarf2reader::DW_CFA_def_cfa).ULEB128(3772).ULEB128(1372)
.FinishEntry()
.FDEHeader(cie, 0x848037a1, 0x7b30475e)
.D8(dwarf2reader::DW_CFA_set_loc).D32(0x17713850)
.D8(dwarf2reader::DW_CFA_undefined).ULEB128(5721)
.FinishEntry()
.D32(0) // Terminate the sequence.
// This FDE should be ignored.
.FDEHeader(cie, 0xf19629fe, 0x439fb09b)
.FinishEntry();
PERHAPS_WRITE_EH_FRAME_FILE("EHFrame.Terminator", section);
EXPECT_CALL(handler, Entry(_, 0x848037a1, 0x7b30475e, 1, "", 67))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, ValOffsetRule(0x848037a1, kCFARegister, 3772, 1372))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, UndefinedRule(0x17713850, 5721))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, End())
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(reporter, EarlyEHTerminator(_))
.InSequence(s).WillOnce(Return());
ParseEHFrameSection(&section);
}
// The parser should recognize the Linux Standards Base 'z' augmentations.
TEST_F(EHFrame, SimpleFDE) {
DwarfPointerEncoding lsda_encoding =
DwarfPointerEncoding(dwarf2reader::DW_EH_PE_indirect
| dwarf2reader::DW_EH_PE_datarel
| dwarf2reader::DW_EH_PE_sdata2);
DwarfPointerEncoding fde_encoding =
DwarfPointerEncoding(dwarf2reader::DW_EH_PE_textrel
| dwarf2reader::DW_EH_PE_udata2);
section.SetPointerEncoding(fde_encoding);
section.SetEncodedPointerBases(encoded_pointer_bases);
Label cie;
section
.Mark(&cie)
.CIEHeader(4873, 7012, 100, 1, "zSLPR")
.ULEB128(7) // Augmentation data length
.D8(lsda_encoding) // LSDA pointer format
.D8(dwarf2reader::DW_EH_PE_pcrel) // personality pointer format
.EncodedPointer(0x97baa00, dwarf2reader::DW_EH_PE_pcrel) // and value
.D8(fde_encoding) // FDE pointer format
.D8(dwarf2reader::DW_CFA_def_cfa).ULEB128(6706).ULEB128(31)
.FinishEntry()
.FDEHeader(cie, 0x540f6b56, 0xf686)
.ULEB128(2) // Augmentation data length
.EncodedPointer(0xe3eab475, lsda_encoding) // LSDA pointer, signed
.D8(dwarf2reader::DW_CFA_set_loc)
.EncodedPointer(0x540fa4ce, fde_encoding)
.D8(dwarf2reader::DW_CFA_undefined).ULEB128(0x675e)
.FinishEntry()
.D32(0); // terminator
PERHAPS_WRITE_EH_FRAME_FILE("EHFrame.SimpleFDE", section);
EXPECT_CALL(handler, Entry(_, 0x540f6b56, 0xf686, 1, "zSLPR", 100))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, PersonalityRoutine(0x97baa00, false))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, LanguageSpecificDataArea(0xe3eab475, true))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, SignalHandler())
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, ValOffsetRule(0x540f6b56, kCFARegister, 6706, 31))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, UndefinedRule(0x540fa4ce, 0x675e))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, End())
.InSequence(s).WillOnce(Return(true));
ParseEHFrameSection(&section);
}
// Check that we can handle an empty 'z' augmentation.
TEST_F(EHFrame, EmptyZ) {
Label cie;
section
.Mark(&cie)
.CIEHeader(5955, 5805, 228, 1, "z")
.ULEB128(0) // Augmentation data length
.D8(dwarf2reader::DW_CFA_def_cfa).ULEB128(3629).ULEB128(247)
.FinishEntry()
.FDEHeader(cie, 0xda007738, 0xfb55c641)
.ULEB128(0) // Augmentation data length
.D8(dwarf2reader::DW_CFA_advance_loc1).D8(11)
.D8(dwarf2reader::DW_CFA_undefined).ULEB128(3769)
.FinishEntry();
PERHAPS_WRITE_EH_FRAME_FILE("EHFrame.EmptyZ", section);
EXPECT_CALL(handler, Entry(_, 0xda007738, 0xfb55c641, 1, "z", 228))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, ValOffsetRule(0xda007738, kCFARegister, 3629, 247))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, UndefinedRule(0xda007738 + 11 * 5955, 3769))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, End())
.InSequence(s).WillOnce(Return(true));
ParseEHFrameSection(&section);
}
// Check that we recognize bad 'z' augmentation characters.
