| // Copyright (c) 2010, Google Inc. |
| // All rights reserved. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following disclaimer |
| // in the documentation and/or other materials provided with the |
| // distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| // This code writes out minidump files: |
| // http://msdn.microsoft.com/en-us/library/ms680378(VS.85,loband).aspx |
| // |
| // Minidumps are a Microsoft format which Breakpad uses for recording crash |
| // dumps. This code has to run in a compromised environment (the address space |
| // may have received SIGSEGV), thus the following rules apply: |
| // * You may not enter the dynamic linker. This means that we cannot call |
| // any symbols in a shared library (inc libc). Because of this we replace |
| // libc functions in linux_libc_support.h. |
| // * You may not call syscalls via the libc wrappers. This rule is a subset |
| // of the first rule but it bears repeating. We have direct wrappers |
| // around the system calls in linux_syscall_support.h. |
| // * You may not malloc. There's an alternative allocator in memory.h and |
| // a canonical instance in the LinuxDumper object. We use the placement |
| // new form to allocate objects and we don't delete them. |
| |
| #include "client/linux/handler/minidump_descriptor.h" |
| #include "client/linux/minidump_writer/minidump_writer.h" |
| #include "client/minidump_file_writer-inl.h" |
| |
| #include <ctype.h> |
| #include <errno.h> |
| #include <fcntl.h> |
| #include <link.h> |
| #include <stdio.h> |
| #if defined(__ANDROID__) |
| #include <sys/system_properties.h> |
| #endif |
| #include <sys/types.h> |
| #include <sys/ucontext.h> |
| #include <sys/user.h> |
| #include <sys/utsname.h> |
| #include <time.h> |
| #include <unistd.h> |
| |
| #include <algorithm> |
| |
| #include "client/linux/dump_writer_common/thread_info.h" |
| #include "client/linux/dump_writer_common/ucontext_reader.h" |
| #include "client/linux/handler/exception_handler.h" |
| #include "client/linux/minidump_writer/cpu_set.h" |
| #include "client/linux/minidump_writer/line_reader.h" |
| #include "client/linux/minidump_writer/linux_dumper.h" |
| #include "client/linux/minidump_writer/linux_ptrace_dumper.h" |
| #include "client/linux/minidump_writer/proc_cpuinfo_reader.h" |
| #include "client/minidump_file_writer.h" |
| #include "common/linux/file_id.h" |
| #include "common/linux/linux_libc_support.h" |
| #include "common/minidump_type_helper.h" |
| #include "google_breakpad/common/minidump_format.h" |
| #include "third_party/lss/linux_syscall_support.h" |
| |
| namespace { |
| |
| using google_breakpad::AppMemoryList; |
| using google_breakpad::auto_wasteful_vector; |
| using google_breakpad::ExceptionHandler; |
| using google_breakpad::CpuSet; |
| using google_breakpad::kDefaultBuildIdSize; |
| using google_breakpad::LineReader; |
| using google_breakpad::LinuxDumper; |
| using google_breakpad::LinuxPtraceDumper; |
| using google_breakpad::MDTypeHelper; |
| using google_breakpad::MappingEntry; |
| using google_breakpad::MappingInfo; |
| using google_breakpad::MappingList; |
| using google_breakpad::MinidumpFileWriter; |
| using google_breakpad::PageAllocator; |
| using google_breakpad::ProcCpuInfoReader; |
| using google_breakpad::RawContextCPU; |
| using google_breakpad::ThreadInfo; |
| using google_breakpad::TypedMDRVA; |
| using google_breakpad::UContextReader; |
| using google_breakpad::UntypedMDRVA; |
| using google_breakpad::wasteful_vector; |
| |
| typedef MDTypeHelper<sizeof(void*)>::MDRawDebug MDRawDebug; |
| typedef MDTypeHelper<sizeof(void*)>::MDRawLinkMap MDRawLinkMap; |
| |
| class MinidumpWriter { |
| public: |
| // The following kLimit* constants are for when minidump_size_limit_ is set |
| // and the minidump size might exceed it. |
| // |
| // Estimate for how big each thread's stack will be (in bytes). |
| static const unsigned kLimitAverageThreadStackLength = 8 * 1024; |
| // Number of threads whose stack size we don't want to limit. These base |
| // threads will simply be the first N threads returned by the dumper (although |
| // the crashing thread will never be limited). Threads beyond this count are |
| // the extra threads. |
| static const unsigned kLimitBaseThreadCount = 20; |
| // Maximum stack size to dump for any extra thread (in bytes). |
| static const unsigned kLimitMaxExtraThreadStackLen = 2 * 1024; |
| // Make sure this number of additional bytes can fit in the minidump |
| // (exclude the stack data). |
| static const unsigned kLimitMinidumpFudgeFactor = 64 * 1024; |
| |
| MinidumpWriter(const char* minidump_path, |
| int minidump_fd, |
| const ExceptionHandler::CrashContext* context, |
| const MappingList& mappings, |
| const AppMemoryList& appmem, |
| bool skip_stacks_if_mapping_unreferenced, |
| uintptr_t principal_mapping_address, |
| bool sanitize_stacks, |
| LinuxDumper* dumper) |
| : fd_(minidump_fd), |
| path_(minidump_path), |
| ucontext_(context ? &context->context : NULL), |
| #if !defined(__ARM_EABI__) && !defined(__mips__) |
| float_state_(context ? &context->float_state : NULL), |
| #endif |
| dumper_(dumper), |
| minidump_size_limit_(-1), |
| memory_blocks_(dumper_->allocator()), |
| mapping_list_(mappings), |
| app_memory_list_(appmem), |
| skip_stacks_if_mapping_unreferenced_( |
| skip_stacks_if_mapping_unreferenced), |
| principal_mapping_address_(principal_mapping_address), |
| principal_mapping_(nullptr), |
| sanitize_stacks_(sanitize_stacks) { |
| // Assert there should be either a valid fd or a valid path, not both. |
| assert(fd_ != -1 || minidump_path); |
| assert(fd_ == -1 || !minidump_path); |
| } |
| |
| bool Init() { |
| if (!dumper_->Init()) |
| return false; |
| |
| if (!dumper_->ThreadsSuspend() || !dumper_->LateInit()) |
| return false; |
| |
| if (skip_stacks_if_mapping_unreferenced_) { |
| principal_mapping_ = |
| dumper_->FindMappingNoBias(principal_mapping_address_); |
| if (!CrashingThreadReferencesPrincipalMapping()) |
| return false; |
| } |
| |
| if (fd_ != -1) |
| minidump_writer_.SetFile(fd_); |
| else if (!minidump_writer_.Open(path_)) |
| return false; |
| |
| return true; |
| } |
| |
| ~MinidumpWriter() { |
| // Don't close the file descriptor when it's been provided explicitly. |
| // Callers might still need to use it. |
| if (fd_ == -1) |
| minidump_writer_.Close(); |
