| #ifndef LIBDISASM_H |
| #define LIBDISASM_H |
| |
| #include <stdint.h> |
| |
| /* 'NEW" types |
| * __________________________________________________________________________*/ |
| #ifndef LIBDISASM_QWORD_H /* do not interfere with qword.h */ |
| #define LIBDISASM_QWORD_H |
| #ifdef _MSC_VER |
| typedef __int64 qword_t; |
| #else |
| typedef int64_t qword_t; |
| #endif |
| #endif |
| |
| #include <sys/types.h> |
| |
| #ifdef __cplusplus |
| extern "C" { |
| #endif |
| |
| /* 'NEW" x86 API |
| * __________________________________________________________________________*/ |
| |
| |
| /* ========================================= Error Reporting */ |
| /* REPORT CODES |
| * These are passed to a reporter function passed at initialization. |
| * Each code determines the type of the argument passed to the reporter; |
| * this allows the report to recover from errors, or just log them. |
| */ |
| enum x86_report_codes { |
| report_disasm_bounds, /* RVA OUT OF BOUNDS : The disassembler could |
| not disassemble the supplied RVA as it is |
| out of the range of the buffer. The |
| application should store the address and |
| attempt to determine what section of the |
| binary it is in, then disassemble the |
| address from the bytes in that section. |
| data: uint32_t rva */ |
| report_insn_bounds, /* INSTRUCTION OUT OF BOUNDS: The disassembler |
| could not disassemble the instruction as |
| the instruction would require bytes beyond |
| the end of the current buffer. This usually |
| indicated garbage bytes at the end of a |
| buffer, or an incorrectly-sized buffer. |
| data: uint32_t rva */ |
| report_invalid_insn, /* INVALID INSTRUCTION: The disassembler could |
| not disassemble the instruction as it has an |
| invalid combination of opcodes and operands. |
| This will stop automated disassembly; the |
| application can restart the disassembly |
| after the invalid instruction. |
| data: uint32_t rva */ |
| report_unknown |
| }; |
| |
| /* 'arg' is optional arbitrary data provided by the code passing the |
| * callback -- for example, it could be 'this' or 'self' in OOP code. |
| * 'code' is provided by libdisasm, it is one of the above |
| * 'data' is provided by libdisasm and is context-specific, per the enums */ |
| typedef void (*DISASM_REPORTER)( enum x86_report_codes code, |
| void *data, void *arg ); |
| |
| |
| /* x86_report_error : Call the register reporter to report an error */ |
| void x86_report_error( enum x86_report_codes code, void *data ); |
| |
| /* ========================================= Libdisasm Management Routines */ |
| enum x86_options { /* these can be ORed together */ |
| opt_none= 0, |
| opt_ignore_nulls=1, /* ignore sequences of > 4 NULL bytes */ |
| opt_16_bit=2, /* 16-bit/DOS disassembly */ |
| opt_att_mnemonics=4, /* use AT&T syntax names for alternate opcode mnemonics */ |
| }; |
| |
| /* management routines */ |
| /* 'arg' is caller-specific data which is passed as the first argument |
| * to the reporter callback routine */ |
| int x86_init( enum x86_options options, DISASM_REPORTER reporter, void *arg); |
| void x86_set_reporter( DISASM_REPORTER reporter, void *arg); |
| void x86_set_options( enum x86_options options ); |
| enum x86_options x86_get_options( void ); |
| int x86_cleanup(void); |
| |
| |
| /* ========================================= Instruction Representation */ |
| /* these defines are only intended for use in the array decl's */ |
| #define MAX_REGNAME 8 |
| |
| #define MAX_PREFIX_STR 32 |
| #define MAX_MNEM_STR 16 |
| #define MAX_INSN_SIZE 20 /* same as in i386.h */ |
| #define MAX_OP_STRING 32 /* max possible operand size in string form */ |
| #define MAX_OP_RAW_STRING 64 /* max possible operand size in raw form */ |
| #define MAX_OP_XML_STRING 256 /* max possible operand size in xml form */ |
| #define MAX_NUM_OPERANDS 8 /* max # implicit and explicit operands */ |
| /* in these, the '2 *' is arbitrary: the max # of operands should require |
| * more space than the rest of the insn */ |
| #define MAX_INSN_STRING 512 /* 2 * 8 * MAX_OP_STRING */ |
| #define MAX_INSN_RAW_STRING 1024 /* 2 * 8 * MAX_OP_RAW_STRING */ |
| #define MAX_INSN_XML_STRING 4096 /* 2 * 8 * MAX_OP_XML_STRING */ |
| |
