| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| |
| #include "libdis.h" |
| #include "ia32_insn.h" |
| #include "ia32_operand.h" |
| #include "ia32_modrm.h" |
| #include "ia32_reg.h" |
| #include "x86_imm.h" |
| #include "x86_operand_list.h" |
| |
| |
| |
| /* apply segment override to memory operand in insn */ |
| static void apply_seg( x86_op_t *op, unsigned int prefixes ) { |
| if (! prefixes ) return; |
| |
| /* apply overrides from prefix */ |
| switch ( prefixes & PREFIX_REG_MASK ) { |
| case PREFIX_CS: |
| op->flags |= op_cs_seg; break; |
| case PREFIX_SS: |
| op->flags |= op_ss_seg; break; |
| case PREFIX_DS: |
| op->flags |= op_ds_seg; break; |
| case PREFIX_ES: |
| op->flags |= op_es_seg; break; |
| case PREFIX_FS: |
| op->flags |= op_fs_seg; break; |
| case PREFIX_GS: |
| op->flags |= op_gs_seg; break; |
| } |
| |
| return; |
| } |
| |
| static size_t decode_operand_value( unsigned char *buf, size_t buf_len, |
| x86_op_t *op, x86_insn_t *insn, |
| unsigned int addr_meth, size_t op_size, |
| unsigned int op_value, unsigned char modrm, |
| size_t gen_regs ) { |
| size_t size = 0; |
| |
| /* ++ Do Operand Addressing Method / Decode operand ++ */ |
| switch (addr_meth) { |
| /* This sets the operand Size based on the Intel Opcode Map |
| * (Vol 2, Appendix A). Letter encodings are from section |
| * A.1.1, 'Codes for Addressing Method' */ |
| |
| /* ---------------------- Addressing Method -------------- */ |
| /* Note that decoding mod ModR/M operand adjusts the size of |
| * the instruction, but decoding the reg operand does not. |
| * This should not cause any problems, as every 'reg' operand |
| * has an associated 'mod' operand. |
| * Goddamn-Intel-Note: |
| * Some Intel addressing methods [M, R] specify that modR/M |
| * byte may only refer to a memory address/may only refer to |
| * a register -- however Intel provides no clues on what to do |
| * if, say, the modR/M for an M opcode decodes to a register |
| * rather than a memory address ... returning 0 is out of the |
| * question, as this would be an Immediate or a RelOffset, so |
| * instead these modR/Ms are decoded with total disregard to |
| * the M, R constraints. */ |
| |
| /* MODRM -- mod operand. sets size to at least 1! */ |
| case ADDRMETH_E: /* ModR/M present, Gen reg or memory */ |
| size = ia32_modrm_decode( buf, buf_len, op, insn, |
| gen_regs ); |
| break; |
| case ADDRMETH_M: /* ModR/M only refers to memory */ |
| size = ia32_modrm_decode( buf, buf_len, op, insn, |
| gen_regs ); |
| break; |
| case ADDRMETH_Q: /* ModR/M present, MMX or Memory */ |
| size = ia32_modrm_decode( buf, buf_len, op, insn, |
| REG_MMX_OFFSET ); |
| break; |
| case ADDRMETH_R: /* ModR/M mod == gen reg */ |
| size = ia32_modrm_decode( buf, buf_len, op, insn, |
| gen_regs ); |
| break; |
| case ADDRMETH_W: /* ModR/M present, mem or SIMD reg */ |
| size = ia32_modrm_decode( buf, buf_len, op, insn, |
| REG_SIMD_OFFSET ); |
| break; |
| |
| /* MODRM -- reg operand. does not effect size! */ |
| case ADDRMETH_C: /* ModR/M reg == control reg */ |
| ia32_reg_decode( modrm, op, REG_CTRL_OFFSET ); |
| break; |
| case ADDRMETH_D: /* ModR/M reg == debug reg */ |
| ia32_reg_decode( modrm, op, REG_DEBUG_OFFSET ); |
| break; |
| case ADDRMETH_G: /* ModR/M reg == gen-purpose reg */ |
| ia32_reg_decode( modrm, op, gen_regs ); |
| break; |
| case ADDRMETH_P: /* ModR/M reg == qword MMX reg */ |
| ia32_reg_decode( modrm, op, REG_MMX_OFFSET ); |
| break; |
| case ADDRMETH_S: /* ModR/M reg == segment reg */ |