| dumper_->ThreadsResume(); |
| } |
| |
| bool CrashingThreadReferencesPrincipalMapping() { |
| if (!ucontext_ || !principal_mapping_) |
| return false; |
| |
| const uintptr_t low_addr = |
| principal_mapping_->system_mapping_info.start_addr; |
| const uintptr_t high_addr = |
| principal_mapping_->system_mapping_info.end_addr; |
| |
| const uintptr_t stack_pointer = UContextReader::GetStackPointer(ucontext_); |
| const uintptr_t pc = UContextReader::GetInstructionPointer(ucontext_); |
| |
| if (pc >= low_addr && pc < high_addr) |
| return true; |
| |
| uint8_t* stack_copy; |
| const void* stack; |
| size_t stack_len; |
| |
| if (!dumper_->GetStackInfo(&stack, &stack_len, stack_pointer)) |
| return false; |
| |
| stack_copy = reinterpret_cast<uint8_t*>(Alloc(stack_len)); |
| dumper_->CopyFromProcess(stack_copy, GetCrashThread(), stack, stack_len); |
| |
| uintptr_t stack_pointer_offset = |
| stack_pointer - reinterpret_cast<uintptr_t>(stack); |
| |
| return dumper_->StackHasPointerToMapping( |
| stack_copy, stack_len, stack_pointer_offset, *principal_mapping_); |
| } |
| |
| bool Dump() { |
| // A minidump file contains a number of tagged streams. This is the number |
| // of stream which we write. |
| unsigned kNumWriters = 13; |
| |
| TypedMDRVA<MDRawDirectory> dir(&minidump_writer_); |
| { |
| // Ensure the header gets flushed, as that happens in the destructor. |
| // If a crash occurs somewhere below, at least the header will be |
| // intact. |
| TypedMDRVA<MDRawHeader> header(&minidump_writer_); |
| if (!header.Allocate()) |
| return false; |
| |
| if (!dir.AllocateArray(kNumWriters)) |
| return false; |
| |
| my_memset(header.get(), 0, sizeof(MDRawHeader)); |
| |
| header.get()->signature = MD_HEADER_SIGNATURE; |
| header.get()->version = MD_HEADER_VERSION; |
| header.get()->time_date_stamp = time(NULL); |
| header.get()->stream_count = kNumWriters; |
| header.get()->stream_directory_rva = dir.position(); |
| } |
| |
| unsigned dir_index = 0; |
| MDRawDirectory dirent; |
| |
| if (!WriteThreadListStream(&dirent)) |
| return false; |
| dir.CopyIndex(dir_index++, &dirent); |
| |
| if (!WriteMappings(&dirent)) |
| return false; |
| dir.CopyIndex(dir_index++, &dirent); |
| |
| if (!WriteAppMemory()) |
| return false; |
| |
| if (!WriteMemoryListStream(&dirent)) |
| return false; |
| dir.CopyIndex(dir_index++, &dirent); |
| |
| if (!WriteExceptionStream(&dirent)) |
| return false; |
| dir.CopyIndex(dir_index++, &dirent); |
| |
| if (!WriteSystemInfoStream(&dirent)) |
| return false; |
| dir.CopyIndex(dir_index++, &dirent); |
| |
| dirent.stream_type = MD_LINUX_CPU_INFO; |
| if (!WriteFile(&dirent.location, "/proc/cpuinfo")) |
| NullifyDirectoryEntry(&dirent); |
| dir.CopyIndex(dir_index++, &dirent); |
| |
| dirent.stream_type = MD_LINUX_PROC_STATUS; |
| if (!WriteProcFile(&dirent.location, GetCrashThread(), "status")) |
| NullifyDirectoryEntry(&dirent); |
| dir.CopyIndex(dir_index++, &dirent); |
| |
| dirent.stream_type = MD_LINUX_LSB_RELEASE; |
| if (!WriteFile(&dirent.location, "/etc/lsb-release")) |
| NullifyDirectoryEntry(&dirent); |
| dir.CopyIndex(dir_index++, &dirent); |
| |
| dirent.stream_type = MD_LINUX_CMD_LINE; |
| if (!WriteProcFile(&dirent.location, GetCrashThread(), "cmdline")) |
| NullifyDirectoryEntry(&dirent); |
| dir.CopyIndex(dir_index++, &dirent); |
| |
| dirent.stream_type = MD_LINUX_ENVIRON; |
| if (!WriteProcFile(&dirent.location, GetCrashThread(), "environ")) |
| NullifyDirectoryEntry(&dirent); |
| dir.CopyIndex(dir_index++, &dirent); |
| |
| dirent.stream_type = MD_LINUX_AUXV; |
| if (!WriteProcFile(&dirent.location, GetCrashThread(), "auxv")) |
| NullifyDirectoryEntry(&dirent); |
| dir.CopyIndex(dir_index++, &dirent); |
| |
| dirent.stream_type = MD_LINUX_MAPS; |
| if (!WriteProcFile(&dirent.location, GetCrashThread(), "maps")) |
| NullifyDirectoryEntry(&dirent); |
| dir.CopyIndex(dir_index++, &dirent); |
| |
| dirent.stream_type = MD_LINUX_DSO_DEBUG; |
| if (!WriteDSODebugStream(&dirent)) |
| NullifyDirectoryEntry(&dirent); |
| dir.CopyIndex(dir_index++, &dirent); |
| |
| // If you add more directory entries, don't forget to update kNumWriters, |
| // above. |
| |
| dumper_->ThreadsResume(); |
| return true; |
| } |
| |
| bool FillThreadStack(MDRawThread* thread, uintptr_t stack_pointer, |
| uintptr_t pc, int max_stack_len, uint8_t** stack_copy) { |
| *stack_copy = NULL; |
| const void* stack; |
| size_t stack_len; |
| |
| thread->stack.start_of_memory_range = stack_pointer; |
| thread->stack.memory.data_size = 0; |
| thread->stack.memory.rva = minidump_writer_.position(); |
| |
| if (dumper_->GetStackInfo(&stack, &stack_len, stack_pointer)) { |
| if (max_stack_len >= 0 && |
| stack_len > static_cast<unsigned int>(max_stack_len)) { |
| stack_len = max_stack_len; |
| // Skip empty chunks of length max_stack_len. |
| uintptr_t int_stack = reinterpret_cast<uintptr_t>(stack); |
| if (max_stack_len > 0) { |
| while (int_stack + max_stack_len < stack_pointer) { |
| int_stack += max_stack_len; |
| } |
| } |
| stack = reinterpret_cast<const void*>(int_stack); |
| } |
| *stack_copy = reinterpret_cast<uint8_t*>(Alloc(stack_len)); |
| dumper_->CopyFromProcess(*stack_copy, thread->thread_id, stack, |
| stack_len); |
| |
| uintptr_t stack_pointer_offset = |
| stack_pointer - reinterpret_cast<uintptr_t>(stack); |
| if (skip_stacks_if_mapping_unreferenced_) { |
| if (!principal_mapping_) { |
| return true; |
| } |
| uintptr_t low_addr = principal_mapping_->system_mapping_info.start_addr; |
| uintptr_t high_addr = principal_mapping_->system_mapping_info.end_addr; |
| if ((pc < low_addr || pc > high_addr) && |
| !dumper_->StackHasPointerToMapping(*stack_copy, stack_len, |
| stack_pointer_offset, |
| *principal_mapping_)) { |
| return true; |
| } |
| } |
| |
| if (sanitize_stacks_) { |
| dumper_->SanitizeStackCopy(*stack_copy, stack_len, stack_pointer, |
| stack_pointer_offset); |
| } |
| |
| UntypedMDRVA memory(&minidump_writer_); |
| if (!memory.Allocate(stack_len)) |
| return false; |
| memory.Copy(*stack_copy, stack_len); |
| thread->stack.start_of_memory_range = reinterpret_cast<uintptr_t>(stack); |
| thread->stack.memory = memory.location(); |
| memory_blocks_.push_back(thread->stack); |
| } |
| return true; |
| } |
| |
| // Write information about the threads. |
| bool WriteThreadListStream(MDRawDirectory* dirent) { |
| const unsigned num_threads = dumper_->threads().size(); |