| enum x86_reg_type { /* NOTE: these may be ORed together */ |
| reg_gen = 0x00001, /* general purpose */ |
| reg_in = 0x00002, /* incoming args, ala RISC */ |
| reg_out = 0x00004, /* args to calls, ala RISC */ |
| reg_local = 0x00008, /* local vars, ala RISC */ |
| reg_fpu = 0x00010, /* FPU data register */ |
| reg_seg = 0x00020, /* segment register */ |
| reg_simd = 0x00040, /* SIMD/MMX reg */ |
| reg_sys = 0x00080, /* restricted/system register */ |
| reg_sp = 0x00100, /* stack pointer */ |
| reg_fp = 0x00200, /* frame pointer */ |
| reg_pc = 0x00400, /* program counter */ |
| reg_retaddr = 0x00800, /* return addr for func */ |
| reg_cond = 0x01000, /* condition code / flags */ |
| reg_zero = 0x02000, /* zero register, ala RISC */ |
| reg_ret = 0x04000, /* return value */ |
| reg_src = 0x10000, /* array/rep source */ |
| reg_dest = 0x20000, /* array/rep destination */ |
| reg_count = 0x40000 /* array/rep/loop counter */ |
| }; |
| |
| /* x86_reg_t : an X86 CPU register */ |
| typedef struct { |
| char name[MAX_REGNAME]; |
| enum x86_reg_type type; /* what register is used for */ |
| unsigned int size; /* size of register in bytes */ |
| unsigned int id; /* register ID #, for quick compares */ |
| unsigned int alias; /* ID of reg this is an alias for */ |
| unsigned int shift; /* amount to shift aliased reg by */ |
| } x86_reg_t; |
| |
| /* x86_ea_t : an X86 effective address (address expression) */ |
| typedef struct { |
| unsigned int scale; /* scale factor */ |
| x86_reg_t index, base; /* index, base registers */ |
| int32_t disp; /* displacement */ |
| char disp_sign; /* is negative? 1/0 */ |
| char disp_size; /* 0, 1, 2, 4 */ |
| } x86_ea_t; |
| |
| /* x86_absolute_t : an X86 segment:offset address (descriptor) */ |
| typedef struct { |
| unsigned short segment; /* loaded directly into CS */ |
| union { |
| unsigned short off16; /* loaded directly into IP */ |
| uint32_t off32; /* loaded directly into EIP */ |
| } offset; |
| } x86_absolute_t; |
| |
| enum x86_op_type { /* mutually exclusive */ |
| op_unused = 0, /* empty/unused operand: should never occur */ |
| op_register = 1, /* CPU register */ |
| op_immediate = 2, /* Immediate Value */ |
| op_relative_near = 3, /* Relative offset from IP */ |
| op_relative_far = 4, /* Relative offset from IP */ |
| op_absolute = 5, /* Absolute address (ptr16:32) */ |
| op_expression = 6, /* Address expression (scale/index/base/disp) */ |
| op_offset = 7, /* Offset from start of segment (m32) */ |
| op_unknown |
| }; |
| |
| #define x86_optype_is_address( optype ) \ |
| ( optype == op_absolute || optype == op_offset ) |
| #define x86_optype_is_relative( optype ) \ |
| ( optype == op_relative_near || optype == op_relative_far ) |
| #define x86_optype_is_memory( optype ) \ |
| ( optype > op_immediate && optype < op_unknown ) |
| |
| enum x86_op_datatype { /* these use Intel's lame terminology */ |
| op_byte = 1, /* 1 byte integer */ |
| op_word = 2, /* 2 byte integer */ |
| op_dword = 3, /* 4 byte integer */ |
| op_qword = 4, /* 8 byte integer */ |
| op_dqword = 5, /* 16 byte integer */ |
| op_sreal = 6, /* 4 byte real (single real) */ |
| op_dreal = 7, /* 8 byte real (double real) */ |
| op_extreal = 8, /* 10 byte real (extended real) */ |
| op_bcd = 9, /* 10 byte binary-coded decimal */ |
| op_ssimd = 10, /* 16 byte : 4 packed single FP (SIMD, MMX) */ |
| op_dsimd = 11, /* 16 byte : 2 packed double FP (SIMD, MMX) */ |
| op_sssimd = 12, /* 4 byte : scalar single FP (SIMD, MMX) */ |
| op_sdsimd = 13, /* 8 byte : scalar double FP (SIMD, MMX) */ |
| op_descr32 = 14, /* 6 byte Intel descriptor 2:4 */ |
| op_descr16 = 15, /* 4 byte Intel descriptor 2:2 */ |
| op_pdescr32 = 16, /* 6 byte Intel pseudo-descriptor 32:16 */ |
| op_pdescr16 = 17, /* 6 byte Intel pseudo-descriptor 8:24:16 */ |
| op_bounds16 = 18, /* signed 16:16 lower:upper bounds */ |
| op_bounds32 = 19, /* signed 32:32 lower:upper bounds */ |
| op_fpuenv16 = 20, /* 14 byte FPU control/environment data */ |
| op_fpuenv32 = 21, /* 28 byte FPU control/environment data */ |
| op_fpustate16 = 22, /* 94 byte FPU state (env & reg stack) */ |
| op_fpustate32 = 23, /* 108 byte FPU state (env & reg stack) */ |
| op_fpregset = 24, /* 512 bytes: register set */ |
| op_fpreg = 25, /* FPU register */ |
