| // Copyright (c) 2010 Google Inc. All Rights Reserved. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following disclaimer |
| // in the documentation and/or other materials provided with the |
| // distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| // CFI reader author: Jim Blandy <jimb@mozilla.com> <jimb@red-bean.com> |
| |
| // Implementation of dwarf2reader::LineInfo, dwarf2reader::CompilationUnit, |
| // and dwarf2reader::CallFrameInfo. See dwarf2reader.h for details. |
| |
| #include "common/dwarf/dwarf2reader.h" |
| |
| #include <stdint.h> |
| #include <stdio.h> |
| #include <string.h> |
| |
| #include <map> |
| #include <memory> |
| #include <stack> |
| #include <string> |
| #include <utility> |
| |
| #include <sys/stat.h> |
| |
| #include "common/dwarf/bytereader-inl.h" |
| #include "common/dwarf/bytereader.h" |
| #include "common/dwarf/line_state_machine.h" |
| #include "common/using_std_string.h" |
| #include "google_breakpad/common/breakpad_types.h" |
| |
| namespace dwarf2reader { |
| |
| const SectionMap::const_iterator GetSectionByName(const SectionMap& |
| sections, const char *name) { |
| assert(name[0] == '.'); |
| auto iter = sections.find(name); |
| if (iter != sections.end()) |
| return iter; |
| std::string macho_name("__"); |
| macho_name += name + 1; |
| iter = sections.find(macho_name); |
| return iter; |
| } |
| |
| CompilationUnit::CompilationUnit(const string& path, |
| const SectionMap& sections, uint64_t offset, |
| ByteReader* reader, Dwarf2Handler* handler) |
| : path_(path), offset_from_section_start_(offset), reader_(reader), |
| sections_(sections), handler_(handler), abbrevs_(), |
| string_buffer_(NULL), string_buffer_length_(0), |
| line_string_buffer_(NULL), line_string_buffer_length_(0), |
| str_offsets_buffer_(NULL), str_offsets_buffer_length_(0), |
| addr_buffer_(NULL), addr_buffer_length_(0), |
| is_split_dwarf_(false), dwo_id_(0), dwo_name_(), |
| skeleton_dwo_id_(0), ranges_base_(0), addr_base_(0), |
| have_checked_for_dwp_(false), dwp_path_(), |
| dwp_byte_reader_(), dwp_reader_() {} |
| |
| // Initialize a compilation unit from a .dwo or .dwp file. |
| // In this case, we need the .debug_addr section from the |
| // executable file that contains the corresponding skeleton |
| // compilation unit. We also inherit the Dwarf2Handler from |
| // the executable file, and call it as if we were still |
| // processing the original compilation unit. |
| |
| void CompilationUnit::SetSplitDwarf(const uint8_t* addr_buffer, |
| uint64_t addr_buffer_length, |
| uint64_t addr_base, |
| uint64_t ranges_base, |
| uint64_t dwo_id) { |
| is_split_dwarf_ = true; |
| addr_buffer_ = addr_buffer; |
| addr_buffer_length_ = addr_buffer_length; |
| addr_base_ = addr_base; |
| ranges_base_ = ranges_base; |
| skeleton_dwo_id_ = dwo_id; |
| } |
| |
| // Read a DWARF2/3 abbreviation section. |
| // Each abbrev consists of a abbreviation number, a tag, a byte |
| // specifying whether the tag has children, and a list of |
| // attribute/form pairs. |
| // The list of forms is terminated by a 0 for the attribute, and a |
| // zero for the form. The entire abbreviation section is terminated |
| // by a zero for the code. |
| |
| void CompilationUnit::ReadAbbrevs() { |
| if (abbrevs_) |
| return; |
| |
| // First get the debug_abbrev section. |
| SectionMap::const_iterator iter = |
| GetSectionByName(sections_, ".debug_abbrev"); |
| assert(iter != sections_.end()); |
| |
| abbrevs_ = new std::vector<Abbrev>; |
| abbrevs_->resize(1); |
| |
| // The only way to check whether we are reading over the end of the |
| // buffer would be to first compute the size of the leb128 data by |
| // reading it, then go back and read it again. |
| const uint8_t* abbrev_start = iter->second.first + |
| header_.abbrev_offset; |
| const uint8_t* abbrevptr = abbrev_start; |
| #ifndef NDEBUG |
| const uint64_t abbrev_length = iter->second.second - header_.abbrev_offset; |
| #endif |
| |
| while (1) { |
| CompilationUnit::Abbrev abbrev; |
| size_t len; |
| const uint64_t number = reader_->ReadUnsignedLEB128(abbrevptr, &len); |
| |
| if (number == 0) |
| break; |
| abbrev.number = number; |
| abbrevptr += len; |
| |
| assert(abbrevptr < abbrev_start + abbrev_length); |
| const uint64_t tag = reader_->ReadUnsignedLEB128(abbrevptr, &len); |
| abbrevptr += len; |
| abbrev.tag = static_cast<enum DwarfTag>(tag); |
| |
| assert(abbrevptr < abbrev_start + abbrev_length); |
| abbrev.has_children = reader_->ReadOneByte(abbrevptr); |
| abbrevptr += 1; |
| |
| assert(abbrevptr < abbrev_start + abbrev_length); |
| |
| while (1) { |
| const uint64_t nametemp = reader_->ReadUnsignedLEB128(abbrevptr, &len); |
| abbrevptr += len; |
| |
| assert(abbrevptr < abbrev_start + abbrev_length); |
| const uint64_t formtemp = reader_->ReadUnsignedLEB128(abbrevptr, &len); |
| abbrevptr += len; |
| if (nametemp == 0 && formtemp == 0) |
| break; |
| |
| const enum DwarfAttribute name = |
| static_cast<enum DwarfAttribute>(nametemp); |
| const enum DwarfForm form = static_cast<enum DwarfForm>(formtemp); |
| abbrev.attributes.push_back(std::make_pair(name, form)); |
| } |
| assert(abbrev.number == abbrevs_->size()); |
| abbrevs_->push_back(abbrev); |
| } |
| } |
| |
| // Skips a single DIE's attributes. |
| const uint8_t* CompilationUnit::SkipDIE(const uint8_t* start, |
| const Abbrev& abbrev) { |
| for (AttributeList::const_iterator i = abbrev.attributes.begin(); |
| i != abbrev.attributes.end(); |
| i++) { |
| start = SkipAttribute(start, i->second); |
| } |
| return start; |
| } |
| |
| // Skips a single attribute form's data. |
| const uint8_t* CompilationUnit::SkipAttribute(const uint8_t* start, |
| enum DwarfForm form) { |
| size_t len; |
| |
| switch (form) { |
| case DW_FORM_indirect: |
| form = static_cast<enum DwarfForm>(reader_->ReadUnsignedLEB128(start, |
| &len)); |
| start += len; |
| return SkipAttribute(start, form); |
| |
| case DW_FORM_flag_present: |
| return start; |
| case DW_FORM_addrx1: |
| case DW_FORM_data1: |
| case DW_FORM_flag: |
| case DW_FORM_ref1: |
| case DW_FORM_strx1: |
| return start + 1; |
| case DW_FORM_addrx2: |
| case DW_FORM_ref2: |
| case DW_FORM_data2: |