| |
| TypedMDRVA<uint32_t> list(&minidump_writer_); |
| if (!list.AllocateObjectAndArray(num_threads, sizeof(MDRawThread))) |
| return false; |
| |
| dirent->stream_type = MD_THREAD_LIST_STREAM; |
| dirent->location = list.location(); |
| |
| *list.get() = num_threads; |
| |
| // If there's a minidump size limit, check if it might be exceeded. Since |
| // most of the space is filled with stack data, just check against that. |
| // If this expects to exceed the limit, set extra_thread_stack_len such |
| // that any thread beyond the first kLimitBaseThreadCount threads will |
| // have only kLimitMaxExtraThreadStackLen bytes dumped. |
| int extra_thread_stack_len = -1; // default to no maximum |
| if (minidump_size_limit_ >= 0) { |
| const unsigned estimated_total_stack_size = num_threads * |
| kLimitAverageThreadStackLength; |
| const off_t estimated_minidump_size = minidump_writer_.position() + |
| estimated_total_stack_size + kLimitMinidumpFudgeFactor; |
| if (estimated_minidump_size > minidump_size_limit_) |
| extra_thread_stack_len = kLimitMaxExtraThreadStackLen; |
| } |
| |
| for (unsigned i = 0; i < num_threads; ++i) { |
| MDRawThread thread; |
| my_memset(&thread, 0, sizeof(thread)); |
| thread.thread_id = dumper_->threads()[i]; |
| |
| // We have a different source of information for the crashing thread. If |
| // we used the actual state of the thread we would find it running in the |
| // signal handler with the alternative stack, which would be deeply |
| // unhelpful. |
| if (static_cast<pid_t>(thread.thread_id) == GetCrashThread() && |
| ucontext_ && |
| !dumper_->IsPostMortem()) { |
| uint8_t* stack_copy; |
| const uintptr_t stack_ptr = UContextReader::GetStackPointer(ucontext_); |
| if (!FillThreadStack(&thread, stack_ptr, |
| UContextReader::GetInstructionPointer(ucontext_), |
| -1, &stack_copy)) |
| return false; |
| |
| // Copy 256 bytes around crashing instruction pointer to minidump. |
| const size_t kIPMemorySize = 256; |
| uint64_t ip = UContextReader::GetInstructionPointer(ucontext_); |
| // Bound it to the upper and lower bounds of the memory map |
| // it's contained within. If it's not in mapped memory, |
| // don't bother trying to write it. |
| bool ip_is_mapped = false; |
| MDMemoryDescriptor ip_memory_d; |
| for (unsigned j = 0; j < dumper_->mappings().size(); ++j) { |
| const MappingInfo& mapping = *dumper_->mappings()[j]; |
| if (ip >= mapping.start_addr && |
| ip < mapping.start_addr + mapping.size) { |
| ip_is_mapped = true; |
| // Try to get 128 bytes before and after the IP, but |
| // settle for whatever's available. |
| ip_memory_d.start_of_memory_range = |
| std::max(mapping.start_addr, |
| uintptr_t(ip - (kIPMemorySize / 2))); |
| uintptr_t end_of_range = |
| std::min(uintptr_t(ip + (kIPMemorySize / 2)), |
| uintptr_t(mapping.start_addr + mapping.size)); |
| ip_memory_d.memory.data_size = |
| end_of_range - ip_memory_d.start_of_memory_range; |
| break; |
| } |
| } |
| |
| if (ip_is_mapped) { |
| UntypedMDRVA ip_memory(&minidump_writer_); |
| if (!ip_memory.Allocate(ip_memory_d.memory.data_size)) |
| return false; |
| uint8_t* memory_copy = |
| reinterpret_cast<uint8_t*>(Alloc(ip_memory_d.memory.data_size)); |
| dumper_->CopyFromProcess( |
| memory_copy, |
| thread.thread_id, |
| reinterpret_cast<void*>(ip_memory_d.start_of_memory_range), |
| ip_memory_d.memory.data_size); |
| ip_memory.Copy(memory_copy, ip_memory_d.memory.data_size); |
| ip_memory_d.memory = ip_memory.location(); |
| memory_blocks_.push_back(ip_memory_d); |
| } |
| |
| TypedMDRVA<RawContextCPU> cpu(&minidump_writer_); |
| if (!cpu.Allocate()) |
| return false; |
| my_memset(cpu.get(), 0, sizeof(RawContextCPU)); |
| #if !defined(__ARM_EABI__) && !defined(__mips__) |
| UContextReader::FillCPUContext(cpu.get(), ucontext_, float_state_); |
| #else |
| UContextReader::FillCPUContext(cpu.get(), ucontext_); |
| #endif |
| thread.thread_context = cpu.location(); |
| crashing_thread_context_ = cpu.location(); |
| } else { |
| ThreadInfo info; |
| if (!dumper_->GetThreadInfoByIndex(i, &info)) |
| return false; |
| |
| uint8_t* stack_copy; |
| int max_stack_len = -1; // default to no maximum for this thread |
| if (minidump_size_limit_ >= 0 && i >= kLimitBaseThreadCount) |
| max_stack_len = extra_thread_stack_len; |
| if (!FillThreadStack(&thread, info.stack_pointer, |
| info.GetInstructionPointer(), max_stack_len, |
| &stack_copy)) |
| return false; |
| |
| TypedMDRVA<RawContextCPU> cpu(&minidump_writer_); |
| if (!cpu.Allocate()) |
| return false; |
| my_memset(cpu.get(), 0, sizeof(RawContextCPU)); |
| info.FillCPUContext(cpu.get()); |
| thread.thread_context = cpu.location(); |
| if (dumper_->threads()[i] == GetCrashThread()) { |
| crashing_thread_context_ = cpu.location(); |
| if (!dumper_->IsPostMortem()) { |
| // This is the crashing thread of a live process, but |
| // no context was provided, so set the crash address |
| // while the instruction pointer is already here. |
| dumper_->set_crash_address(info.GetInstructionPointer()); |
| } |
| } |
| } |
| |
| list.CopyIndexAfterObject(i, &thread, sizeof(thread)); |
| } |
| |
| return true; |
| } |
| |
| // Write application-provided memory regions. |
| bool WriteAppMemory() { |
| for (AppMemoryList::const_iterator iter = app_memory_list_.begin(); |
| iter != app_memory_list_.end(); |
| ++iter) { |
| uint8_t* data_copy = |
| reinterpret_cast<uint8_t*>(dumper_->allocator()->Alloc(iter->length)); |
| dumper_->CopyFromProcess(data_copy, GetCrashThread(), iter->ptr, |
| iter->length); |
| |
| UntypedMDRVA memory(&minidump_writer_); |
| if (!memory.Allocate(iter->length)) { |
| return false; |
| } |
| memory.Copy(data_copy, iter->length); |
| MDMemoryDescriptor desc; |
| desc.start_of_memory_range = reinterpret_cast<uintptr_t>(iter->ptr); |
| desc.memory = memory.location(); |
| memory_blocks_.push_back(desc); |
| } |
| |
| return true; |
| } |
| |
| static bool ShouldIncludeMapping(const MappingInfo& mapping) { |
| if (mapping.name[0] == 0 || // only want modules with filenames. |
| // Only want to include one mapping per shared lib. |
| // Avoid filtering executable mappings. |
| (mapping.offset != 0 && !mapping.exec) || |
| mapping.size < 4096) { // too small to get a signature for. |
| return false; |
| } |
| |
| return true; |
| } |
| |
| // If there is caller-provided information about this mapping |