| op_none = 0xFF, /* operand without a datatype (INVLPG) */ |
| }; |
| |
| enum x86_op_access { /* ORed together */ |
| op_read = 1, |
| op_write = 2, |
| op_execute = 4 |
| }; |
| |
| enum x86_op_flags { /* ORed together, but segs are mutually exclusive */ |
| op_signed = 1, /* signed integer */ |
| op_string = 2, /* possible string or array */ |
| op_constant = 4, /* symbolic constant */ |
| op_pointer = 8, /* operand points to a memory address */ |
| op_sysref = 0x010, /* operand is a syscall number */ |
| op_implied = 0x020, /* operand is implicit in the insn */ |
| op_hardcode = 0x40, /* operand is hardcoded in insn definition */ |
| /* NOTE: an 'implied' operand is one which can be considered a side |
| * effect of the insn, e.g. %esp being modified by PUSH or POP. A |
| * 'hard-coded' operand is one which is specified in the instruction |
| * definition, e.g. %es:%edi in MOVSB or 1 in ROL Eb, 1. The difference |
| * is that hard-coded operands are printed by disassemblers and are |
| * required to re-assemble, while implicit operands are invisible. */ |
| op_es_seg = 0x100, /* ES segment override */ |
| op_cs_seg = 0x200, /* CS segment override */ |
| op_ss_seg = 0x300, /* SS segment override */ |
| op_ds_seg = 0x400, /* DS segment override */ |
| op_fs_seg = 0x500, /* FS segment override */ |
| op_gs_seg = 0x600 /* GS segment override */ |
| }; |
| |
| /* x86_op_t : an X86 instruction operand */ |
| typedef struct { |
| enum x86_op_type type; /* operand type */ |
| enum x86_op_datatype datatype; /* operand size */ |
| enum x86_op_access access; /* operand access [RWX] */ |
| enum x86_op_flags flags; /* misc flags */ |
| union { |
| /* sizeof will have to work on these union members! */ |
| /* immediate values */ |
| char sbyte; |
| short sword; |
| int32_t sdword; |
| qword_t sqword; |
| unsigned char byte; |
| unsigned short word; |
| uint32_t dword; |
| qword_t qword; |
| float sreal; |
| double dreal; |
| /* misc large/non-native types */ |
| unsigned char extreal[10]; |
| unsigned char bcd[10]; |
| qword_t dqword[2]; |
| unsigned char simd[16]; |
| unsigned char fpuenv[28]; |
| /* offset from segment */ |
| uint32_t offset; |
| /* ID of CPU register */ |
| x86_reg_t reg; |
| /* offsets from current insn */ |
| char relative_near; |
| int32_t relative_far; |
| /* segment:offset */ |
| x86_absolute_t absolute; |
| /* effective address [expression] */ |
| x86_ea_t expression; |
| } data; |
| /* this is needed to make formatting operands more sane */ |
| void * insn; /* pointer to x86_insn_t owning operand */ |
| } x86_op_t; |
| |
| /* Linked list of x86_op_t; provided for manual traversal of the operand |
| * list in an insn. Users wishing to add operands to this list, e.g. to add |
| * implicit operands, should use x86_operand_new in x86_operand_list.h */ |
| typedef struct x86_operand_list { |
| x86_op_t op; |
| struct x86_operand_list *next; |
| } x86_oplist_t; |
| |
| enum x86_insn_group { |
| insn_none = 0, /* invalid instruction */ |
| insn_controlflow = 1, |
| insn_arithmetic = 2, |
| insn_logic = 3, |
| insn_stack = 4, |
| insn_comparison = 5, |
| insn_move = 6, |
| insn_string = 7, |
| insn_bit_manip = 8, |
| insn_flag_manip = 9, |
| insn_fpu = 10, |
| insn_interrupt = 13, |
| insn_system = 14, |
| insn_other = 15 |
| }; |
| |
| enum x86_insn_type { |
| insn_invalid = 0, /* invalid instruction */ |
| /* insn_controlflow */ |
| insn_jmp = 0x1001, |
| insn_jcc = 0x1002, |
| insn_call = 0x1003, |
| insn_callcc = 0x1004, |
| insn_return = 0x1005, |
| /* insn_arithmetic */ |
| insn_add = 0x2001, |
| insn_sub = 0x2002, |
| insn_mul = 0x2003, |
| insn_div = 0x2004, |
| insn_inc = 0x2005, |
| insn_dec = 0x2006, |
| insn_shl = 0x2007, |
| insn_shr = 0x2008, |
| insn_rol = 0x2009, |
| insn_ror = 0x200A, |
| /* insn_logic */ |
| insn_and = 0x3001, |
| insn_or = 0x3002, |
| insn_xor = 0x3003, |
| insn_not = 0x3004, |
| insn_neg = 0x3005, |
| /* insn_stack */ |
| insn_push = 0x4001, |
| insn_pop = 0x4002, |
| insn_pushregs = 0x4003, |
| insn_popregs = 0x4004, |
| insn_pushflags = 0x4005, |
| insn_popflags = 0x4006, |
| insn_enter = 0x4007, |
| insn_leave = 0x4008, |
| /* insn_comparison */ |
| insn_test = 0x5001, |
| insn_cmp = 0x5002, |
| /* insn_move */ |
| insn_mov = 0x6001, /* move */ |