| ia32_reg_decode( modrm, op, REG_SEG_OFFSET ); |
| break; |
| case ADDRMETH_T: /* ModR/M reg == test reg */ |
| ia32_reg_decode( modrm, op, REG_TEST_OFFSET ); |
| break; |
| case ADDRMETH_V: /* ModR/M reg == SIMD reg */ |
| ia32_reg_decode( modrm, op, REG_SIMD_OFFSET ); |
| break; |
| |
| /* No MODRM : note these set operand type explicitly */ |
| case ADDRMETH_A: /* No modR/M -- direct addr */ |
| op->type = op_absolute; |
| |
| /* segment:offset address used in far calls */ |
| x86_imm_sized( buf, buf_len, |
| &op->data.absolute.segment, 2 ); |
| if ( insn->addr_size == 4 ) { |
| x86_imm_sized( buf, buf_len, |
| &op->data.absolute.offset.off32, 4 ); |
| size = 6; |
| } else { |
| x86_imm_sized( buf, buf_len, |
| &op->data.absolute.offset.off16, 2 ); |
| size = 4; |
| } |
| |
| break; |
| case ADDRMETH_I: /* Immediate val */ |
| op->type = op_immediate; |
| /* if it ever becomes legal to have imm as dest and |
| * there is a src ModR/M operand, we are screwed! */ |
| if ( op->flags & op_signed ) { |
| x86_imm_signsized(buf, buf_len, &op->data.byte, |
| op_size); |
| } else { |
| x86_imm_sized(buf, buf_len, &op->data.byte, |
| op_size); |
| } |
| size = op_size; |
| break; |
| case ADDRMETH_J: /* Rel offset to add to IP [jmp] */ |
| /* this fills op->data.near_offset or |
| op->data.far_offset depending on the size of |
| the operand */ |
| op->flags |= op_signed; |
| if ( op_size == 1 ) { |
| /* one-byte near offset */ |
| op->type = op_relative_near; |
| x86_imm_signsized(buf, buf_len, |
| &op->data.relative_near, 1); |
| } else { |
| /* far offset...is this truly signed? */ |
| op->type = op_relative_far; |
| x86_imm_signsized(buf, buf_len, |
| &op->data.relative_far, op_size ); |
| } |
| size = op_size; |
| break; |
| case ADDRMETH_O: /* No ModR/M; op is word/dword offset */ |
| /* NOTE: these are actually RVAs not offsets to seg!! */ |
| /* note bene: 'O' ADDR_METH uses addr_size to |
| determine operand size */ |
| op->type = op_offset; |
| op->flags |= op_pointer; |
| x86_imm_sized( buf, buf_len, &op->data.offset, |
| insn->addr_size ); |
| |
| size = insn->addr_size; |
| break; |
| |
| /* Hard-coded: these are specified in the insn definition */ |
| case ADDRMETH_F: /* EFLAGS register */ |
| op->type = op_register; |
| op->flags |= op_hardcode; |
| ia32_handle_register( &op->data.reg, REG_FLAGS_INDEX ); |
| break; |
| case ADDRMETH_X: /* Memory addressed by DS:SI [string] */ |
| op->type = op_expression; |
| op->flags |= op_hardcode; |
| op->flags |= op_ds_seg | op_pointer | op_string; |
| ia32_handle_register( &op->data.expression.base, |
| REG_DWORD_OFFSET + 6 ); |
| break; |
| case ADDRMETH_Y: /* Memory addressed by ES:DI [string] */ |
| op->type = op_expression; |
| op->flags |= op_hardcode; |
| op->flags |= op_es_seg | op_pointer | op_string; |
| ia32_handle_register( &op->data.expression.base, |
| REG_DWORD_OFFSET + 7 ); |
| break; |
| case ADDRMETH_RR: /* Gen Register hard-coded in opcode */ |
| op->type = op_register; |
| op->flags |= op_hardcode; |
| ia32_handle_register( &op->data.reg, |
| op_value + gen_regs ); |
| break; |
| case ADDRMETH_RS: /* Seg Register hard-coded in opcode */ |
| op->type = op_register; |
| op->flags |= op_hardcode; |
| ia32_handle_register( &op->data.reg, |
| op_value + REG_SEG_OFFSET ); |
| break; |
| case ADDRMETH_RF: /* FPU Register hard-coded in opcode */ |
| op->type = op_register; |
| op->flags |= op_hardcode; |
| ia32_handle_register( &op->data.reg, |