| // in the mapping_list_ list, return true. Otherwise, return false. |
| bool HaveMappingInfo(const MappingInfo& mapping) { |
| for (MappingList::const_iterator iter = mapping_list_.begin(); |
| iter != mapping_list_.end(); |
| ++iter) { |
| // Ignore any mappings that are wholly contained within |
| // mappings in the mapping_info_ list. |
| if (mapping.start_addr >= iter->first.start_addr && |
| (mapping.start_addr + mapping.size) <= |
| (iter->first.start_addr + iter->first.size)) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| // Write information about the mappings in effect. Because we are using the |
| // minidump format, the information about the mappings is pretty limited. |
| // Because of this, we also include the full, unparsed, /proc/$x/maps file in |
| // another stream in the file. |
| bool WriteMappings(MDRawDirectory* dirent) { |
| const unsigned num_mappings = dumper_->mappings().size(); |
| unsigned num_output_mappings = mapping_list_.size(); |
| |
| for (unsigned i = 0; i < dumper_->mappings().size(); ++i) { |
| const MappingInfo& mapping = *dumper_->mappings()[i]; |
| if (ShouldIncludeMapping(mapping) && !HaveMappingInfo(mapping)) |
| num_output_mappings++; |
| } |
| |
| TypedMDRVA<uint32_t> list(&minidump_writer_); |
| if (num_output_mappings) { |
| if (!list.AllocateObjectAndArray(num_output_mappings, MD_MODULE_SIZE)) |
| return false; |
| } else { |
| // Still create the module list stream, although it will have zero |
| // modules. |
| if (!list.Allocate()) |
| return false; |
| } |
| |
| dirent->stream_type = MD_MODULE_LIST_STREAM; |
| dirent->location = list.location(); |
| *list.get() = num_output_mappings; |
| |
| // First write all the mappings from the dumper |
| unsigned int j = 0; |
| for (unsigned i = 0; i < num_mappings; ++i) { |
| const MappingInfo& mapping = *dumper_->mappings()[i]; |
| if (!ShouldIncludeMapping(mapping) || HaveMappingInfo(mapping)) |
| continue; |
| |
| MDRawModule mod; |
| if (!FillRawModule(mapping, true, i, &mod, NULL)) |
| return false; |
| list.CopyIndexAfterObject(j++, &mod, MD_MODULE_SIZE); |
| } |
| // Next write all the mappings provided by the caller |
| for (MappingList::const_iterator iter = mapping_list_.begin(); |
| iter != mapping_list_.end(); |
| ++iter) { |
| MDRawModule mod; |
| if (!FillRawModule(iter->first, false, 0, &mod, iter->second)) |
| return false; |
| list.CopyIndexAfterObject(j++, &mod, MD_MODULE_SIZE); |
| } |
| |
| return true; |
| } |
| |
| // Fill the MDRawModule |mod| with information about the provided |
| // |mapping|. If |identifier| is non-NULL, use it instead of calculating |
| // a file ID from the mapping. |
| bool FillRawModule(const MappingInfo& mapping, |
| bool member, |
| unsigned int mapping_id, |
| MDRawModule* mod, |
| const uint8_t* identifier) { |
| my_memset(mod, 0, MD_MODULE_SIZE); |
| |
| mod->base_of_image = mapping.start_addr; |
| mod->size_of_image = mapping.size; |
| |
| auto_wasteful_vector<uint8_t, kDefaultBuildIdSize> identifier_bytes( |
| dumper_->allocator()); |
| |
| if (identifier) { |
| // GUID was provided by caller. |
| identifier_bytes.insert(identifier_bytes.end(), |
| identifier, |
| identifier + sizeof(MDGUID)); |
| } else { |
| // Note: ElfFileIdentifierForMapping() can manipulate the |mapping.name|. |
| dumper_->ElfFileIdentifierForMapping(mapping, |
| member, |
| mapping_id, |
| identifier_bytes); |
| } |
| |
| if (!identifier_bytes.empty()) { |
| UntypedMDRVA cv(&minidump_writer_); |
| if (!cv.Allocate(MDCVInfoELF_minsize + identifier_bytes.size())) |
| return false; |
| |
| const uint32_t cv_signature = MD_CVINFOELF_SIGNATURE; |
| cv.Copy(&cv_signature, sizeof(cv_signature)); |
| cv.Copy(cv.position() + sizeof(cv_signature), &identifier_bytes[0], |
| identifier_bytes.size()); |
| |
| mod->cv_record = cv.location(); |
| } |
| |
| char file_name[NAME_MAX]; |
| char file_path[NAME_MAX]; |
| dumper_->GetMappingEffectiveNameAndPath( |
| mapping, file_path, sizeof(file_path), file_name, sizeof(file_name)); |
| |
| MDLocationDescriptor ld; |
| if (!minidump_writer_.WriteString(file_path, my_strlen(file_path), &ld)) |
| return false; |
| mod->module_name_rva = ld.rva; |
| return true; |
| } |
| |
| bool WriteMemoryListStream(MDRawDirectory* dirent) { |
| TypedMDRVA<uint32_t> list(&minidump_writer_); |
| if (memory_blocks_.size()) { |
| if (!list.AllocateObjectAndArray(memory_blocks_.size(), |
| sizeof(MDMemoryDescriptor))) |
| return false; |
| } else { |
| // Still create the memory list stream, although it will have zero |
| // memory blocks. |
| if (!list.Allocate()) |
| return false; |
| } |
| |
| dirent->stream_type = MD_MEMORY_LIST_STREAM; |
| dirent->location = list.location(); |
| |
| *list.get() = memory_blocks_.size(); |
| |
| for (size_t i = 0; i < memory_blocks_.size(); ++i) { |
| list.CopyIndexAfterObject(i, &memory_blocks_[i], |
| sizeof(MDMemoryDescriptor)); |
| } |
| return true; |
| } |
| |
| bool WriteExceptionStream(MDRawDirectory* dirent) { |
| TypedMDRVA<MDRawExceptionStream> exc(&minidump_writer_); |
| if (!exc.Allocate()) |
| return false; |
| |
| MDRawExceptionStream* stream = exc.get(); |
| my_memset(stream, 0, sizeof(MDRawExceptionStream)); |
| |
| dirent->stream_type = MD_EXCEPTION_STREAM; |
| dirent->location = exc.location(); |
| |
| stream->thread_id = GetCrashThread(); |
| stream->exception_record.exception_code = dumper_->crash_signal(); |
| stream->exception_record.exception_flags = dumper_->crash_signal_code(); |
| stream->exception_record.exception_address = dumper_->crash_address(); |
| const std::vector<uint64_t> crash_exception_info = |
| dumper_->crash_exception_info(); |
| stream->exception_record.number_parameters = crash_exception_info.size(); |
| memcpy(stream->exception_record.exception_information, |
| crash_exception_info.data(), |
| sizeof(uint64_t) * crash_exception_info.size()); |
| stream->thread_context = crashing_thread_context_; |
| |
| return true; |
| } |
| |
| bool WriteSystemInfoStream(MDRawDirectory* dirent) { |
| TypedMDRVA<MDRawSystemInfo> si(&minidump_writer_); |
| if (!si.Allocate()) |
| return false; |
| my_memset(si.get(), 0, sizeof(MDRawSystemInfo)); |
| |
| dirent->stream_type = MD_SYSTEM_INFO_STREAM; |
| dirent->location = si.location(); |
| |
| WriteCPUInformation(si.get()); |
| WriteOSInformation(si.get()); |
| |
| return true; |
| } |
| |