| insn_movcc = 0x6002, /* conditional move */ |
| insn_xchg = 0x6003, /* exchange */ |
| insn_xchgcc = 0x6004, /* conditional exchange */ |
| /* insn_string */ |
| insn_strcmp = 0x7001, |
| insn_strload = 0x7002, |
| insn_strmov = 0x7003, |
| insn_strstore = 0x7004, |
| insn_translate = 0x7005, /* xlat */ |
| /* insn_bit_manip */ |
| insn_bittest = 0x8001, |
| insn_bitset = 0x8002, |
| insn_bitclear = 0x8003, |
| /* insn_flag_manip */ |
| insn_clear_carry = 0x9001, |
| insn_clear_zero = 0x9002, |
| insn_clear_oflow = 0x9003, |
| insn_clear_dir = 0x9004, |
| insn_clear_sign = 0x9005, |
| insn_clear_parity = 0x9006, |
| insn_set_carry = 0x9007, |
| insn_set_zero = 0x9008, |
| insn_set_oflow = 0x9009, |
| insn_set_dir = 0x900A, |
| insn_set_sign = 0x900B, |
| insn_set_parity = 0x900C, |
| insn_tog_carry = 0x9010, |
| insn_tog_zero = 0x9020, |
| insn_tog_oflow = 0x9030, |
| insn_tog_dir = 0x9040, |
| insn_tog_sign = 0x9050, |
| insn_tog_parity = 0x9060, |
| /* insn_fpu */ |
| insn_fmov = 0xA001, |
| insn_fmovcc = 0xA002, |
| insn_fneg = 0xA003, |
| insn_fabs = 0xA004, |
| insn_fadd = 0xA005, |
| insn_fsub = 0xA006, |
| insn_fmul = 0xA007, |
| insn_fdiv = 0xA008, |
| insn_fsqrt = 0xA009, |
| insn_fcmp = 0xA00A, |
| insn_fcos = 0xA00C, |
| insn_fldpi = 0xA00D, |
| insn_fldz = 0xA00E, |
| insn_ftan = 0xA00F, |
| insn_fsine = 0xA010, |
| insn_fsys = 0xA020, |
| /* insn_interrupt */ |
| insn_int = 0xD001, |
| insn_intcc = 0xD002, /* not present in x86 ISA */ |
| insn_iret = 0xD003, |
| insn_bound = 0xD004, |
| insn_debug = 0xD005, |
| insn_trace = 0xD006, |
| insn_invalid_op = 0xD007, |
| insn_oflow = 0xD008, |
| /* insn_system */ |
| insn_halt = 0xE001, |
| insn_in = 0xE002, /* input from port/bus */ |
| insn_out = 0xE003, /* output to port/bus */ |
| insn_cpuid = 0xE004, |
| /* insn_other */ |
| insn_nop = 0xF001, |
| insn_bcdconv = 0xF002, /* convert to or from BCD */ |
| insn_szconv = 0xF003 /* change size of operand */ |
| }; |
| |
| /* These flags specify special characteristics of the instruction, such as |
| * whether the inatruction is privileged or whether it serializes the |
| * pipeline. |
| * NOTE : These may not be accurate for all instructions; updates to the |
| * opcode tables have not been completed. */ |
| enum x86_insn_note { |
| insn_note_ring0 = 1, /* Only available in ring 0 */ |
| insn_note_smm = 2, /* "" in System Management Mode */ |
| insn_note_serial = 4, /* Serializing instruction */ |
| insn_note_nonswap = 8, /* Does not swap arguments in att-style formatting */ |
| insn_note_nosuffix = 16, /* Does not have size suffix in att-style formatting */ |
| }; |
| |
| /* This specifies what effects the instruction has on the %eflags register */ |
| enum x86_flag_status { |
| insn_carry_set = 0x1, /* CF */ |
| insn_zero_set = 0x2, /* ZF */ |
| insn_oflow_set = 0x4, /* OF */ |
| insn_dir_set = 0x8, /* DF */ |
| insn_sign_set = 0x10, /* SF */ |
| insn_parity_set = 0x20, /* PF */ |
| insn_carry_or_zero_set = 0x40, |
| insn_zero_set_or_sign_ne_oflow = 0x80, |
| insn_carry_clear = 0x100, |
| insn_zero_clear = 0x200, |
| insn_oflow_clear = 0x400, |
| insn_dir_clear = 0x800, |
| insn_sign_clear = 0x1000, |
| insn_parity_clear = 0x2000, |
| insn_sign_eq_oflow = 0x4000, |
| insn_sign_ne_oflow = 0x8000 |
| }; |
| |
| /* The CPU model in which the insturction first appeared; this can be used |
| * to mask out instructions appearing in earlier or later models or to |
| * check the portability of a binary. |
| * NOTE : These may not be accurate for all instructions; updates to the |
| * opcode tables have not been completed. */ |
| enum x86_insn_cpu { |
| cpu_8086 = 1, /* Intel */ |
| cpu_80286 = 2, |
| cpu_80386 = 3, |
| cpu_80387 = 4, |
| cpu_80486 = 5, |
| cpu_pentium = 6, |
| cpu_pentiumpro = 7, |
| cpu_pentium2 = 8, |
| cpu_pentium3 = 9, |
| cpu_pentium4 = 10, |
| cpu_k6 = 16, /* AMD */ |
| cpu_k7 = 32, |
| cpu_athlon = 48 |
| }; |
| |
| /* CPU ISA subsets: These are derived from the Instruction Groups in |
| * Intel Vol 1 Chapter 5; they represent subsets of the IA32 ISA but |
| * do not reflect the 'type' of the instruction in the same way that |
| * x86_insn_group does. In short, these are AMD/Intel's somewhat useless |
| * designations. |