| op_value + REG_FPU_OFFSET ); |
| break; |
| case ADDRMETH_RT: /* TST Register hard-coded in opcode */ |
| op->type = op_register; |
| op->flags |= op_hardcode; |
| ia32_handle_register( &op->data.reg, |
| op_value + REG_TEST_OFFSET ); |
| break; |
| case ADDRMETH_II: /* Immediate hard-coded in opcode */ |
| op->type = op_immediate; |
| op->data.dword = op_value; |
| op->flags |= op_hardcode; |
| break; |
| |
| case 0: /* Operand is not used */ |
| default: |
| /* ignore -- operand not used in this insn */ |
| op->type = op_unused; /* this shouldn't happen! */ |
| break; |
| } |
| |
| return size; |
| } |
| |
| static size_t decode_operand_size( unsigned int op_type, x86_insn_t *insn, |
| x86_op_t *op ){ |
| size_t size; |
| |
| /* ++ Do Operand Type ++ */ |
| switch (op_type) { |
| /* This sets the operand Size based on the Intel Opcode Map |
| * (Vol 2, Appendix A). Letter encodings are from section |
| * A.1.2, 'Codes for Operand Type' */ |
| /* NOTE: in this routines, 'size' refers to the size |
| * of the operand in the raw (encoded) instruction; |
| * 'datatype' stores the actual size and datatype |
| * of the operand */ |
| |
| /* ------------------------ Operand Type ----------------- */ |
| case OPTYPE_c: /* byte or word [op size attr] */ |
| size = (insn->op_size == 4) ? 2 : 1; |
| op->datatype = (size == 4) ? op_word : op_byte; |
| break; |
| case OPTYPE_a: /* 2 word or 2 dword [op size attr] */ |
| /* pointer to a 16:16 or 32:32 BOUNDS operand */ |
| size = (insn->op_size == 4) ? 8 : 4; |
| op->datatype = (size == 4) ? op_bounds32 : op_bounds16; |
| break; |
| case OPTYPE_v: /* word or dword [op size attr] */ |
| size = (insn->op_size == 4) ? 4 : 2; |
| op->datatype = (size == 4) ? op_dword : op_word; |
| break; |
| case OPTYPE_p: /* 32/48-bit ptr [op size attr] */ |
| /* technically these flags are not accurate: the |
| * value s a 16:16 pointer or a 16:32 pointer, where |
| * the first '16' is a segment */ |
| size = (insn->addr_size == 4) ? 6 : 4; |
| op->datatype = (size == 4) ? op_descr32 : op_descr16; |
| break; |
| case OPTYPE_b: /* byte, ignore op-size */ |
| size = 1; |
| op->datatype = op_byte; |
| break; |
| case OPTYPE_w: /* word, ignore op-size */ |
| size = 2; |
| op->datatype = op_word; |
| break; |
| case OPTYPE_d: /* dword , ignore op-size */ |
| size = 4; |
| op->datatype = op_dword; |
| break; |
| case OPTYPE_s: /* 6-byte psuedo-descriptor */ |
| /* ptr to 6-byte value which is 32:16 in 32-bit |
| * mode, or 8:24:16 in 16-bit mode. The high byte |
| * is ignored in 16-bit mode. */ |
| size = 6; |
| op->datatype = (insn->addr_size == 4) ? |
| op_pdescr32 : op_pdescr16; |
| break; |
| case OPTYPE_q: /* qword, ignore op-size */ |
| size = 8; |
| op->datatype = op_qword; |
| break; |
| case OPTYPE_dq: /* d-qword, ignore op-size */ |
| size = 16; |
| op->datatype = op_dqword; |
| break; |
| case OPTYPE_ps: /* 128-bit FP data */ |
| size = 16; |
| /* really this is 4 packed SP FP values */ |
| op->datatype = op_ssimd; |
| break; |
| case OPTYPE_pd: /* 128-bit FP data */ |
| size = 16; |
| /* really this is 2 packed DP FP values */ |
| op->datatype = op_dsimd; |
| break; |
| case OPTYPE_ss: /* Scalar elem of 128-bit FP data */ |
| size = 16; |
| /* this only looks at the low dword (4 bytes) |
| * of the xmmm register passed as a param. |
| * This is a 16-byte register where only 4 bytes |
| * are used in the insn. Painful, ain't it? */ |
| op->datatype = op_sssimd; |
| break; |
| case OPTYPE_sd: /* Scalar elem of 128-bit FP data */ |