TEST_F(EHFrame, BadZ) {
Label cie;
section
.Mark(&cie)
.CIEHeader(6937, 1045, 142, 1, "zQ")
.ULEB128(0) // Augmentation data length
.D8(dwarf2reader::DW_CFA_def_cfa).ULEB128(9006).ULEB128(7725)
.FinishEntry()
.FDEHeader(cie, 0x1293efa8, 0x236f53f2)
.ULEB128(0) // Augmentation data length
.D8(dwarf2reader::DW_CFA_advance_loc | 12)
.D8(dwarf2reader::DW_CFA_register).ULEB128(5667).ULEB128(3462)
.FinishEntry();
PERHAPS_WRITE_EH_FRAME_FILE("EHFrame.BadZ", section);
EXPECT_CALL(reporter, UnrecognizedAugmentation(_, "zQ"))
.WillOnce(Return());
ParseEHFrameSection(&section, false);
}
TEST_F(EHFrame, zL) {
Label cie;
DwarfPointerEncoding lsda_encoding =
DwarfPointerEncoding(dwarf2reader::DW_EH_PE_funcrel
| dwarf2reader::DW_EH_PE_udata2);
section
.Mark(&cie)
.CIEHeader(9285, 9959, 54, 1, "zL")
.ULEB128(1) // Augmentation data length
.D8(lsda_encoding) // encoding for LSDA pointer in FDE
.FinishEntry()
.FDEHeader(cie, 0xd40091aa, 0x9aa6e746)
.ULEB128(2) // Augmentation data length
.EncodedPointer(0xd40099cd, lsda_encoding) // LSDA pointer
.FinishEntry()
.D32(0); // terminator
PERHAPS_WRITE_EH_FRAME_FILE("EHFrame.zL", section);
EXPECT_CALL(handler, Entry(_, 0xd40091aa, 0x9aa6e746, 1, "zL", 54))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, LanguageSpecificDataArea(0xd40099cd, false))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, End())
.InSequence(s).WillOnce(Return(true));
ParseEHFrameSection(&section);
}
TEST_F(EHFrame, zP) {
Label cie;
DwarfPointerEncoding personality_encoding =
DwarfPointerEncoding(dwarf2reader::DW_EH_PE_datarel
| dwarf2reader::DW_EH_PE_udata2);
section
.Mark(&cie)
.CIEHeader(1097, 6313, 17, 1, "zP")
.ULEB128(3) // Augmentation data length
.D8(personality_encoding) // encoding for personality routine
.EncodedPointer(0xe3eaccac, personality_encoding) // value
.FinishEntry()
.FDEHeader(cie, 0x0c8350c9, 0xbef11087)
.ULEB128(0) // Augmentation data length
.FinishEntry()
.D32(0); // terminator
PERHAPS_WRITE_EH_FRAME_FILE("EHFrame.zP", section);
EXPECT_CALL(handler, Entry(_, 0x0c8350c9, 0xbef11087, 1, "zP", 17))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, PersonalityRoutine(0xe3eaccac, false))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, End())
.InSequence(s).WillOnce(Return(true));
ParseEHFrameSection(&section);
}
TEST_F(EHFrame, zR) {
Label cie;
DwarfPointerEncoding pointer_encoding =
DwarfPointerEncoding(dwarf2reader::DW_EH_PE_textrel
| dwarf2reader::DW_EH_PE_sdata2);
section.SetPointerEncoding(pointer_encoding);
section
.Mark(&cie)
.CIEHeader(8011, 5496, 75, 1, "zR")
.ULEB128(1) // Augmentation data length
.D8(pointer_encoding) // encoding for FDE addresses
.FinishEntry()
.FDEHeader(cie, 0x540f9431, 0xbd0)
.ULEB128(0) // Augmentation data length
.FinishEntry()
.D32(0); // terminator
PERHAPS_WRITE_EH_FRAME_FILE("EHFrame.zR", section);
EXPECT_CALL(handler, Entry(_, 0x540f9431, 0xbd0, 1, "zR", 75))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, End())
.InSequence(s).WillOnce(Return(true));
ParseEHFrameSection(&section);
}
TEST_F(EHFrame, zS) {
Label cie;
section
.Mark(&cie)
.CIEHeader(9217, 7694, 57, 1, "zS")
.ULEB128(0) // Augmentation data length
.FinishEntry()
.FDEHeader(cie, 0xd40091aa, 0x9aa6e746)
.ULEB128(0) // Augmentation data length
.FinishEntry()
.D32(0); // terminator
PERHAPS_WRITE_EH_FRAME_FILE("EHFrame.zS", section);
EXPECT_CALL(handler, Entry(_, 0xd40091aa, 0x9aa6e746, 1, "zS", 57))
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, SignalHandler())
.InSequence(s).WillOnce(Return(true));
EXPECT_CALL(handler, End())
.InSequence(s).WillOnce(Return(true));
ParseEHFrameSection(&section);
}
// These tests require manual inspection of the test output.