| * NOTE : These may not be accurate for all instructions; updates to the |
| * opcode tables have not been completed. */ |
| enum x86_insn_isa { |
| isa_gp = 1, /* general purpose */ |
| isa_fp = 2, /* floating point */ |
| isa_fpumgt = 3, /* FPU/SIMD management */ |
| isa_mmx = 4, /* Intel MMX */ |
| isa_sse1 = 5, /* Intel SSE SIMD */ |
| isa_sse2 = 6, /* Intel SSE2 SIMD */ |
| isa_sse3 = 7, /* Intel SSE3 SIMD */ |
| isa_3dnow = 8, /* AMD 3DNow! SIMD */ |
| isa_sys = 9 /* system instructions */ |
| }; |
| |
| enum x86_insn_prefix { |
| insn_no_prefix = 0, |
| insn_rep_zero = 1, /* REPZ and REPE */ |
| insn_rep_notzero = 2, /* REPNZ and REPNZ */ |
| insn_lock = 4 /* LOCK: */ |
| }; |
| |
| /* TODO: maybe provide insn_new/free(), and have disasm return new insn_t */ |
| /* x86_insn_t : an X86 instruction */ |
| typedef struct { |
| /* information about the instruction */ |
| uint32_t addr; /* load address */ |
| uint32_t offset; /* offset into file/buffer */ |
| enum x86_insn_group group; /* meta-type, e.g. INS_EXEC */ |
| enum x86_insn_type type; /* type, e.g. INS_BRANCH */ |
| enum x86_insn_note note; /* note, e.g. RING0 */ |
| unsigned char bytes[MAX_INSN_SIZE]; |
| unsigned char size; /* size of insn in bytes */ |
| /* 16/32-bit mode settings */ |
| unsigned char addr_size; /* default address size : 2 or 4 */ |
| unsigned char op_size; /* default operand size : 2 or 4 */ |
| /* CPU/instruction set */ |
| enum x86_insn_cpu cpu; |
| enum x86_insn_isa isa; |
| /* flags */ |
| enum x86_flag_status flags_set; /* flags set or tested by insn */ |
| enum x86_flag_status flags_tested; |
| /* stack */ |
| unsigned char stack_mod; /* 0 or 1 : is the stack modified? */ |
| int32_t stack_mod_val; /* val stack is modified by if known */ |
| |
| /* the instruction proper */ |
| enum x86_insn_prefix prefix; /* prefixes ORed together */ |
| char prefix_string[MAX_PREFIX_STR]; /* prefixes [might be truncated] */ |
| char mnemonic[MAX_MNEM_STR]; |
| x86_oplist_t *operands; /* list of explicit/implicit operands */ |
| size_t operand_count; /* total number of operands */ |
| size_t explicit_count; /* number of explicit operands */ |
| /* convenience fields for user */ |
| void *block; /* code block containing this insn */ |
| void *function; /* function containing this insn */ |
| int tag; /* tag the insn as seen/processed */ |
| } x86_insn_t; |
| |
| |
| /* returns 0 if an instruction is invalid, 1 if valid */ |
| int x86_insn_is_valid( x86_insn_t *insn ); |
| |
| /* DISASSEMBLY ROUTINES |
| * Canonical order of arguments is |
| * (buf, buf_len, buf_rva, offset, len, insn, func, arg, resolve_func) |
| * ...but of course all of these are not used at the same time. |
| */ |
| |
| |
| /* Function prototype for caller-supplied callback routine |
| * These callbacks are intended to process 'insn' further, e.g. by |
| * adding it to a linked list, database, etc */ |
| typedef void (*DISASM_CALLBACK)( x86_insn_t *insn, void * arg ); |
| |
| /* Function prototype for caller-supplied address resolver. |
| * This routine is used to determine the rva to disassemble next, given |
| * the 'dest' operand of a jump/call. This allows the caller to resolve |
| * jump/call targets stored in a register or on the stack, and also allows |
| * the caller to prevent endless loops by checking if an address has |
| * already been disassembled. If an address cannot be resolved from the |
| * operand, or if the address has already been disassembled, this routine |
| * should return -1; in all other cases the RVA to be disassembled next |
| * should be returned. */ |
| typedef int32_t (*DISASM_RESOLVER)( x86_op_t *op, x86_insn_t * current_insn, |
| void *arg ); |
| |
| |
| /* x86_disasm: Disassemble a single instruction from a buffer of bytes. |
| * Returns size of instruction in bytes. |
| * Caller is responsible for calling x86_oplist_free() on |
| * a reused "insn" to avoid leaking memory when calling this |
| * function repeatedly. |
| * buf : Buffer of bytes to disassemble |
| * buf_len : Length of the buffer |
| * buf_rva : Load address of the start of the buffer |
| * offset : Offset in buffer to disassemble |
| * insn : Structure to fill with disassembled instruction |
| */ |
| unsigned int x86_disasm( unsigned char *buf, unsigned int buf_len, |