| case DW_FORM_strx2: |
| return start + 2; |
| case DW_FORM_addrx3: |
| case DW_FORM_strx3: |
| return start + 3; |
| case DW_FORM_addrx4: |
| case DW_FORM_ref4: |
| case DW_FORM_data4: |
| case DW_FORM_strx4: |
| return start + 4; |
| case DW_FORM_ref8: |
| case DW_FORM_data8: |
| case DW_FORM_ref_sig8: |
| return start + 8; |
| case DW_FORM_string: |
| return start + strlen(reinterpret_cast<const char*>(start)) + 1; |
| case DW_FORM_udata: |
| case DW_FORM_ref_udata: |
| case DW_FORM_strx: |
| case DW_FORM_GNU_str_index: |
| case DW_FORM_GNU_addr_index: |
| case DW_FORM_addrx: |
| reader_->ReadUnsignedLEB128(start, &len); |
| return start + len; |
| |
| case DW_FORM_sdata: |
| reader_->ReadSignedLEB128(start, &len); |
| return start + len; |
| case DW_FORM_addr: |
| return start + reader_->AddressSize(); |
| case DW_FORM_ref_addr: |
| // DWARF2 and 3/4 differ on whether ref_addr is address size or |
| // offset size. |
| assert(header_.version >= 2); |
| if (header_.version == 2) { |
| return start + reader_->AddressSize(); |
| } else if (header_.version >= 3) { |
| return start + reader_->OffsetSize(); |
| } |
| break; |
| |
| case DW_FORM_block1: |
| return start + 1 + reader_->ReadOneByte(start); |
| case DW_FORM_block2: |
| return start + 2 + reader_->ReadTwoBytes(start); |
| case DW_FORM_block4: |
| return start + 4 + reader_->ReadFourBytes(start); |
| case DW_FORM_block: |
| case DW_FORM_exprloc: { |
| uint64_t size = reader_->ReadUnsignedLEB128(start, &len); |
| return start + size + len; |
| } |
| case DW_FORM_strp: |
| case DW_FORM_line_strp: |
| case DW_FORM_strp_sup: |
| case DW_FORM_sec_offset: |
| return start + reader_->OffsetSize(); |
| } |
| fprintf(stderr,"Unhandled form type"); |
| return NULL; |
| } |
| |
| // Read the abbreviation offset from a compilation unit header. |
| size_t CompilationUnit::ReadAbbrevOffset(const uint8_t* headerptr) { |
| assert(headerptr + reader_->OffsetSize() < buffer_ + buffer_length_); |
| header_.abbrev_offset = reader_->ReadOffset(headerptr); |
| return reader_->OffsetSize(); |
| } |
| |
| // Read the address size from a compilation unit header. |
| size_t CompilationUnit::ReadAddressSize(const uint8_t* headerptr) { |
| // Compare against less than or equal because this may be the last |
| // section in the file. |
| assert(headerptr + 1 <= buffer_ + buffer_length_); |
| header_.address_size = reader_->ReadOneByte(headerptr); |
| reader_->SetAddressSize(header_.address_size); |
| return 1; |
| } |
| |
| // Read the DWO id from a split or skeleton compilation unit header. |
| size_t CompilationUnit::ReadDwoId(const uint8_t* headerptr) { |
| assert(headerptr + 8 <= buffer_ + buffer_length_); |
| dwo_id_ = reader_->ReadEightBytes(headerptr); |
| return 8; |
| } |
| |
| // Read the type signature from a type or split type compilation unit header. |
| size_t CompilationUnit::ReadTypeSignature(const uint8_t* headerptr) { |
| assert(headerptr + 8 <= buffer_ + buffer_length_); |
| type_signature_ = reader_->ReadEightBytes(headerptr); |
| return 8; |
| } |
| |
| // Read the DWO id from a split or skeleton compilation unit header. |
| size_t CompilationUnit::ReadTypeOffset(const uint8_t* headerptr) { |
| assert(headerptr + reader_->OffsetSize() < buffer_ + buffer_length_); |
| type_offset_ = reader_->ReadOffset(headerptr); |
| return reader_->OffsetSize(); |
| } |
| |
| |
| // Read a DWARF header. The header is variable length in DWARF3 and DWARF4 |
| // (and DWARF2 as extended by most compilers), and consists of an length |
| // field, a version number, the offset in the .debug_abbrev section for our |
| // abbrevs, and an address size. DWARF5 adds a unit_type to distinguish |
| // between partial-, full-, skeleton-, split-, and type- compilation units. |
| void CompilationUnit::ReadHeader() { |
| const uint8_t* headerptr = buffer_; |
| size_t initial_length_size; |
| |
| assert(headerptr + 4 < buffer_ + buffer_length_); |
| const uint64_t initial_length |
| = reader_->ReadInitialLength(headerptr, &initial_length_size); |
| headerptr += initial_length_size; |
| header_.length = initial_length; |
| |
| assert(headerptr + 2 < buffer_ + buffer_length_); |
| header_.version = reader_->ReadTwoBytes(headerptr); |
| headerptr += 2; |
| |
| if (header_.version <= 4) { |
| // Older versions of dwarf have a relatively simple structure. |
| headerptr += ReadAbbrevOffset(headerptr); |
| headerptr += ReadAddressSize(headerptr); |
| } else { |
| // DWARF5 adds a unit_type field, and various fields based on unit_type. |
| assert(headerptr + 1 < buffer_ + buffer_length_); |
| uint8_t unit_type = reader_->ReadOneByte(headerptr); |
| headerptr += 1; |
| headerptr += ReadAddressSize(headerptr); |
| headerptr += ReadAbbrevOffset(headerptr); |
| switch (unit_type) { |
| case DW_UT_compile: |
| case DW_UT_partial: |
| // nothing else to read |
| break; |
| case DW_UT_skeleton: |
| case DW_UT_split_compile: |
| headerptr += ReadDwoId(headerptr); |
| break; |
| case DW_UT_type: |
| case DW_UT_split_type: |
| headerptr += ReadTypeSignature(headerptr); |
| headerptr += ReadTypeOffset(headerptr); |
| break; |
| default: |
| fprintf(stderr, "Unhandled compilation unit type 0x%x", unit_type); |
| break; |
| } |
| } |
| after_header_ = headerptr; |
| |
| // This check ensures that we don't have to do checking during the |
| // reading of DIEs. header_.length does not include the size of the |
| // initial length. |
| assert(buffer_ + initial_length_size + header_.length <= |
| buffer_ + buffer_length_); |
| } |
| |
| uint64_t CompilationUnit::Start() { |
| // First get the debug_info section. |
| SectionMap::const_iterator iter = |
| GetSectionByName(sections_, ".debug_info"); |
| assert(iter != sections_.end()); |
| |
| // Set up our buffer |
| buffer_ = iter->second.first + offset_from_section_start_; |
| buffer_length_ = iter->second.second - offset_from_section_start_; |
| |
| // Read the header |
| ReadHeader(); |
| |
| // Figure out the real length from the end of the initial length to |
| // the end of the compilation unit, since that is the value we |
| // return. |
| uint64_t ourlength = header_.length; |
| if (reader_->OffsetSize() == 8) |