struct CFIReporterFixture {
CFIReporterFixture() : reporter("test file name", "test section name") { }
CallFrameInfo::Reporter reporter;
};
class CFIReporter: public CFIReporterFixture, public Test { };
TEST_F(CFIReporter, Incomplete) {
reporter.Incomplete(0x0102030405060708ULL, CallFrameInfo::kUnknown);
}
TEST_F(CFIReporter, EarlyEHTerminator) {
reporter.EarlyEHTerminator(0x0102030405060708ULL);
}
TEST_F(CFIReporter, CIEPointerOutOfRange) {
reporter.CIEPointerOutOfRange(0x0123456789abcdefULL, 0xfedcba9876543210ULL);
}
TEST_F(CFIReporter, BadCIEId) {
reporter.BadCIEId(0x0123456789abcdefULL, 0xfedcba9876543210ULL);
}
TEST_F(CFIReporter, UnrecognizedVersion) {
reporter.UnrecognizedVersion(0x0123456789abcdefULL, 43);
}
TEST_F(CFIReporter, UnrecognizedAugmentation) {
reporter.UnrecognizedAugmentation(0x0123456789abcdefULL, "poodles");
}
TEST_F(CFIReporter, InvalidPointerEncoding) {
reporter.InvalidPointerEncoding(0x0123456789abcdefULL, 0x42);
}
TEST_F(CFIReporter, UnusablePointerEncoding) {
reporter.UnusablePointerEncoding(0x0123456789abcdefULL, 0x42);
}
TEST_F(CFIReporter, RestoreInCIE) {
reporter.RestoreInCIE(0x0123456789abcdefULL, 0xfedcba9876543210ULL);
}
TEST_F(CFIReporter, BadInstruction) {
reporter.BadInstruction(0x0123456789abcdefULL, CallFrameInfo::kFDE,
0xfedcba9876543210ULL);
}
TEST_F(CFIReporter, NoCFARule) {
reporter.NoCFARule(0x0123456789abcdefULL, CallFrameInfo::kCIE,
0xfedcba9876543210ULL);
}
TEST_F(CFIReporter, EmptyStateStack) {
reporter.EmptyStateStack(0x0123456789abcdefULL, CallFrameInfo::kTerminator,
0xfedcba9876543210ULL);
}
TEST_F(CFIReporter, ClearingCFARule) {
reporter.ClearingCFARule(0x0123456789abcdefULL, CallFrameInfo::kFDE,
0xfedcba9876543210ULL);
}
#ifdef WRITE_ELF
// See comments at the top of the file mentioning WRITE_ELF for details.