| uint32_t buf_rva, unsigned int offset, |
| x86_insn_t * insn ); |
| |
| /* x86_disasm_range: Sequential disassembly of a range of bytes in a buffer, |
| * invoking a callback function each time an instruction |
| * is successfully disassembled. The 'range' refers to the |
| * bytes between 'offset' and 'offset + len' in the buffer; |
| * 'len' is assumed to be less than the length of the buffer. |
| * Returns number of instructions processed. |
| * buf : Buffer of bytes to disassemble (e.g. .text section) |
| * buf_rva : Load address of buffer (e.g. ELF Virtual Address) |
| * offset : Offset in buffer to start disassembly at |
| * len : Number of bytes to disassemble |
| * func : Callback function to invoke (may be NULL) |
| * arg : Arbitrary data to pass to callback (may be NULL) |
| */ |
| unsigned int x86_disasm_range( unsigned char *buf, uint32_t buf_rva, |
| unsigned int offset, unsigned int len, |
| DISASM_CALLBACK func, void *arg ); |
| |
| /* x86_disasm_forward: Flow-of-execution disassembly of the bytes in a buffer, |
| * invoking a callback function each time an instruction |
| * is successfully disassembled. |
| * buf : Buffer to disassemble (e.g. .text section) |
| * buf_len : Number of bytes in buffer |
| * buf_rva : Load address of buffer (e.g. ELF Virtual Address) |
| * offset : Offset in buffer to start disassembly at (e.g. entry point) |
| * func : Callback function to invoke (may be NULL) |
| * arg : Arbitrary data to pass to callback (may be NULL) |
| * resolver: Caller-supplied address resolver. If no resolver is |
| * supplied, a default internal one is used -- however the |
| * internal resolver does NOT catch loops and could end up |
| * disassembling forever.. |
| * r_arg : Arbitrary data to pass to resolver (may be NULL) |
| */ |
| unsigned int x86_disasm_forward( unsigned char *buf, unsigned int buf_len, |
| uint32_t buf_rva, unsigned int offset, |
| DISASM_CALLBACK func, void *arg, |
| DISASM_RESOLVER resolver, void *r_arg ); |
| |
| /* Instruction operands: these are stored as a list of explicit and |
| * implicit operands. It is recommended that the 'foreach' routines |
| * be used to when examining operands for purposes of data flow analysis */ |
| |
| /* Operand FOREACH callback: 'arg' is an abritrary parameter passed to the |
| * foreach routine, 'insn' is the x86_insn_t whose operands are being |
| * iterated over, and 'op' is the current x86_op_t */ |
| typedef void (*x86_operand_fn)(x86_op_t *op, x86_insn_t *insn, void *arg); |
| |
| /* FOREACH types: these are used to limit the foreach results to |
| * operands which match a certain "type" (implicit or explicit) |
| * or which are accessed in certain ways (e.g. read or write). Note |
| * that this operates on the operand list of single instruction, so |
| * specifying the 'real' operand type (register, memory, etc) is not |
| * useful. Note also that by definition Execute Access implies Read |
| * Access and implies Not Write Access. |
| * The "type" (implicit or explicit) and the access method can |
| * be ORed together, e.g. op_wo | op_explicit */ |
| enum x86_op_foreach_type { |
| op_any = 0, /* ALL operands (explicit, implicit, rwx) */ |
| op_dest = 1, /* operands with Write access */ |
| op_src = 2, /* operands with Read access */ |
| op_ro = 3, /* operands with Read but not Write access */ |
| op_wo = 4, /* operands with Write but not Read access */ |
| op_xo = 5, /* operands with Execute access */ |
| op_rw = 6, /* operands with Read AND Write access */ |
| op_implicit = 0x10, /* operands that are implied by the opcode */ |
| op_explicit = 0x20 /* operands that are not side-effects */ |
| }; |
| |
| |
| /* free the operand list associated with an instruction -- useful for |
| * preventing memory leaks when free()ing an x86_insn_t */ |
| void x86_oplist_free( x86_insn_t *insn ); |
| |
| /* Operand foreach: invokes 'func' with 'insn' and 'arg' as arguments. The |
| * 'type' parameter is used to select only operands matching specific |
| * criteria. */ |
| int x86_operand_foreach( x86_insn_t *insn, x86_operand_fn func, void *arg, |
| enum x86_op_foreach_type type); |
| |
| /* convenience routine: returns count of operands matching 'type' */ |