| bool WriteDSODebugStream(MDRawDirectory* dirent) { |
| ElfW(Phdr)* phdr = reinterpret_cast<ElfW(Phdr) *>(dumper_->auxv()[AT_PHDR]); |
| char* base; |
| int phnum = dumper_->auxv()[AT_PHNUM]; |
| if (!phnum || !phdr) |
| return false; |
| |
| // Assume the program base is at the beginning of the same page as the PHDR |
| base = reinterpret_cast<char *>(reinterpret_cast<uintptr_t>(phdr) & ~0xfff); |
| |
| // Search for the program PT_DYNAMIC segment |
| ElfW(Addr) dyn_addr = 0; |
| for (; phnum >= 0; phnum--, phdr++) { |
| ElfW(Phdr) ph; |
| if (!dumper_->CopyFromProcess(&ph, GetCrashThread(), phdr, sizeof(ph))) |
| return false; |
| |
| // Adjust base address with the virtual address of the PT_LOAD segment |
| // corresponding to offset 0 |
| if (ph.p_type == PT_LOAD && ph.p_offset == 0) { |
| base -= ph.p_vaddr; |
| } |
| if (ph.p_type == PT_DYNAMIC) { |
| dyn_addr = ph.p_vaddr; |
| } |
| } |
| if (!dyn_addr) |
| return false; |
| |
| ElfW(Dyn) *dynamic = reinterpret_cast<ElfW(Dyn) *>(dyn_addr + base); |
| |
| // The dynamic linker makes information available that helps gdb find all |
| // DSOs loaded into the program. If this information is indeed available, |
| // dump it to a MD_LINUX_DSO_DEBUG stream. |
| struct r_debug* r_debug = NULL; |
| uint32_t dynamic_length = 0; |
| |
| for (int i = 0; ; ++i) { |
| ElfW(Dyn) dyn; |
| dynamic_length += sizeof(dyn); |
| if (!dumper_->CopyFromProcess(&dyn, GetCrashThread(), dynamic + i, |
| sizeof(dyn))) { |
| return false; |
| } |
| |
| #ifdef __mips__ |
| const int32_t debug_tag = DT_MIPS_RLD_MAP; |
| #else |
| const int32_t debug_tag = DT_DEBUG; |
| #endif |
| if (dyn.d_tag == debug_tag) { |
| r_debug = reinterpret_cast<struct r_debug*>(dyn.d_un.d_ptr); |
| continue; |
| } else if (dyn.d_tag == DT_NULL) { |
| break; |
| } |
| } |
| |
| // The "r_map" field of that r_debug struct contains a linked list of all |
| // loaded DSOs. |
| // Our list of DSOs potentially is different from the ones in the crashing |
| // process. So, we have to be careful to never dereference pointers |
| // directly. Instead, we use CopyFromProcess() everywhere. |
| // See <link.h> for a more detailed discussion of the how the dynamic |
| // loader communicates with debuggers. |
| |
| // Count the number of loaded DSOs |
| int dso_count = 0; |
| struct r_debug debug_entry; |
| if (!dumper_->CopyFromProcess(&debug_entry, GetCrashThread(), r_debug, |
| sizeof(debug_entry))) { |
| return false; |
| } |
| for (struct link_map* ptr = debug_entry.r_map; ptr; ) { |
| struct link_map map; |
| if (!dumper_->CopyFromProcess(&map, GetCrashThread(), ptr, sizeof(map))) |
| return false; |
| |
| ptr = map.l_next; |
| dso_count++; |
| } |
| |
| MDRVA linkmap_rva = minidump_writer_.kInvalidMDRVA; |
| if (dso_count > 0) { |
| // If we have at least one DSO, create an array of MDRawLinkMap |
| // entries in the minidump file. |
| TypedMDRVA<MDRawLinkMap> linkmap(&minidump_writer_); |
| if (!linkmap.AllocateArray(dso_count)) |
| return false; |
| linkmap_rva = linkmap.location().rva; |
| int idx = 0; |
| |
| // Iterate over DSOs and write their information to mini dump |
| for (struct link_map* ptr = debug_entry.r_map; ptr; ) { |
| struct link_map map; |
| if (!dumper_->CopyFromProcess(&map, GetCrashThread(), ptr, sizeof(map))) |
| return false; |
| |
| ptr = map.l_next; |
| char filename[257] = { 0 }; |
| if (map.l_name) { |
| dumper_->CopyFromProcess(filename, GetCrashThread(), map.l_name, |
| sizeof(filename) - 1); |
| } |
| MDLocationDescriptor location; |
| if (!minidump_writer_.WriteString(filename, 0, &location)) |
| return false; |
| MDRawLinkMap entry; |
| entry.name = location.rva; |
| entry.addr = map.l_addr; |
| entry.ld = reinterpret_cast<uintptr_t>(map.l_ld); |
| linkmap.CopyIndex(idx++, &entry); |
| } |
| } |
| |
| // Write MD_LINUX_DSO_DEBUG record |
| TypedMDRVA<MDRawDebug> debug(&minidump_writer_); |
| if (!debug.AllocateObjectAndArray(1, dynamic_length)) |
| return false; |
| my_memset(debug.get(), 0, sizeof(MDRawDebug)); |
| dirent->stream_type = MD_LINUX_DSO_DEBUG; |
| dirent->location = debug.location(); |
| |
| debug.get()->version = debug_entry.r_version; |
| debug.get()->map = linkmap_rva; |
| debug.get()->dso_count = dso_count; |
| debug.get()->brk = debug_entry.r_brk; |
| debug.get()->ldbase = debug_entry.r_ldbase; |
| debug.get()->dynamic = reinterpret_cast<uintptr_t>(dynamic); |
| |
| wasteful_vector<char> dso_debug_data(dumper_->allocator(), dynamic_length); |
| // The passed-in size to the constructor (above) is only a hint. |
| // Must call .resize() to do actual initialization of the elements. |
| dso_debug_data.resize(dynamic_length); |
| dumper_->CopyFromProcess(&dso_debug_data[0], GetCrashThread(), dynamic, |
| dynamic_length); |
| debug.CopyIndexAfterObject(0, &dso_debug_data[0], dynamic_length); |
| |
| return true; |
| } |
| |
| void set_minidump_size_limit(off_t limit) { minidump_size_limit_ = limit; } |
| |
| private: |
| void* Alloc(unsigned bytes) { |
| return dumper_->allocator()->Alloc(bytes); |
| } |
| |
| pid_t GetCrashThread() const { |
| return dumper_->crash_thread(); |
| } |
| |
| void NullifyDirectoryEntry(MDRawDirectory* dirent) { |
| dirent->stream_type = 0; |
| dirent->location.data_size = 0; |
| dirent->location.rva = 0; |
| } |
| |
| #if defined(__i386__) || defined(__x86_64__) || defined(__mips__) |
| bool WriteCPUInformation(MDRawSystemInfo* sys_info) { |
| char vendor_id[sizeof(sys_info->cpu.x86_cpu_info.vendor_id) + 1] = {0}; |
| static const char vendor_id_name[] = "vendor_id"; |
| |
| struct CpuInfoEntry { |
| const char* info_name; |
| int value; |
| bool found; |
| } cpu_info_table[] = { |
| { "processor", -1, false }, |
| #if defined(__i386__) || defined(__x86_64__) |
| { "model", 0, false }, |
| { "stepping", 0, false }, |
| { "cpu family", 0, false }, |
| #endif |
| }; |
| |
| // processor_architecture should always be set, do this first |
| sys_info->processor_architecture = |
| #if defined(__mips__) |
| # if _MIPS_SIM == _ABIO32 |
| MD_CPU_ARCHITECTURE_MIPS; |
| # elif _MIPS_SIM == _ABI64 |
| MD_CPU_ARCHITECTURE_MIPS64; |
| # else |
| # error "This mips ABI is currently not supported (n32)" |
| #endif |
| #elif defined(__i386__) |
| MD_CPU_ARCHITECTURE_X86; |
| #else |
| MD_CPU_ARCHITECTURE_AMD64; |
| #endif |
| |
| const int fd = sys_open("/proc/cpuinfo", O_RDONLY, 0); |
| if (fd < 0) |