| ourlength += 12; |
| else |
| ourlength += 4; |
| |
| // See if the user wants this compilation unit, and if not, just return. |
| if (!handler_->StartCompilationUnit(offset_from_section_start_, |
| reader_->AddressSize(), |
| reader_->OffsetSize(), |
| header_.length, |
| header_.version)) |
| return ourlength; |
| |
| // Otherwise, continue by reading our abbreviation entries. |
| ReadAbbrevs(); |
| |
| // Set the string section if we have one. |
| iter = GetSectionByName(sections_, ".debug_str"); |
| if (iter != sections_.end()) { |
| string_buffer_ = iter->second.first; |
| string_buffer_length_ = iter->second.second; |
| } |
| |
| // Set the line string section if we have one. |
| iter = GetSectionByName(sections_, ".debug_line_str"); |
| if (iter != sections_.end()) { |
| line_string_buffer_ = iter->second.first; |
| line_string_buffer_length_ = iter->second.second; |
| } |
| |
| // Set the string offsets section if we have one. |
| iter = GetSectionByName(sections_, ".debug_str_offsets"); |
| if (iter != sections_.end()) { |
| str_offsets_buffer_ = iter->second.first; |
| str_offsets_buffer_length_ = iter->second.second; |
| } |
| |
| // Set the address section if we have one. |
| iter = GetSectionByName(sections_, ".debug_addr"); |
| if (iter != sections_.end()) { |
| addr_buffer_ = iter->second.first; |
| addr_buffer_length_ = iter->second.second; |
| } |
| |
| // Now that we have our abbreviations, start processing DIE's. |
| ProcessDIEs(); |
| |
| // If this is a skeleton compilation unit generated with split DWARF, |
| // and the client needs the full debug info, we need to find the full |
| // compilation unit in a .dwo or .dwp file. |
| if (!is_split_dwarf_ |
| && dwo_name_ != NULL |
| && handler_->NeedSplitDebugInfo()) |
| ProcessSplitDwarf(); |
| |
| return ourlength; |
| } |
| |
| void CompilationUnit::ProcessFormStringIndex( |
| uint64_t dieoffset, enum DwarfAttribute attr, enum DwarfForm form, |
| uint64_t str_index) { |
| const uint8_t* offset_ptr = |
| str_offsets_buffer_ + str_index * reader_->OffsetSize(); |
| const uint64_t offset = reader_->ReadOffset(offset_ptr); |
| if (offset >= string_buffer_length_) { |
| return; |
| } |
| |
| const char* str = reinterpret_cast<const char*>(string_buffer_) + offset; |
| ProcessAttributeString(dieoffset, attr, form, str); |
| } |
| |
| // If one really wanted, you could merge SkipAttribute and |
| // ProcessAttribute |
| // This is all boring data manipulation and calling of the handler. |
| const uint8_t* CompilationUnit::ProcessAttribute( |
| uint64_t dieoffset, const uint8_t* start, enum DwarfAttribute attr, |
| enum DwarfForm form) { |
| size_t len; |
| |
| switch (form) { |
| // DW_FORM_indirect is never used because it is such a space |
| // waster. |
| case DW_FORM_indirect: |
| form = static_cast<enum DwarfForm>(reader_->ReadUnsignedLEB128(start, |
| &len)); |
| start += len; |
| return ProcessAttribute(dieoffset, start, attr, form); |
| |
| case DW_FORM_flag_present: |
| ProcessAttributeUnsigned(dieoffset, attr, form, 1); |
| return start; |
| case DW_FORM_data1: |
| case DW_FORM_flag: |
| ProcessAttributeUnsigned(dieoffset, attr, form, |
| reader_->ReadOneByte(start)); |
| return start + 1; |
| case DW_FORM_data2: |
| ProcessAttributeUnsigned(dieoffset, attr, form, |
| reader_->ReadTwoBytes(start)); |
| return start + 2; |
| case DW_FORM_data4: |
| ProcessAttributeUnsigned(dieoffset, attr, form, |
| reader_->ReadFourBytes(start)); |
| return start + 4; |
| case DW_FORM_data8: |
| ProcessAttributeUnsigned(dieoffset, attr, form, |
| reader_->ReadEightBytes(start)); |
| return start + 8; |
| case DW_FORM_string: { |
| const char* str = reinterpret_cast<const char*>(start); |
| ProcessAttributeString(dieoffset, attr, form, str); |
| return start + strlen(str) + 1; |
| } |
| case DW_FORM_udata: |
| ProcessAttributeUnsigned(dieoffset, attr, form, |
| reader_->ReadUnsignedLEB128(start, &len)); |
| return start + len; |
| |
| case DW_FORM_sdata: |
| ProcessAttributeSigned(dieoffset, attr, form, |
| reader_->ReadSignedLEB128(start, &len)); |
| return start + len; |
| case DW_FORM_addr: |
| ProcessAttributeUnsigned(dieoffset, attr, form, |
| reader_->ReadAddress(start)); |
| return start + reader_->AddressSize(); |
| case DW_FORM_sec_offset: |
| ProcessAttributeUnsigned(dieoffset, attr, form, |
| reader_->ReadOffset(start)); |
| return start + reader_->OffsetSize(); |
| |
| case DW_FORM_ref1: |
| handler_->ProcessAttributeReference(dieoffset, attr, form, |
| reader_->ReadOneByte(start) |
| + offset_from_section_start_); |
| return start + 1; |
| case DW_FORM_ref2: |
| handler_->ProcessAttributeReference(dieoffset, attr, form, |
| reader_->ReadTwoBytes(start) |
| + offset_from_section_start_); |
| return start + 2; |
| case DW_FORM_ref4: |
| handler_->ProcessAttributeReference(dieoffset, attr, form, |
| reader_->ReadFourBytes(start) |
| + offset_from_section_start_); |
| return start + 4; |
| case DW_FORM_ref8: |
| handler_->ProcessAttributeReference(dieoffset, attr, form, |
| reader_->ReadEightBytes(start) |
| + offset_from_section_start_); |
| return start + 8; |
| case DW_FORM_ref_udata: |
| handler_->ProcessAttributeReference(dieoffset, attr, form, |
| reader_->ReadUnsignedLEB128(start, |
| &len) |
| + offset_from_section_start_); |
| return start + len; |
| case DW_FORM_ref_addr: |
| // DWARF2 and 3/4 differ on whether ref_addr is address size or |
| // offset size. |
| assert(header_.version >= 2); |
| if (header_.version == 2) { |
| handler_->ProcessAttributeReference(dieoffset, attr, form, |
| reader_->ReadAddress(start)); |
| return start + reader_->AddressSize(); |
| } else if (header_.version >= 3) { |
| handler_->ProcessAttributeReference(dieoffset, attr, form, |
| reader_->ReadOffset(start)); |
| return start + reader_->OffsetSize(); |
| } |
| break; |
| case DW_FORM_ref_sig8: |
| handler_->ProcessAttributeSignature(dieoffset, attr, form, |
| reader_->ReadEightBytes(start)); |
| return start + 8; |
| |
| case DW_FORM_block1: { |
| uint64_t datalen = reader_->ReadOneByte(start); |
| handler_->ProcessAttributeBuffer(dieoffset, attr, form, start + 1, |
| datalen); |