| size_t x86_operand_count( x86_insn_t *insn, enum x86_op_foreach_type type ); |
| |
| /* accessor functions for the operands */ |
| x86_op_t * x86_operand_1st( x86_insn_t *insn ); |
| x86_op_t * x86_operand_2nd( x86_insn_t *insn ); |
| x86_op_t * x86_operand_3rd( x86_insn_t *insn ); |
| |
| /* these allow libdisasm 2.0 accessor functions to still be used */ |
| #define x86_get_dest_operand( insn ) x86_operand_1st( insn ) |
| #define x86_get_src_operand( insn ) x86_operand_2nd( insn ) |
| #define x86_get_imm_operand( insn ) x86_operand_3rd( insn ) |
| |
| /* get size of operand data in bytes */ |
| unsigned int x86_operand_size( x86_op_t *op ); |
| |
| /* Operand Convenience Routines: the following three routines are common |
| * operations on operands, intended to ease the burden of the programmer. */ |
| |
| /* Get Address: return the value of an offset operand, or the offset of |
| * a segment:offset absolute address */ |
| uint32_t x86_get_address( x86_insn_t *insn ); |
| |
| /* Get Relative Offset: return as a sign-extended int32_t the near or far |
| * relative offset operand, or 0 if there is none. There can be only one |
| * relaive offset operand in an instruction. */ |
| int32_t x86_get_rel_offset( x86_insn_t *insn ); |
| |
| /* Get Branch Target: return the x86_op_t containing the target of |
| * a jump or call operand, or NULL if there is no branch target. |
| * Internally, a 'branch target' is defined as any operand with |
| * Execute Access set. There can be only one branch target per instruction. */ |
| x86_op_t * x86_get_branch_target( x86_insn_t *insn ); |
| |
| /* Get Immediate: return the x86_op_t containing the immediate operand |
| * for this instruction, or NULL if there is no immediate operand. There |
| * can be only one immediate operand per instruction */ |
| x86_op_t * x86_get_imm( x86_insn_t *insn ); |
| |
| /* Get Raw Immediate Data: returns a pointer to the immediate data encoded |
| * in the instruction. This is useful for large data types [>32 bits] currently |
| * not supported by libdisasm, or for determining if the disassembler |
| * screwed up the conversion of the immediate data. Note that 'imm' in this |
| * context refers to immediate data encoded at the end of an instruction as |
| * detailed in the Intel Manual Vol II Chapter 2; it does not refer to the |
| * 'op_imm' operand (the third operand in instructions like 'mul' */ |
| unsigned char * x86_get_raw_imm( x86_insn_t *insn ); |
| |
| |
| /* More accessor fuctions, this time for user-defined info... */ |
| /* set the address (usually RVA) of the insn */ |
| void x86_set_insn_addr( x86_insn_t *insn, uint32_t addr ); |
| |
| /* set the offset (usually offset into file) of the insn */ |
| void x86_set_insn_offset( x86_insn_t *insn, unsigned int offset ); |
| |
| /* set a pointer to the function owning the instruction. The |
| * type of 'func' is user-defined; libdisasm does not use the func field. */ |
| void x86_set_insn_function( x86_insn_t *insn, void * func ); |
| |
| /* set a pointer to the block of code owning the instruction. The |
| * type of 'block' is user-defined; libdisasm does not use the block field. */ |
| void x86_set_insn_block( x86_insn_t *insn, void * block ); |
| |
| /* instruction tagging: these routines allow the programmer to mark |
| * instructions as "seen" in a DFS, for example. libdisasm does not use |
| * the tag field.*/ |
| /* set insn->tag to 1 */ |
| void x86_tag_insn( x86_insn_t *insn ); |
| /* set insn->tag to 0 */ |
| void x86_untag_insn( x86_insn_t *insn ); |
| /* return insn->tag */ |
| int x86_insn_is_tagged( x86_insn_t *insn ); |
| |
| |
| /* Disassembly formats: |
| * AT&T is standard AS/GAS-style: "mnemonic\tsrc, dest, imm" |
| * Intel is standard MASM/NASM/TASM: "mnemonic\tdest,src, imm" |
| * Native is tab-delimited: "RVA\tbytes\tmnemonic\tdest\tsrc\timm" |
| * XML is your typical <insn> ... </insn> |
| * Raw is addr|offset|size|bytes|prefix... see libdisasm_formats.7 |
| */ |
| enum x86_asm_format { |
| unknown_syntax = 0, /* never use! */ |
| native_syntax, /* header: 35 bytes */ |
| intel_syntax, /* header: 23 bytes */ |
| att_syntax, /* header: 23 bytes */ |
| xml_syntax, /* header: 679 bytes */ |
| raw_syntax /* header: 172 bytes */ |