| return false; |
| |
| { |
| PageAllocator allocator; |
| ProcCpuInfoReader* const reader = new(allocator) ProcCpuInfoReader(fd); |
| const char* field; |
| while (reader->GetNextField(&field)) { |
| bool is_first_entry = true; |
| for (CpuInfoEntry& entry : cpu_info_table) { |
| if (!is_first_entry && entry.found) { |
| // except for the 'processor' field, ignore repeated values. |
| continue; |
| } |
| is_first_entry = false; |
| if (!my_strcmp(field, entry.info_name)) { |
| size_t value_len; |
| const char* value = reader->GetValueAndLen(&value_len); |
| if (value_len == 0) |
| continue; |
| |
| uintptr_t val; |
| if (my_read_decimal_ptr(&val, value) == value) |
| continue; |
| |
| entry.value = static_cast<int>(val); |
| entry.found = true; |
| } |
| } |
| |
| // special case for vendor_id |
| if (!my_strcmp(field, vendor_id_name)) { |
| size_t value_len; |
| const char* value = reader->GetValueAndLen(&value_len); |
| if (value_len > 0) |
| my_strlcpy(vendor_id, value, sizeof(vendor_id)); |
| } |
| } |
| sys_close(fd); |
| } |
| |
| // make sure we got everything we wanted |
| for (const CpuInfoEntry& entry : cpu_info_table) { |
| if (!entry.found) { |
| return false; |
| } |
| } |
| // cpu_info_table[0] holds the last cpu id listed in /proc/cpuinfo, |
| // assuming this is the highest id, change it to the number of CPUs |
| // by adding one. |
| cpu_info_table[0].value++; |
| |
| sys_info->number_of_processors = cpu_info_table[0].value; |
| #if defined(__i386__) || defined(__x86_64__) |
| sys_info->processor_level = cpu_info_table[3].value; |
| sys_info->processor_revision = cpu_info_table[1].value << 8 | |
| cpu_info_table[2].value; |
| #endif |
| |
| if (vendor_id[0] != '\0') { |
| my_memcpy(sys_info->cpu.x86_cpu_info.vendor_id, vendor_id, |
| sizeof(sys_info->cpu.x86_cpu_info.vendor_id)); |
| } |
| return true; |
| } |
| #elif defined(__arm__) || defined(__aarch64__) |
| bool WriteCPUInformation(MDRawSystemInfo* sys_info) { |
| // The CPUID value is broken up in several entries in /proc/cpuinfo. |
| // This table is used to rebuild it from the entries. |
| const struct CpuIdEntry { |
| const char* field; |
| char format; |
| char bit_lshift; |
| char bit_length; |
| } cpu_id_entries[] = { |
| { "CPU implementer", 'x', 24, 8 }, |
| { "CPU variant", 'x', 20, 4 }, |
| { "CPU part", 'x', 4, 12 }, |
| { "CPU revision", 'd', 0, 4 }, |
| }; |
| |
| // The ELF hwcaps are listed in the "Features" entry as textual tags. |
| // This table is used to rebuild them. |
| const struct CpuFeaturesEntry { |
| const char* tag; |
| uint32_t hwcaps; |
| } cpu_features_entries[] = { |
| #if defined(__arm__) |
| { "swp", MD_CPU_ARM_ELF_HWCAP_SWP }, |
| { "half", MD_CPU_ARM_ELF_HWCAP_HALF }, |
| { "thumb", MD_CPU_ARM_ELF_HWCAP_THUMB }, |
| { "26bit", MD_CPU_ARM_ELF_HWCAP_26BIT }, |
| { "fastmult", MD_CPU_ARM_ELF_HWCAP_FAST_MULT }, |
| { "fpa", MD_CPU_ARM_ELF_HWCAP_FPA }, |
| { "vfp", MD_CPU_ARM_ELF_HWCAP_VFP }, |
| { "edsp", MD_CPU_ARM_ELF_HWCAP_EDSP }, |
| { "java", MD_CPU_ARM_ELF_HWCAP_JAVA }, |
| { "iwmmxt", MD_CPU_ARM_ELF_HWCAP_IWMMXT }, |
| { "crunch", MD_CPU_ARM_ELF_HWCAP_CRUNCH }, |
| { "thumbee", MD_CPU_ARM_ELF_HWCAP_THUMBEE }, |
| { "neon", MD_CPU_ARM_ELF_HWCAP_NEON }, |
| { "vfpv3", MD_CPU_ARM_ELF_HWCAP_VFPv3 }, |
| { "vfpv3d16", MD_CPU_ARM_ELF_HWCAP_VFPv3D16 }, |
| { "tls", MD_CPU_ARM_ELF_HWCAP_TLS }, |
| { "vfpv4", MD_CPU_ARM_ELF_HWCAP_VFPv4 }, |
| { "idiva", MD_CPU_ARM_ELF_HWCAP_IDIVA }, |
| { "idivt", MD_CPU_ARM_ELF_HWCAP_IDIVT }, |
| { "idiv", MD_CPU_ARM_ELF_HWCAP_IDIVA | MD_CPU_ARM_ELF_HWCAP_IDIVT }, |
| #elif defined(__aarch64__) |
| // No hwcaps on aarch64. |
| #endif |
| }; |
| |
| // processor_architecture should always be set, do this first |
| sys_info->processor_architecture = |
| #if defined(__aarch64__) |
| MD_CPU_ARCHITECTURE_ARM64_OLD; |
| #else |
| MD_CPU_ARCHITECTURE_ARM; |
| #endif |
| |
| // /proc/cpuinfo is not readable under various sandboxed environments |
| // (e.g. Android services with the android:isolatedProcess attribute) |
| // prepare for this by setting default values now, which will be |
| // returned when this happens. |
| // |
| // Note: Bogus values are used to distinguish between failures (to |
| // read /sys and /proc files) and really badly configured kernels. |
| sys_info->number_of_processors = 0; |
| sys_info->processor_level = 1U; // There is no ARMv1 |
| sys_info->processor_revision = 42; |
| sys_info->cpu.arm_cpu_info.cpuid = 0; |
| sys_info->cpu.arm_cpu_info.elf_hwcaps = 0; |
| |
| // Counting the number of CPUs involves parsing two sysfs files, |
| // because the content of /proc/cpuinfo will only mirror the number |
| // of 'online' cores, and thus will vary with time. |
| // See http://www.kernel.org/doc/Documentation/cputopology.txt |
| { |
| CpuSet cpus_present; |
| CpuSet cpus_possible; |
| |
| int fd = sys_open("/sys/devices/system/cpu/present", O_RDONLY, 0); |
| if (fd >= 0) { |
| cpus_present.ParseSysFile(fd); |
| sys_close(fd); |
| |
| fd = sys_open("/sys/devices/system/cpu/possible", O_RDONLY, 0); |
| if (fd >= 0) { |
| cpus_possible.ParseSysFile(fd); |
| sys_close(fd); |
| |
| cpus_present.IntersectWith(cpus_possible); |
| int cpu_count = cpus_present.GetCount(); |
| if (cpu_count > 255) |
| cpu_count = 255; |
| sys_info->number_of_processors = static_cast<uint8_t>(cpu_count); |
| } |
| } |
| } |
| |
| // Parse /proc/cpuinfo to reconstruct the CPUID value, as well |
| // as the ELF hwcaps field. For the latter, it would be easier to |
| // read /proc/self/auxv but unfortunately, this file is not always |
| // readable from regular Android applications on later versions |
| // (>= 4.1) of the Android platform. |
| const int fd = sys_open("/proc/cpuinfo", O_RDONLY, 0); |
| if (fd < 0) { |
| // Do not return false here to allow the minidump generation |
| // to happen properly. |
| return true; |
| } |
| |
| { |
| PageAllocator allocator; |
| ProcCpuInfoReader* const reader = |
| new(allocator) ProcCpuInfoReader(fd); |
| const char* field; |
| while (reader->GetNextField(&field)) { |
| for (const CpuIdEntry& entry : cpu_id_entries) { |
| if (my_strcmp(entry.field, field) != 0) |
| continue; |
| uintptr_t result = 0; |
| const char* value = reader->GetValue(); |
| const char* p = value; |
| if (value[0] == '0' && value[1] == 'x') { |
| p = my_read_hex_ptr(&result, value+2); |
| } else if (entry.format == 'x') { |