| size = 16; |
| /* this only looks at the low qword (8 bytes) |
| * of the xmmm register passed as a param. |
| * This is a 16-byte register where only 8 bytes |
| * are used in the insn. Painful, again... */ |
| op->datatype = op_sdsimd; |
| break; |
| case OPTYPE_pi: /* qword mmx register */ |
| size = 8; |
| op->datatype = op_qword; |
| break; |
| case OPTYPE_si: /* dword integer register */ |
| size = 4; |
| op->datatype = op_dword; |
| break; |
| case OPTYPE_fs: /* single-real */ |
| size = 4; |
| op->datatype = op_sreal; |
| break; |
| case OPTYPE_fd: /* double real */ |
| size = 8; |
| op->datatype = op_dreal; |
| break; |
| case OPTYPE_fe: /* extended real */ |
| size = 10; |
| op->datatype = op_extreal; |
| break; |
| case OPTYPE_fb: /* packed BCD */ |
| size = 10; |
| op->datatype = op_bcd; |
| break; |
| case OPTYPE_fv: /* pointer to FPU env: 14 or 28-bytes */ |
| size = (insn->addr_size == 4)? 28 : 14; |
| op->datatype = (size == 28)? op_fpuenv32: op_fpuenv16; |
| break; |
| case OPTYPE_ft: /* pointer to FPU env: 94 or 108 bytes */ |
| size = (insn->addr_size == 4)? 108 : 94; |
| op->datatype = (size == 108)? |
| op_fpustate32: op_fpustate16; |
| break; |
| case OPTYPE_fx: /* 512-byte register stack */ |
| size = 512; |
| op->datatype = op_fpregset; |
| break; |
| case OPTYPE_fp: /* floating point register */ |
| size = 10; /* double extended precision */ |
| op->datatype = op_fpreg; |
| break; |
| case OPTYPE_m: /* fake operand type used for "lea Gv, M" */ |
| size = insn->addr_size; |
| op->datatype = (size == 4) ? op_dword : op_word; |
| break; |
| case OPTYPE_none: /* handle weird instructions that have no encoding but use a dword datatype, like invlpg */ |
| size = 0; |
| op->datatype = op_none; |
| break; |
| case 0: |
| default: |
| size = insn->op_size; |
| op->datatype = (size == 4) ? op_dword : op_word; |
| break; |
| } |
| return size; |
| } |
| |
| size_t ia32_decode_operand( unsigned char *buf, size_t buf_len, |
| x86_insn_t *insn, unsigned int raw_op, |
| unsigned int raw_flags, unsigned int prefixes, |
| unsigned char modrm ) { |
| unsigned int addr_meth, op_type, op_size, gen_regs; |
| x86_op_t *op; |
| size_t size; |
| |
| /* ++ Yank optype and addr mode out of operand flags */ |
| addr_meth = raw_flags & ADDRMETH_MASK; |
| op_type = raw_flags & OPTYPE_MASK; |
| |
| if ( raw_flags == ARG_NONE ) { |
| /* operand is not used in this instruction */ |
| return 0; |
| } |
| |
| /* allocate a new operand */ |
| op = x86_operand_new( insn ); |
| |
| /* ++ Copy flags from opcode table to x86_insn_t */ |
| op->access = (enum x86_op_access) OP_PERM(raw_flags); |
| op->flags = (enum x86_op_flags) (OP_FLAGS(raw_flags) >> 12); |
| |
| /* Get size (for decoding) and datatype of operand */ |
| op_size = decode_operand_size(op_type, insn, op); |
| |
| /* override default register set based on Operand Type */ |
| /* this allows mixing of 8, 16, and 32 bit regs in insn */ |
| if (op_size == 1) { |
| gen_regs = REG_BYTE_OFFSET; |
| } else if (op_size == 2) { |
| gen_regs = REG_WORD_OFFSET; |
| } else { |
| gen_regs = REG_DWORD_OFFSET; |
| } |
| |
| size = decode_operand_value( buf, buf_len, op, insn, addr_meth, |
| op_size, raw_op, modrm, gen_regs ); |
| |
| /* if operand is an address, apply any segment override prefixes */ |
| if ( op->type == op_expression || op->type == op_offset ) { |
| apply_seg(op, prefixes); |
| } |
| |
| return size; /* return number of bytes in instruction */ |
| } |