| return start + 1 + datalen; |
| } |
| case DW_FORM_block2: { |
| uint64_t datalen = reader_->ReadTwoBytes(start); |
| handler_->ProcessAttributeBuffer(dieoffset, attr, form, start + 2, |
| datalen); |
| return start + 2 + datalen; |
| } |
| case DW_FORM_block4: { |
| uint64_t datalen = reader_->ReadFourBytes(start); |
| handler_->ProcessAttributeBuffer(dieoffset, attr, form, start + 4, |
| datalen); |
| return start + 4 + datalen; |
| } |
| case DW_FORM_block: |
| case DW_FORM_exprloc: { |
| uint64_t datalen = reader_->ReadUnsignedLEB128(start, &len); |
| handler_->ProcessAttributeBuffer(dieoffset, attr, form, start + len, |
| datalen); |
| return start + datalen + len; |
| } |
| case DW_FORM_strp: { |
| assert(string_buffer_ != NULL); |
| |
| const uint64_t offset = reader_->ReadOffset(start); |
| assert(string_buffer_ + offset < string_buffer_ + string_buffer_length_); |
| |
| const char* str = reinterpret_cast<const char*>(string_buffer_ + offset); |
| ProcessAttributeString(dieoffset, attr, form, str); |
| return start + reader_->OffsetSize(); |
| } |
| case DW_FORM_line_strp: { |
| assert(line_string_buffer_ != NULL); |
| |
| const uint64_t offset = reader_->ReadOffset(start); |
| assert(line_string_buffer_ + offset < |
| line_string_buffer_ + line_string_buffer_length_); |
| |
| const char* str = |
| reinterpret_cast<const char*>(line_string_buffer_ + offset); |
| ProcessAttributeString(dieoffset, attr, form, str); |
| return start + reader_->OffsetSize(); |
| } |
| case DW_FORM_strp_sup: |
| // No support currently for suplementary object files. |
| fprintf(stderr, "Unhandled form type: DW_FORM_strp_sup\n"); |
| return start + 4; |
| |
| case DW_FORM_strx: |
| case DW_FORM_GNU_str_index: { |
| uint64_t str_index = reader_->ReadUnsignedLEB128(start, &len); |
| ProcessFormStringIndex(dieoffset, attr, form, str_index); |
| return start + len; |
| } |
| case DW_FORM_strx1: { |
| uint64_t str_index = reader_->ReadOneByte(start); |
| ProcessFormStringIndex(dieoffset, attr, form, str_index); |
| return start + 1; |
| } |
| case DW_FORM_strx2: { |
| uint64_t str_index = reader_->ReadTwoBytes(start); |
| ProcessFormStringIndex(dieoffset, attr, form, str_index); |
| return start + 2; |
| } |
| case DW_FORM_strx3: { |
| uint64_t str_index = reader_->ReadThreeBytes(start); |
| ProcessFormStringIndex(dieoffset, attr, form, str_index); |
| return start + 3; |
| } |
| case DW_FORM_strx4: { |
| uint64_t str_index = reader_->ReadFourBytes(start); |
| ProcessFormStringIndex(dieoffset, attr, form, str_index); |
| return start + 4; |
| } |
| |
| case DW_FORM_addrx: |
| case DW_FORM_GNU_addr_index: |
| ProcessAttributeAddrIndex( |
| dieoffset, attr, form, reader_->ReadUnsignedLEB128(start, &len)); |
| return start + len; |
| case DW_FORM_addrx1: |
| ProcessAttributeAddrIndex( |
| dieoffset, attr, form, reader_->ReadOneByte(start)); |
| return start + 1; |
| case DW_FORM_addrx2: |
| ProcessAttributeAddrIndex( |
| dieoffset, attr, form, reader_->ReadTwoBytes(start)); |
| return start + 2; |
| case DW_FORM_addrx3: |
| ProcessAttributeAddrIndex( |
| dieoffset, attr, form, reader_->ReadThreeBytes(start)); |
| return start + 3; |
| case DW_FORM_addrx4: |
| ProcessAttributeAddrIndex( |
| dieoffset, attr, form, reader_->ReadFourBytes(start)); |
| return start + 4; |
| } |
| fprintf(stderr, "Unhandled form type\n"); |
| return NULL; |
| } |
| |
| const uint8_t* CompilationUnit::ProcessDIE(uint64_t dieoffset, |
| const uint8_t* start, |
| const Abbrev& abbrev) { |
| for (AttributeList::const_iterator i = abbrev.attributes.begin(); |
| i != abbrev.attributes.end(); |
| i++) { |
| start = ProcessAttribute(dieoffset, start, i->first, i->second); |
| } |
| |
| // If this is a compilation unit in a split DWARF object, verify that |
| // the dwo_id matches. If it does not match, we will ignore this |
| // compilation unit. |
| if (abbrev.tag == DW_TAG_compile_unit |
| && is_split_dwarf_ |
| && dwo_id_ != skeleton_dwo_id_) { |
| return NULL; |
| } |
| |
| return start; |
| } |
| |
| void CompilationUnit::ProcessDIEs() { |
| const uint8_t* dieptr = after_header_; |
| size_t len; |
| |
| // lengthstart is the place the length field is based on. |
| // It is the point in the header after the initial length field |
| const uint8_t* lengthstart = buffer_; |
| |
| // In 64 bit dwarf, the initial length is 12 bytes, because of the |
| // 0xffffffff at the start. |
| if (reader_->OffsetSize() == 8) |
| lengthstart += 12; |
| else |
| lengthstart += 4; |
| |
| std::stack<uint64_t> die_stack; |
| |
| while (dieptr < (lengthstart + header_.length)) { |
| // We give the user the absolute offset from the beginning of |
| // debug_info, since they need it to deal with ref_addr forms. |
| uint64_t absolute_offset = (dieptr - buffer_) + offset_from_section_start_; |
| |
| uint64_t abbrev_num = reader_->ReadUnsignedLEB128(dieptr, &len); |
| |
| dieptr += len; |
| |
| // Abbrev == 0 represents the end of a list of children, or padding |
| // at the end of the compilation unit. |
| if (abbrev_num == 0) { |
| if (die_stack.size() == 0) |
| // If it is padding, then we are done with the compilation unit's DIEs. |
| return; |
| const uint64_t offset = die_stack.top(); |
| die_stack.pop(); |
| handler_->EndDIE(offset); |
| continue; |
| } |
| |
| const Abbrev& abbrev = abbrevs_->at(static_cast<size_t>(abbrev_num)); |
| const enum DwarfTag tag = abbrev.tag; |
| if (!handler_->StartDIE(absolute_offset, tag)) { |
| dieptr = SkipDIE(dieptr, abbrev); |
| } else { |
| dieptr = ProcessDIE(absolute_offset, dieptr, abbrev); |
| } |
| |
| if (abbrev.has_children) { |
| die_stack.push(absolute_offset); |
| } else { |
| handler_->EndDIE(absolute_offset); |
| } |
| } |
| } |
| |
| // Check for a valid ELF file and return the Address size. |
| // Returns 0 if not a valid ELF file. |
| inline int GetElfWidth(const ElfReader& elf) { |
| if (elf.IsElf32File()) |
| return 4; |
| if (elf.IsElf64File()) |
| return 8; |
| return 0; |
| } |
| |
| void CompilationUnit::ProcessSplitDwarf() { |
| struct stat statbuf; |
| if (!have_checked_for_dwp_) { |
| // Look for a .dwp file in the same directory as the executable. |