| p = my_read_hex_ptr(&result, value); |
| } else { |
| p = my_read_decimal_ptr(&result, value); |
| } |
| if (p == value) |
| continue; |
| |
| result &= (1U << entry.bit_length)-1; |
| result <<= entry.bit_lshift; |
| sys_info->cpu.arm_cpu_info.cpuid |= |
| static_cast<uint32_t>(result); |
| } |
| #if defined(__arm__) |
| // Get the architecture version from the "Processor" field. |
| // Note that it is also available in the "CPU architecture" field, |
| // however, some existing kernels are misconfigured and will report |
| // invalid values here (e.g. 6, while the CPU is ARMv7-A based). |
| // The "Processor" field doesn't have this issue. |
| if (!my_strcmp(field, "Processor")) { |
| size_t value_len; |
| const char* value = reader->GetValueAndLen(&value_len); |
| // Expected format: <text> (v<level><endian>) |
| // Where <text> is some text like "ARMv7 Processor rev 2" |
| // and <level> is a decimal corresponding to the ARM |
| // architecture number. <endian> is either 'l' or 'b' |
| // and corresponds to the endianess, it is ignored here. |
| while (value_len > 0 && my_isspace(value[value_len-1])) |
| value_len--; |
| |
| size_t nn = value_len; |
| while (nn > 0 && value[nn-1] != '(') |
| nn--; |
| if (nn > 0 && value[nn] == 'v') { |
| uintptr_t arch_level = 5; |
| my_read_decimal_ptr(&arch_level, value + nn + 1); |
| sys_info->processor_level = static_cast<uint16_t>(arch_level); |
| } |
| } |
| #elif defined(__aarch64__) |
| // The aarch64 architecture does not provide the architecture level |
| // in the Processor field, so we instead check the "CPU architecture" |
| // field. |
| if (!my_strcmp(field, "CPU architecture")) { |
| uintptr_t arch_level = 0; |
| const char* value = reader->GetValue(); |
| const char* p = value; |
| p = my_read_decimal_ptr(&arch_level, value); |
| if (p == value) |
| continue; |
| sys_info->processor_level = static_cast<uint16_t>(arch_level); |
| } |
| #endif |
| // Rebuild the ELF hwcaps from the 'Features' field. |
| if (!my_strcmp(field, "Features")) { |
| size_t value_len; |
| const char* value = reader->GetValueAndLen(&value_len); |
| |
| // Parse each space-separated tag. |
| while (value_len > 0) { |
| const char* tag = value; |
| size_t tag_len = value_len; |
| const char* p = my_strchr(tag, ' '); |
| if (p) { |
| tag_len = static_cast<size_t>(p - tag); |
| value += tag_len + 1; |
| value_len -= tag_len + 1; |
| } else { |
| tag_len = strlen(tag); |
| value_len = 0; |
| } |
| for (const CpuFeaturesEntry& entry : cpu_features_entries) { |
| if (tag_len == strlen(entry.tag) && |
| !memcmp(tag, entry.tag, tag_len)) { |
| sys_info->cpu.arm_cpu_info.elf_hwcaps |= entry.hwcaps; |
| break; |
| } |
| } |
| } |
| } |
| } |
| sys_close(fd); |
| } |
| |
| return true; |
| } |
| #else |
| # error "Unsupported CPU" |
| #endif |
| |
| bool WriteFile(MDLocationDescriptor* result, const char* filename) { |
| const int fd = sys_open(filename, O_RDONLY, 0); |
| if (fd < 0) |
| return false; |
| |
| // We can't stat the files because several of the files that we want to |
| // read are kernel seqfiles, which always have a length of zero. So we have |
| // to read as much as we can into a buffer. |
| static const unsigned kBufSize = 1024 - 2*sizeof(void*); |
| struct Buffers { |
| Buffers* next; |
| size_t len; |
| uint8_t data[kBufSize]; |
| } *buffers = reinterpret_cast<Buffers*>(Alloc(sizeof(Buffers))); |
| buffers->next = NULL; |
| buffers->len = 0; |
| |
| size_t total = 0; |
| for (Buffers* bufptr = buffers;;) { |
| ssize_t r; |
| do { |
| r = sys_read(fd, &bufptr->data[bufptr->len], kBufSize - bufptr->len); |
| } while (r == -1 && errno == EINTR); |
| |
| if (r < 1) |
| break; |
| |
| total += r; |
| bufptr->len += r; |
| if (bufptr->len == kBufSize) { |
| bufptr->next = reinterpret_cast<Buffers*>(Alloc(sizeof(Buffers))); |
| bufptr = bufptr->next; |
| bufptr->next = NULL; |
| bufptr->len = 0; |
| } |
| } |
| sys_close(fd); |
| |
| if (!total) |
| return false; |
| |
| UntypedMDRVA memory(&minidump_writer_); |
| if (!memory.Allocate(total)) |
| return false; |
| for (MDRVA pos = memory.position(); buffers; buffers = buffers->next) { |
| // Check for special case of a zero-length buffer. This should only |
| // occur if a file's size happens to be a multiple of the buffer's |
| // size, in which case the final sys_read() will have resulted in |
| // zero bytes being read after the final buffer was just allocated. |
| if (buffers->len == 0) { |
| // This can only occur with final buffer. |
| assert(buffers->next == NULL); |
| continue; |
| } |
| memory.Copy(pos, &buffers->data, buffers->len); |
| pos += buffers->len; |
| } |
| *result = memory.location(); |
| return true; |
| } |
| |
| bool WriteOSInformation(MDRawSystemInfo* sys_info) { |
| #if defined(__ANDROID__) |
| sys_info->platform_id = MD_OS_ANDROID; |
| #else |
| sys_info->platform_id = MD_OS_LINUX; |
| #endif |
| |
| struct utsname uts; |
| if (uname(&uts)) |
| return false; |
| |
| static const size_t buf_len = 512; |
| char buf[buf_len] = {0}; |
| size_t space_left = buf_len - 1; |
| const char* info_table[] = { |
| uts.sysname, |
| uts.release, |
| uts.version, |
| uts.machine, |
| NULL |
| }; |
| bool first_item = true; |
| for (const char** cur_info = info_table; *cur_info; cur_info++) { |
| static const char separator[] = " "; |
| size_t separator_len = sizeof(separator) - 1; |
| size_t info_len = my_strlen(*cur_info); |
| if (info_len == 0) |
| continue; |
| |
| if (space_left < info_len + (first_item ? 0 : separator_len)) |
| break; |
| |
| if (!first_item) { |
| my_strlcat(buf, separator, sizeof(buf)); |
| space_left -= separator_len; |
| } |
| |
| first_item = false; |
| my_strlcat(buf, *cur_info, sizeof(buf)); |
| space_left -= info_len; |
| } |
| |
| MDLocationDescriptor location; |
| if (!minidump_writer_.WriteString(buf, 0, &location)) |
| return false; |
| sys_info->csd_version_rva = location.rva; |
| |
| return true; |
| } |
| |
| bool WriteProcFile(MDLocationDescriptor* result, pid_t pid, |
| const char* filename) { |
| char buf[NAME_MAX]; |
| if (!dumper_->BuildProcPath(buf, pid, filename)) |
| return false; |
| return WriteFile(result, buf); |
| } |
| |
| // Only one of the 2 member variables below should be set to a valid value. |
| const int fd_; // File descriptor where the minidum should be written. |