using google_breakpad::test_assembler::Section;
struct ELFSectionHeader {
ELFSectionHeader(unsigned int set_type)
: type(set_type), flags(0), address(0), link(0), info(0),
alignment(1), entry_size(0) { }
Label name;
unsigned int type;
uint64_t flags;
uint64_t address;
Label file_offset;
Label file_size;
unsigned int link;
unsigned int info;
uint64_t alignment;
uint64_t entry_size;
};
void AppendSectionHeader(CFISection *table, const ELFSectionHeader &header) {
(*table)
.D32(header.name) // name, index in string tbl
.D32(header.type) // type
.Address(header.flags) // flags
.Address(header.address) // address in memory
.Address(header.file_offset) // offset in ELF file
.Address(header.file_size) // length in bytes
.D32(header.link) // link to related section
.D32(header.info) // miscellaneous
.Address(header.alignment) // alignment
.Address(header.entry_size); // entry size
}
void WriteELFFrameSection(const char *filename, const char *cfi_name,
const CFISection &cfi) {
int elf_class = cfi.AddressSize() == 4 ? ELFCLASS32 : ELFCLASS64;
int elf_data = (cfi.endianness() == kBigEndian
? ELFDATA2MSB : ELFDATA2LSB);
CFISection elf(cfi.endianness(), cfi.AddressSize());
Label elf_header_size, section_table_offset;
elf
.Append("\x7f" "ELF")
.D8(elf_class) // 32-bit or 64-bit ELF
.D8(elf_data) // endianness
.D8(1) // ELF version
.D8(ELFOSABI_LINUX) // Operating System/ABI indication
.D8(0) // ABI version
.Append(7, 0xda) // padding
.D16(ET_EXEC) // file type: executable file
.D16(EM_386) // architecture: Intel IA-32
.D32(EV_CURRENT); // ELF version
elf
.Address(0x0123456789abcdefULL) // program entry point
.Address(0) // program header offset
.Address(section_table_offset) // section header offset
.D32(0) // processor-specific flags
.D16(elf_header_size) // ELF header size in bytes */
.D16(elf_class == ELFCLASS32 ? 32 : 56) // program header entry size
.D16(0) // program header table entry count
.D16(elf_class == ELFCLASS32 ? 40 : 64) // section header entry size
.D16(3) // section count
.D16(1) // section name string table
.Mark(&elf_header_size);
// The null section. Every ELF file has one, as the first entry in
// the section header table.
ELFSectionHeader null_header(SHT_NULL);
null_header.file_offset = 0;
null_header.file_size = 0;
// The CFI section. The whole reason for writing out this ELF file
// is to put this in it so that we can run other dumping programs on
// it to check its contents.
ELFSectionHeader cfi_header(SHT_PROGBITS);
cfi_header.file_size = cfi.Size();
// The section holding the names of the sections. This is the
// section whose index appears in the e_shstrndx member of the ELF
// header.
ELFSectionHeader section_names_header(SHT_STRTAB);
CFISection section_names(cfi.endianness(), cfi.AddressSize());
section_names
.Mark(&null_header.name)
.AppendCString("")
.Mark(&section_names_header.name)
.AppendCString(".shstrtab")
.Mark(&cfi_header.name)
.AppendCString(cfi_name)
.Mark(&section_names_header.file_size);
// Create the section table. The ELF header's e_shoff member refers
// to this, and the e_shnum member gives the number of entries it
// contains.
CFISection section_table(cfi.endianness(), cfi.AddressSize());
AppendSectionHeader(&section_table, null_header);
AppendSectionHeader(&section_table, section_names_header);
AppendSectionHeader(&section_table, cfi_header);
// Append the section table and the section contents to the ELF file.
elf
.Mark(&section_table_offset)
.Append(section_table)
.Mark(&section_names_header.file_offset)
.Append(section_names)
.Mark(&cfi_header.file_offset)
.Append(cfi);
string contents;
if (!elf.GetContents(&contents)) {
fprintf(stderr, "failed to get ELF file contents\n");
exit(1);
}
FILE *out = fopen(filename, "w");
if (!out) {
fprintf(stderr, "error opening ELF file '%s': %s\n",
filename, strerror(errno));
exit(1);
}
if (fwrite(contents.data(), 1, contents.size(), out) != contents.size()) {
fprintf(stderr, "error writing ELF data to '%s': %s\n",
filename, strerror(errno));
exit(1);
}
if (fclose(out) == EOF) {
fprintf(stderr, "error closing ELF file '%s': %s\n",
filename, strerror(errno));
exit(1);
}
}
#endif