| have_checked_for_dwp_ = true; |
| string dwp_suffix(".dwp"); |
| dwp_path_ = path_ + dwp_suffix; |
| if (stat(dwp_path_.c_str(), &statbuf) != 0) { |
| // Fall back to a split .debug file in the same directory. |
| string debug_suffix(".debug"); |
| dwp_path_ = path_; |
| size_t found = path_.rfind(debug_suffix); |
| if (found + debug_suffix.length() == path_.length()) |
| dwp_path_ = dwp_path_.replace(found, debug_suffix.length(), dwp_suffix); |
| } |
| if (stat(dwp_path_.c_str(), &statbuf) == 0) { |
| ElfReader* elf = new ElfReader(dwp_path_); |
| int width = GetElfWidth(*elf); |
| if (width != 0) { |
| dwp_byte_reader_.reset(new ByteReader(reader_->GetEndianness())); |
| dwp_byte_reader_->SetAddressSize(width); |
| dwp_reader_.reset(new DwpReader(*dwp_byte_reader_, elf)); |
| dwp_reader_->Initialize(); |
| } else { |
| delete elf; |
| } |
| } |
| } |
| bool found_in_dwp = false; |
| if (dwp_reader_) { |
| // If we have a .dwp file, read the debug sections for the requested CU. |
| SectionMap sections; |
| dwp_reader_->ReadDebugSectionsForCU(dwo_id_, §ions); |
| if (!sections.empty()) { |
| found_in_dwp = true; |
| CompilationUnit dwp_comp_unit(dwp_path_, sections, 0, |
| dwp_byte_reader_.get(), handler_); |
| dwp_comp_unit.SetSplitDwarf(addr_buffer_, addr_buffer_length_, addr_base_, |
| ranges_base_, dwo_id_); |
| dwp_comp_unit.Start(); |
| } |
| } |
| if (!found_in_dwp) { |
| // If no .dwp file, try to open the .dwo file. |
| if (stat(dwo_name_, &statbuf) == 0) { |
| ElfReader elf(dwo_name_); |
| int width = GetElfWidth(elf); |
| if (width != 0) { |
| ByteReader reader(ENDIANNESS_LITTLE); |
| reader.SetAddressSize(width); |
| SectionMap sections; |
| ReadDebugSectionsFromDwo(&elf, §ions); |
| CompilationUnit dwo_comp_unit(dwo_name_, sections, 0, &reader, |
| handler_); |
| dwo_comp_unit.SetSplitDwarf(addr_buffer_, addr_buffer_length_, |
| addr_base_, ranges_base_, dwo_id_); |
| dwo_comp_unit.Start(); |
| } |
| } |
| } |
| } |
| |
| void CompilationUnit::ReadDebugSectionsFromDwo(ElfReader* elf_reader, |
| SectionMap* sections) { |
| static const char* const section_names[] = { |
| ".debug_abbrev", |
| ".debug_info", |
| ".debug_str_offsets", |
| ".debug_str" |
| }; |
| for (unsigned int i = 0u; |
| i < sizeof(section_names)/sizeof(*(section_names)); ++i) { |
| string base_name = section_names[i]; |
| string dwo_name = base_name + ".dwo"; |
| size_t section_size; |
| const char* section_data = elf_reader->GetSectionByName(dwo_name, |
| §ion_size); |
| if (section_data != NULL) |
| sections->insert(std::make_pair( |
| base_name, std::make_pair( |
| reinterpret_cast<const uint8_t*>(section_data), |
| section_size))); |
| } |
| } |
| |
| DwpReader::DwpReader(const ByteReader& byte_reader, ElfReader* elf_reader) |
| : elf_reader_(elf_reader), byte_reader_(byte_reader), |
| cu_index_(NULL), cu_index_size_(0), string_buffer_(NULL), |
| string_buffer_size_(0), version_(0), ncolumns_(0), nunits_(0), |
| nslots_(0), phash_(NULL), pindex_(NULL), shndx_pool_(NULL), |
| offset_table_(NULL), size_table_(NULL), abbrev_data_(NULL), |
| abbrev_size_(0), info_data_(NULL), info_size_(0), |
| str_offsets_data_(NULL), str_offsets_size_(0) {} |
| |
| DwpReader::~DwpReader() { |
| if (elf_reader_) delete elf_reader_; |
| } |
| |
| void DwpReader::Initialize() { |
| cu_index_ = elf_reader_->GetSectionByName(".debug_cu_index", |
| &cu_index_size_); |
| if (cu_index_ == NULL) { |
| return; |
| } |
| // The .debug_str.dwo section is shared by all CUs in the file. |
| string_buffer_ = elf_reader_->GetSectionByName(".debug_str.dwo", |
| &string_buffer_size_); |
| |
| version_ = byte_reader_.ReadFourBytes( |
| reinterpret_cast<const uint8_t*>(cu_index_)); |
| |
| if (version_ == 1) { |
| nslots_ = byte_reader_.ReadFourBytes( |
| reinterpret_cast<const uint8_t*>(cu_index_) |
| + 3 * sizeof(uint32_t)); |
| phash_ = cu_index_ + 4 * sizeof(uint32_t); |
| pindex_ = phash_ + nslots_ * sizeof(uint64_t); |
| shndx_pool_ = pindex_ + nslots_ * sizeof(uint32_t); |
| if (shndx_pool_ >= cu_index_ + cu_index_size_) { |
| version_ = 0; |
| } |
| } else if (version_ == 2) { |
| ncolumns_ = byte_reader_.ReadFourBytes( |
| reinterpret_cast<const uint8_t*>(cu_index_) + sizeof(uint32_t)); |
| nunits_ = byte_reader_.ReadFourBytes( |
| reinterpret_cast<const uint8_t*>(cu_index_) + 2 * sizeof(uint32_t)); |
| nslots_ = byte_reader_.ReadFourBytes( |
| reinterpret_cast<const uint8_t*>(cu_index_) + 3 * sizeof(uint32_t)); |
| phash_ = cu_index_ + 4 * sizeof(uint32_t); |
| pindex_ = phash_ + nslots_ * sizeof(uint64_t); |
| offset_table_ = pindex_ + nslots_ * sizeof(uint32_t); |
| size_table_ = offset_table_ + ncolumns_ * (nunits_ + 1) * sizeof(uint32_t); |
| abbrev_data_ = elf_reader_->GetSectionByName(".debug_abbrev.dwo", |
| &abbrev_size_); |
| info_data_ = elf_reader_->GetSectionByName(".debug_info.dwo", &info_size_); |
| str_offsets_data_ = elf_reader_->GetSectionByName(".debug_str_offsets.dwo", |
| &str_offsets_size_); |
| if (size_table_ >= cu_index_ + cu_index_size_) { |
| version_ = 0; |
| } |
| } |
| } |
| |
| void DwpReader::ReadDebugSectionsForCU(uint64_t dwo_id, |
| SectionMap* sections) { |
| if (version_ == 1) { |
| int slot = LookupCU(dwo_id); |
| if (slot == -1) { |
| return; |
| } |
| |
| // The index table points to the section index pool, where we |
| // can read a list of section indexes for the debug sections |
| // for the CU whose dwo_id we are looking for. |
| int index = byte_reader_.ReadFourBytes( |
| reinterpret_cast<const uint8_t*>(pindex_) |
| + slot * sizeof(uint32_t)); |
| const char* shndx_list = shndx_pool_ + index * sizeof(uint32_t); |
| for (;;) { |
| if (shndx_list >= cu_index_ + cu_index_size_) { |
| version_ = 0; |
| return; |
| } |
| unsigned int shndx = byte_reader_.ReadFourBytes( |
| reinterpret_cast<const uint8_t*>(shndx_list)); |
| shndx_list += sizeof(uint32_t); |
| if (shndx == 0) |
| break; |
| const char* section_name = elf_reader_->GetSectionName(shndx); |
| size_t section_size; |
| const char* section_data; |
| // We're only interested in these four debug sections. |
| // The section names in the .dwo file end with ".dwo", but we |
| // add them to the sections table with their normal names. |