| }; |
| |
| /* format (sprintf) an operand into 'buf' using specified syntax */ |
| int x86_format_operand(x86_op_t *op, char *buf, int len, |
| enum x86_asm_format format); |
| |
| /* format (sprintf) an instruction mnemonic into 'buf' using specified syntax */ |
| int x86_format_mnemonic(x86_insn_t *insn, char *buf, int len, |
| enum x86_asm_format format); |
| |
| /* format (sprintf) an instruction into 'buf' using specified syntax; |
| * this includes formatting all operands */ |
| int x86_format_insn(x86_insn_t *insn, char *buf, int len, enum x86_asm_format); |
| |
| /* fill 'buf' with a description of the format's syntax */ |
| int x86_format_header( char *buf, int len, enum x86_asm_format format); |
| |
| /* Endianness of an x86 CPU : 0 is big, 1 is little; always returns 1 */ |
| unsigned int x86_endian(void); |
| |
| /* Default address and operand size in bytes */ |
| unsigned int x86_addr_size(void); |
| unsigned int x86_op_size(void); |
| |
| /* Size of a machine word in bytes */ |
| unsigned int x86_word_size(void); |
| |
| /* maximum size of a code instruction */ |
| #define x86_max_inst_size(x) x86_max_insn_size(x) |
| unsigned int x86_max_insn_size(void); |
| |
| /* register IDs of Stack, Frame, Instruction pointer and Flags register */ |
| unsigned int x86_sp_reg(void); |
| unsigned int x86_fp_reg(void); |
| unsigned int x86_ip_reg(void); |
| unsigned int x86_flag_reg(void); |
| |
| /* fill 'reg' struct with details of register 'id' */ |
| void x86_reg_from_id( unsigned int id, x86_reg_t * reg ); |
| |
| /* convenience macro demonstrating how to get an aliased register; proto is |
| * void x86_get_aliased_reg( x86_reg_t *alias_reg, x86_reg_t *output_reg ) |
| * where 'alias_reg' is a reg operand and 'output_reg' is filled with the |
| * register that the operand is an alias for */ |
| #define x86_get_aliased_reg( alias_reg, output_reg ) \ |
| x86_reg_from_id( alias_reg->alias, output_reg ) |
| |
| |
| /* ================================== Invariant Instruction Representation */ |
| /* Invariant instructions are used for generating binary signatures; |
| * the instruction is modified so that all variant bytes in an instruction |
| * are replaced with a wildcard byte. |
| * |
| * A 'variant byte' is one that is expected to be modified by either the |
| * static or the dynamic linker: for example, an address encoded in an |
| * instruction. |
| * |
| * By comparing the invariant representation of one instruction [or of a |
| * sequence of instructions] with the invariant representation of another, |
| * one determine whether the two invariant representations are from the same |
| * relocatable object [.o] file. Thus one can use binary signatures [which |
| * are just sequences of invariant instruction representations] to look for |
| * library routines which have been statically-linked into a binary. |
| * |
| * The invariant routines are faster and smaller than the disassembly |
| * routines; they can be used to determine the size of an instruction |
| * without all of the overhead of a full instruction disassembly. |
| */ |
| |
| /* This byte is used to replace variant bytes */ |
| #define X86_WILDCARD_BYTE 0xF4 |
| |
| typedef struct { |
| enum x86_op_type type; /* operand type */ |
| enum x86_op_datatype datatype; /* operand size */ |
| enum x86_op_access access; /* operand access [RWX] */ |
| enum x86_op_flags flags; /* misc flags */ |
| } x86_invariant_op_t; |
| |
| typedef struct { |
| unsigned char bytes[64]; /* invariant representation */ |
| unsigned int size; /* number of bytes in insn */ |
| enum x86_insn_group group; /* meta-type, e.g. INS_EXEC */ |
| enum x86_insn_type type; /* type, e.g. INS_BRANCH */ |
| x86_invariant_op_t operands[3]; /* operands: dest, src, imm */ |
| } x86_invariant_t; |
| |
| |
| /* return a version of the instruction with the variant bytes masked out */ |
| size_t x86_invariant_disasm( unsigned char *buf, int buf_len, |
| x86_invariant_t *inv ); |
| /* return the size in bytes of the intruction pointed to by 'buf'; |
| * this used x86_invariant_disasm since it faster than x86_disasm */ |
| size_t x86_size_disasm( unsigned char *buf, unsigned int buf_len ); |
| |
| #ifdef __cplusplus |
| } |
| #endif |
| |
| |
| #endif |