| const char* path_; // Path to the file where the minidum should be written. |
| |
| const ucontext_t* const ucontext_; // also from the signal handler |
| #if !defined(__ARM_EABI__) && !defined(__mips__) |
| const google_breakpad::fpstate_t* const float_state_; // ditto |
| #endif |
| LinuxDumper* dumper_; |
| MinidumpFileWriter minidump_writer_; |
| off_t minidump_size_limit_; |
| MDLocationDescriptor crashing_thread_context_; |
| // Blocks of memory written to the dump. These are all currently |
| // written while writing the thread list stream, but saved here |
| // so a memory list stream can be written afterwards. |
| wasteful_vector<MDMemoryDescriptor> memory_blocks_; |
| // Additional information about some mappings provided by the caller. |
| const MappingList& mapping_list_; |
| // Additional memory regions to be included in the dump, |
| // provided by the caller. |
| const AppMemoryList& app_memory_list_; |
| // If set, skip recording any threads that do not reference the |
| // mapping containing principal_mapping_address_. |
| bool skip_stacks_if_mapping_unreferenced_; |
| uintptr_t principal_mapping_address_; |
| const MappingInfo* principal_mapping_; |
| // If true, apply stack sanitization to stored stack data. |
| bool sanitize_stacks_; |
| }; |
| |
| |
| bool WriteMinidumpImpl(const char* minidump_path, |
| int minidump_fd, |
| off_t minidump_size_limit, |
| pid_t crashing_process, |
| const void* blob, size_t blob_size, |
| const MappingList& mappings, |
| const AppMemoryList& appmem, |
| bool skip_stacks_if_mapping_unreferenced, |
| uintptr_t principal_mapping_address, |
| bool sanitize_stacks) { |
| LinuxPtraceDumper dumper(crashing_process); |
| const ExceptionHandler::CrashContext* context = NULL; |
| if (blob) { |
| if (blob_size != sizeof(ExceptionHandler::CrashContext)) |
| return false; |
| context = reinterpret_cast<const ExceptionHandler::CrashContext*>(blob); |
| dumper.SetCrashInfoFromSigInfo(context->siginfo); |
| dumper.set_crash_thread(context->tid); |
| } |
| MinidumpWriter writer(minidump_path, minidump_fd, context, mappings, |
| appmem, skip_stacks_if_mapping_unreferenced, |
| principal_mapping_address, sanitize_stacks, &dumper); |
| // Set desired limit for file size of minidump (-1 means no limit). |
| writer.set_minidump_size_limit(minidump_size_limit); |
| if (!writer.Init()) |
| return false; |
| return writer.Dump(); |
| } |
| |
| } // namespace |
| |
| namespace google_breakpad { |
| |
| bool WriteMinidump(const char* minidump_path, pid_t crashing_process, |
| const void* blob, size_t blob_size, |
| bool skip_stacks_if_mapping_unreferenced, |
| uintptr_t principal_mapping_address, |
| bool sanitize_stacks) { |
| return WriteMinidumpImpl(minidump_path, -1, -1, |
| crashing_process, blob, blob_size, |
| MappingList(), AppMemoryList(), |
| skip_stacks_if_mapping_unreferenced, |
| principal_mapping_address, |
| sanitize_stacks); |
| } |
| |
| bool WriteMinidump(int minidump_fd, pid_t crashing_process, |
| const void* blob, size_t blob_size, |
| bool skip_stacks_if_mapping_unreferenced, |
| uintptr_t principal_mapping_address, |
| bool sanitize_stacks) { |
| return WriteMinidumpImpl(NULL, minidump_fd, -1, |
| crashing_process, blob, blob_size, |
| MappingList(), AppMemoryList(), |
| skip_stacks_if_mapping_unreferenced, |
| principal_mapping_address, |
| sanitize_stacks); |
| } |
| |
| bool WriteMinidump(const char* minidump_path, pid_t process, |
| pid_t process_blamed_thread) { |
| LinuxPtraceDumper dumper(process); |
| // MinidumpWriter will set crash address |
| dumper.set_crash_signal(MD_EXCEPTION_CODE_LIN_DUMP_REQUESTED); |
| dumper.set_crash_thread(process_blamed_thread); |
| MappingList mapping_list; |
| AppMemoryList app_memory_list; |
| MinidumpWriter writer(minidump_path, -1, NULL, mapping_list, |
| app_memory_list, false, 0, false, &dumper); |
| if (!writer.Init()) |
| return false; |
| return writer.Dump(); |
| } |
| |
| bool WriteMinidump(const char* minidump_path, pid_t crashing_process, |
| const void* blob, size_t blob_size, |
| const MappingList& mappings, |
| const AppMemoryList& appmem, |
| bool skip_stacks_if_mapping_unreferenced, |
| uintptr_t principal_mapping_address, |
| bool sanitize_stacks) { |
| return WriteMinidumpImpl(minidump_path, -1, -1, crashing_process, |
| blob, blob_size, |
| mappings, appmem, |
| skip_stacks_if_mapping_unreferenced, |
| principal_mapping_address, |
| sanitize_stacks); |
| } |
| |
| bool WriteMinidump(int minidump_fd, pid_t crashing_process, |
| const void* blob, size_t blob_size, |
| const MappingList& mappings, |
| const AppMemoryList& appmem, |
| bool skip_stacks_if_mapping_unreferenced, |
| uintptr_t principal_mapping_address, |
| bool sanitize_stacks) { |
| return WriteMinidumpImpl(NULL, minidump_fd, -1, crashing_process, |
| blob, blob_size, |
| mappings, appmem, |
| skip_stacks_if_mapping_unreferenced, |
| principal_mapping_address, |
| sanitize_stacks); |
| } |
| |
| bool WriteMinidump(const char* minidump_path, off_t minidump_size_limit, |
| pid_t crashing_process, |
| const void* blob, size_t blob_size, |
| const MappingList& mappings, |
| const AppMemoryList& appmem, |
| bool skip_stacks_if_mapping_unreferenced, |
| uintptr_t principal_mapping_address, |
| bool sanitize_stacks) { |
| return WriteMinidumpImpl(minidump_path, -1, minidump_size_limit, |
| crashing_process, blob, blob_size, |
| mappings, appmem, |
| skip_stacks_if_mapping_unreferenced, |
| principal_mapping_address, |
| sanitize_stacks); |
| } |
| |
| bool WriteMinidump(int minidump_fd, off_t minidump_size_limit, |
| pid_t crashing_process, |
| const void* blob, size_t blob_size, |
| const MappingList& mappings, |
| const AppMemoryList& appmem, |
| bool skip_stacks_if_mapping_unreferenced, |
| uintptr_t principal_mapping_address, |
| bool sanitize_stacks) { |
| return WriteMinidumpImpl(NULL, minidump_fd, minidump_size_limit, |
| crashing_process, blob, blob_size, |
| mappings, appmem, |
| skip_stacks_if_mapping_unreferenced, |
| principal_mapping_address, |
| sanitize_stacks); |
| } |
| |
| bool WriteMinidump(const char* filename, |
| const MappingList& mappings, |
| const AppMemoryList& appmem, |
| LinuxDumper* dumper) { |
| MinidumpWriter writer(filename, -1, NULL, mappings, appmem, |
| false, 0, false, dumper); |
| if (!writer.Init()) |
| return false; |
| return writer.Dump(); |
| } |
| |
| } // namespace google_breakpad |