| if (!strncmp(section_name, ".debug_abbrev", strlen(".debug_abbrev"))) { |
| section_data = elf_reader_->GetSectionByIndex(shndx, §ion_size); |
| sections->insert(std::make_pair( |
| ".debug_abbrev", |
| std::make_pair(reinterpret_cast<const uint8_t*> (section_data), |
| section_size))); |
| } else if (!strncmp(section_name, ".debug_info", strlen(".debug_info"))) { |
| section_data = elf_reader_->GetSectionByIndex(shndx, §ion_size); |
| sections->insert(std::make_pair( |
| ".debug_info", |
| std::make_pair(reinterpret_cast<const uint8_t*> (section_data), |
| section_size))); |
| } else if (!strncmp(section_name, ".debug_str_offsets", |
| strlen(".debug_str_offsets"))) { |
| section_data = elf_reader_->GetSectionByIndex(shndx, §ion_size); |
| sections->insert(std::make_pair( |
| ".debug_str_offsets", |
| std::make_pair(reinterpret_cast<const uint8_t*> (section_data), |
| section_size))); |
| } |
| } |
| sections->insert(std::make_pair( |
| ".debug_str", |
| std::make_pair(reinterpret_cast<const uint8_t*> (string_buffer_), |
| string_buffer_size_))); |
| } else if (version_ == 2) { |
| uint32_t index = LookupCUv2(dwo_id); |
| if (index == 0) { |
| return; |
| } |
| |
| // The index points to a row in each of the section offsets table |
| // and the section size table, where we can read the offsets and sizes |
| // of the contributions to each debug section from the CU whose dwo_id |
| // we are looking for. Row 0 of the section offsets table has the |
| // section ids for each column of the table. The size table begins |
| // with row 1. |
| const char* id_row = offset_table_; |
| const char* offset_row = offset_table_ |
| + index * ncolumns_ * sizeof(uint32_t); |
| const char* size_row = |
| size_table_ + (index - 1) * ncolumns_ * sizeof(uint32_t); |
| if (size_row + ncolumns_ * sizeof(uint32_t) > cu_index_ + cu_index_size_) { |
| version_ = 0; |
| return; |
| } |
| for (unsigned int col = 0u; col < ncolumns_; ++col) { |
| uint32_t section_id = |
| byte_reader_.ReadFourBytes(reinterpret_cast<const uint8_t*>(id_row) |
| + col * sizeof(uint32_t)); |
| uint32_t offset = byte_reader_.ReadFourBytes( |
| reinterpret_cast<const uint8_t*>(offset_row) |
| + col * sizeof(uint32_t)); |
| uint32_t size = byte_reader_.ReadFourBytes( |
| reinterpret_cast<const uint8_t*>(size_row) + col * sizeof(uint32_t)); |
| if (section_id == DW_SECT_ABBREV) { |
| sections->insert(std::make_pair( |
| ".debug_abbrev", |
| std::make_pair(reinterpret_cast<const uint8_t*> (abbrev_data_) |
| + offset, size))); |
| } else if (section_id == DW_SECT_INFO) { |
| sections->insert(std::make_pair( |
| ".debug_info", |
| std::make_pair(reinterpret_cast<const uint8_t*> (info_data_) |
| + offset, size))); |
| } else if (section_id == DW_SECT_STR_OFFSETS) { |
| sections->insert(std::make_pair( |
| ".debug_str_offsets", |
| std::make_pair(reinterpret_cast<const uint8_t*> (str_offsets_data_) |
| + offset, size))); |
| } |
| } |
| sections->insert(std::make_pair( |
| ".debug_str", |
| std::make_pair(reinterpret_cast<const uint8_t*> (string_buffer_), |
| string_buffer_size_))); |
| } |
| } |
| |
| int DwpReader::LookupCU(uint64_t dwo_id) { |
| uint32_t slot = static_cast<uint32_t>(dwo_id) & (nslots_ - 1); |
| uint64_t probe = byte_reader_.ReadEightBytes( |
| reinterpret_cast<const uint8_t*>(phash_) + slot * sizeof(uint64_t)); |
| if (probe != 0 && probe != dwo_id) { |
| uint32_t secondary_hash = |
| (static_cast<uint32_t>(dwo_id >> 32) & (nslots_ - 1)) | 1; |
| do { |
| slot = (slot + secondary_hash) & (nslots_ - 1); |
| probe = byte_reader_.ReadEightBytes( |
| reinterpret_cast<const uint8_t*>(phash_) + slot * sizeof(uint64_t)); |
| } while (probe != 0 && probe != dwo_id); |
| } |
| if (probe == 0) |
| return -1; |
| return slot; |
| } |
| |
| uint32_t DwpReader::LookupCUv2(uint64_t dwo_id) { |
| uint32_t slot = static_cast<uint32_t>(dwo_id) & (nslots_ - 1); |
| uint64_t probe = byte_reader_.ReadEightBytes( |
| reinterpret_cast<const uint8_t*>(phash_) + slot * sizeof(uint64_t)); |
| uint32_t index = byte_reader_.ReadFourBytes( |
| reinterpret_cast<const uint8_t*>(pindex_) + slot * sizeof(uint32_t)); |
| if (index != 0 && probe != dwo_id) { |
| uint32_t secondary_hash = |
| (static_cast<uint32_t>(dwo_id >> 32) & (nslots_ - 1)) | 1; |
| do { |
| slot = (slot + secondary_hash) & (nslots_ - 1); |
| probe = byte_reader_.ReadEightBytes( |
| reinterpret_cast<const uint8_t*>(phash_) + slot * sizeof(uint64_t)); |
| index = byte_reader_.ReadFourBytes( |
| reinterpret_cast<const uint8_t*>(pindex_) + slot * sizeof(uint32_t)); |
| } while (index != 0 && probe != dwo_id); |
| } |
| return index; |
| } |
| |
| LineInfo::LineInfo(const uint8_t* buffer, uint64_t buffer_length, |
| ByteReader* reader, const uint8_t* string_buffer, |
| size_t string_buffer_length, |
| const uint8_t* line_string_buffer, |
| size_t line_string_buffer_length, LineInfoHandler* handler): |
| handler_(handler), reader_(reader), buffer_(buffer), |
| string_buffer_(string_buffer), |
| line_string_buffer_(line_string_buffer) { |
| #ifndef NDEBUG |
| buffer_length_ = buffer_length; |
| string_buffer_length_ = string_buffer_length; |
| line_string_buffer_length_ = line_string_buffer_length; |
| #endif |
| header_.std_opcode_lengths = NULL; |
| } |
| |
| uint64_t LineInfo::Start() { |
| ReadHeader(); |
| ReadLines(); |
| return after_header_ - buffer_; |
| } |
| |
| void LineInfo::ReadTypesAndForms(const uint8_t** lineptr, |
| uint32_t* content_types, |
| uint32_t* content_forms, |
| uint32_t max_types, |
| uint32_t* format_count) { |
| size_t len; |
| |
| uint32_t count = reader_->ReadUnsignedLEB128(*lineptr, &len); |
| *lineptr += len; |
| if (count < 1 || count > max_types) { |
| return; |
| } |
| for (uint32_t col = 0; col < count; ++col) { |
| content_types[col] = reader_->ReadUnsignedLEB128(*lineptr, &len); |
| *lineptr += len; |
| content_forms[col] = reader_->ReadUnsignedLEB128(*lineptr, &len); |
| *lineptr += len; |
| } |
| *format_count = count; |
| } |
| |
| const char* LineInfo::ReadStringForm(uint32_t form, const uint8_t** lineptr) { |
| const char* name = nullptr; |
| if (form == DW_FORM_string) { |
| name = reinterpret_cast<const char*>(*lineptr); |
| *lineptr += strlen(name) + 1; |
| return name; |
| } else if (form == DW_FORM_strp) { |
| uint64_t offset = reader_->ReadOffset(*lineptr); |
| assert(offset < string_buffer_length_); |
| *lineptr += reader_->OffsetSize(); |
| if (string_buffer_ != nullptr) { |
| name = reinterpret_cast<const char*>(string_buffer_) + offset; |
| return name; |
| } |
| } else if (form == DW_FORM_line_strp) { |
| uint64_t offset = reader_->ReadOffset(*lineptr); |
| assert(offset < line_string_buffer_length_); |
| *lineptr += reader_->OffsetSize(); |
| if (line_string_buffer_ != nullptr) { |
| name = reinterpret_cast<const char*>(line_string_buffer_) + offset; |
| return name; |
| } |
| } |
| // Shouldn't be called with a non-string-form, and |
| // if there is a string form but no string buffer, |
| // that is a problem too. |
| assert(0); |
| return nullptr; |
| } |
| |
| uint64_t LineInfo::ReadUnsignedData(uint32_t form, const uint8_t** lineptr) { |
| size_t len; |
| uint64_t value; |
| |
| switch (form) { |
| case DW_FORM_data1: |
| value = reader_->ReadOneByte(*lineptr); |
| *lineptr += 1; |
| return value; |
| case DW_FORM_data2: |
| value = reader_->ReadTwoBytes(*lineptr); |
| *lineptr += 2; |
| return value; |
| case DW_FORM_data4: |
| value = reader_->ReadFourBytes(*lineptr); |
| *lineptr += 4; |
| return value; |
| case DW_FORM_data8: |
| value = reader_->ReadEightBytes(*lineptr); |
| *lineptr += 8; |
| return value; |
| case DW_FORM_udata: |
| value = reader_->ReadUnsignedLEB128(*lineptr, &len); |
| *lineptr += len; |
| return value; |
| default: |
| fprintf(stderr, "Unrecognized data form."); |
| return 0; |
| } |
| } |
| |
| void LineInfo::ReadFileRow(const uint8_t** lineptr, |
| const uint32_t* content_types, |
| const uint32_t* content_forms, uint32_t row, |
| uint32_t format_count) { |
| const char* filename = nullptr; |
| uint64_t dirindex = 0; |
| uint64_t mod_time = 0; |
| uint64_t filelength = 0; |
| |
| for (uint32_t col = 0; col < format_count; ++col) { |
| switch (content_types[col]) { |
| case DW_LNCT_path: |
| filename = ReadStringForm(content_forms[col], lineptr); |
| break; |
| case DW_LNCT_directory_index: |
| dirindex = ReadUnsignedData(content_forms[col], lineptr); |
| break; |
| case DW_LNCT_timestamp: |
| mod_time = ReadUnsignedData(content_forms[col], lineptr); |
| break; |
| case DW_LNCT_size: |
| filelength = ReadUnsignedData(content_forms[col], lineptr); |
| break; |
| case DW_LNCT_MD5: |
| // MD5 entries help a debugger sort different versions of files with |
| // the same name. It is always paired with a DW_FORM_data16 and is |
| // unused in this case. |
| lineptr += 16; |
| break; |
| default: |
| fprintf(stderr, "Unrecognized form in line table header. %d\n", |
| content_types[col]); |
| assert(false); |
| break; |
| } |
| } |
| assert(filename != nullptr); |
| handler_->DefineFile(filename, row, dirindex, mod_time, filelength); |
| } |
| |
| // The header for a debug_line section is mildly complicated, because |
| // the line info is very tightly encoded. |
| void LineInfo::ReadHeader() { |
| const uint8_t* lineptr = buffer_; |
| size_t initial_length_size; |
| |
| const uint64_t initial_length |
| = reader_->ReadInitialLength(lineptr, &initial_length_size); |
| |
| lineptr += initial_length_size; |
| header_.total_length = initial_length; |
| assert(buffer_ + initial_length_size + header_.total_length <= |
| buffer_ + buffer_length_); |
| |
| |
| header_.version = reader_->ReadTwoBytes(lineptr); |
| lineptr += 2; |
| |
| if (header_.version >= 5) { |
| uint8_t address_size = reader_->ReadOneByte(lineptr); |
| reader_->SetAddressSize(address_size); |
| lineptr += 1; |
| uint8_t segment_selector_size = reader_->ReadOneByte(lineptr); |
| if (segment_selector_size != 0) { |
| fprintf(stderr,"No support for segmented memory."); |
| } |
| lineptr += 1; |
| } else { |
| // Address size *must* be set by CU ahead of time. |
| assert(reader_->AddressSize() != 0); |
| } |
| |
| header_.prologue_length = reader_->ReadOffset(lineptr); |
| lineptr += reader_->OffsetSize(); |
| |
| header_.min_insn_length = reader_->ReadOneByte(lineptr); |
| lineptr += 1; |
| |
| if (header_.version >= 4) { |
| __attribute__((unused)) uint8_t max_ops_per_insn = |
| reader_->ReadOneByte(lineptr); |
| ++lineptr; |
| assert(max_ops_per_insn == 1); |
| } |
| |
| header_.default_is_stmt = reader_->ReadOneByte(lineptr); |
| lineptr += 1; |
| |
| header_.line_base = *reinterpret_cast<const int8_t*>(lineptr); |
| lineptr += 1; |
| |
| header_.line_range = reader_->ReadOneByte(lineptr); |
| lineptr += 1; |
| |
| header_.opcode_base = reader_->ReadOneByte(lineptr); |
| lineptr += 1; |
| |
| header_.std_opcode_lengths = new std::vector<unsigned char>; |
| header_.std_opcode_lengths->resize(header_.opcode_base + 1); |
| (*header_.std_opcode_lengths)[0] = 0; |
| for (int i = 1; i < header_.opcode_base; i++) { |
| (*header_.std_opcode_lengths)[i] = reader_->ReadOneByte(lineptr); |
| lineptr += 1; |
| } |
| |
| if (header_.version <= 4) { |
| // Directory zero is assumed to be the compilation directory and special |
| // cased where used. It is not actually stored in the dwarf data. But an |
| // empty entry here avoids off-by-one errors elsewhere in the code. |
| handler_->DefineDir("", 0); |
| // It is legal for the directory entry table to be empty. |
| if (*lineptr) { |
| uint32_t dirindex = 1; |
| while (*lineptr) { |
| const char* dirname = reinterpret_cast<const char*>(lineptr); |
| handler_->DefineDir(dirname, dirindex); |
| lineptr += strlen(dirname) + 1; |
| dirindex++; |
| } |
| } |
| lineptr++; |
| // It is also legal for the file entry table to be empty. |
| |
| // Similarly for file zero. |
| handler_->DefineFile("", 0, 0, 0, 0); |
| if (*lineptr) { |
| uint32_t fileindex = 1; |
| size_t len; |
| while (*lineptr) { |
| const char* filename = ReadStringForm(DW_FORM_string, &lineptr); |
| |
| uint64_t dirindex = reader_->ReadUnsignedLEB128(lineptr, &len); |
| lineptr += len; |
| |
| uint64_t mod_time = reader_->ReadUnsignedLEB128(lineptr, &len); |
| lineptr += len; |
| |
| uint64_t filelength = reader_->ReadUnsignedLEB128(lineptr, &len); |
| lineptr += len; |
| handler_->DefineFile(filename, fileindex, |
| static_cast<uint32_t>(dirindex), mod_time, |
| filelength); |
| fileindex++; |
| } |
| } |
| lineptr++; |
| } else { |
| // Read the DWARF-5 directory table. |
| |
| // Dwarf5 supports five different types and forms per directory- and |
| // file-table entry. Theoretically, there could be duplicate entries |
| // in this table, but that would be quite unusual. |
| static const uint32_t kMaxTypesAndForms = 5; |
| uint32_t content_types[kMaxTypesAndForms]; |
| uint32_t content_forms[kMaxTypesAndForms]; |
| uint32_t format_count; |
| size_t len; |
| |
| ReadTypesAndForms(&lineptr, content_types, content_forms, kMaxTypesAndForms, |
| &format_count); |
| uint32_t entry_count = reader_->ReadUnsignedLEB128(lineptr, &len); |
| lineptr += len; |
| for (uint32_t row = 0; row < entry_count; ++row) { |
| const char* dirname = nullptr; |
| for (uint32_t col = 0; col < format_count; ++col) { |
| // The path is the only relevant content type for this implementation. |
| if (content_types[col] == DW_LNCT_path) { |
| dirname = ReadStringForm(content_forms[col], &lineptr); |
| } |
| } |
| handler_->DefineDir(dirname, row); |
| } |
| |
| // Read the DWARF-5 filename table. |
| ReadTypesAndForms(&lineptr, content_types, content_forms, kMaxTypesAndForms, |
| &format_count); |
| entry_count = reader_->ReadUnsignedLEB128(lineptr, &len); |
| lineptr += len; |
| |
| for (uint32_t row = 0; row < entry_count; ++row) { |
| ReadFileRow(&lineptr, content_types, content_forms, row, format_count); |
| } |
| } |
| after_header_ = lineptr; |
| } |
| |
| /* static */ |
| bool LineInfo::ProcessOneOpcode(ByteReader* reader, |
| LineInfoHandler* handler, |
| const struct LineInfoHeader& header, |
| const uint8_t* start, |
| struct LineStateMachine* lsm, |
| size_t* len, |
| uintptr pc, |
| bool* lsm_passes_pc) { |
| size_t oplen = 0; |
| size_t templen; |
| uint8_t opcode = reader->ReadOneByte(start); |
| oplen++; |
| start++; |
| |
| // If the opcode is great than the opcode_base, it is a special |
| // opcode. Most line programs consist mainly of special opcodes. |
| if (opcode >= header.opcode_base) { |
| opcode -= header.opcode_base; |
| const int64_t advance_address = (opcode / header.line_range) |
| * header.min_insn_length; |
| const int32_t advance_line = (opcode % header.line_range) |
| + header.line_base; |
| |
| // Check if the lsm passes "pc". If so, mark it as passed. |
| if (lsm_passes_pc && |
| lsm->address <= pc && pc < lsm->address + advance_address) { |
| *lsm_passes_pc = true; |
| } |
| |
| lsm->address += advance_address; |
| lsm->line_num += advance_line; |
| lsm->basic_block = true; |
| *len = oplen; |
| return true; |
| } |
| |
| // Otherwise, we have the regular opcodes |
| switch (opcode) { |
| case DW_LNS_copy: { |
| lsm->basic_block = false; |
| *len = oplen; |
| return true; |
| } |
| |
| case DW_LNS_advance_pc: { |
| uint64_t advance_address = reader->ReadUnsignedLEB128(start, &templen); |
| oplen += templen; |
| |
| // Check if the lsm passes "pc". If so, mark it as passed. |
| if (lsm_passes_pc && lsm->address <= pc && |
| pc < lsm->address + header.min_insn_length * advance_address) { |
| *lsm_passes_pc = true; |
| } |
| |
| lsm->address += header.min_insn_length * advance_address; |
| } |
| break; |
| case DW_LNS_advance_line: { |
| const int64_t advance_line = reader->ReadSignedLEB128(start, &templen); |
| oplen += templen; |
| lsm->line_num += static_cast<int32_t>(advance_line); |
| |
| // With gcc 4.2.1, we can get the line_no here for the first time |
| // since DW_LNS_advance_line is called after DW_LNE_set_address is |
| // called. So we check if the lsm passes "pc" here, not in |
| // DW_LNE_set_address. |
| if (lsm_passes_pc && lsm->address == pc) { |
| *lsm_passes_pc = true; |
| } |
| } |
| break; |
| case DW_LNS_set_file: { |
| const uint64_t fileno = reader->ReadUnsignedLEB128(start, &templen); |
| oplen += templen; |
| lsm->file_num = static_cast<uint32_t>(fileno); |
| } |
| break; |
| case DW_LNS_set_column: { |
| const uint64_t colno = reader->ReadUnsignedLEB128(start, &templen); |
| oplen += templen; |
| lsm->column_num = static_cast<uint32_t>(colno); |
| } |
| break; |
| case DW_LNS_negate_stmt: { |
| lsm->is_stmt = !lsm->is_stmt; |
| } |
| break; |
| case DW_LNS_set_basic_block: { |
| lsm->basic_block = true; |
| } |
| break; |
| case DW_LNS_fixed_advance_pc: { |
| const uint16_t advance_address = reader->ReadTwoBytes(start); |
| oplen += 2; |
| |
| // Check if the lsm passes "pc". If so, mark it as passed. |
| if (lsm_passes_pc && |
| lsm->address <= pc && pc < lsm->address + advance_address) { |
| *lsm_passes_pc = true; |
| } |
| |
| lsm->address += advance_address; |
| } |
| break; |
| case DW_LNS_const_add_pc: { |
| const int64_t advance_address = header.min_insn_length |
| * ((255 - header.opcode_base) |
| / header.line_range); |
| |
| // Check if the lsm passes "pc". If so, mark it as passed. |
| if (lsm_passes_pc && |
| lsm->address <= pc && pc < lsm->address + advance_address) { |
| *lsm_passes_pc = true; |
| } |
| |
| lsm->address += advance_address; |
| } |
| break; |
| case DW_LNS_extended_op: { |
| const uint64_t extended_op_len = reader->ReadUnsignedLEB128(start, |
| &templen); |
| start += templen; |
| oplen += templen + extended_op_len; |
| |
| const uint64_t extended_op = reader->ReadOneByte(start); |
| start++; |
| |
| switch (extended_op) { |
| case DW_LNE_end_sequence: { |
| lsm->end_sequence = true; |
| *len = oplen; |
| return true; |
| } |
| break; |
| case DW_LNE_set_address: { |
| // With gcc 4.2.1, we cannot tell the line_no here since |
| // DW_LNE_set_address is called before DW_LNS_advance_line is |
| // called. So we do not check if the lsm passes "pc" here. See |
| // also the comment in DW_LNS_advance_line. |
| uint64_t address = reader->ReadAddress(start); |
| lsm->address = address; |
| } |
| break; |
| case DW_LNE_define_file: { |
| const char* filename = reinterpret_cast<const char*>(start); |
| |
| templen = strlen(filename) + 1; |
| start += templen; |
| |
| uint64_t dirindex = reader->ReadUnsignedLEB128(start, &templen); |
| oplen += templen; |
| |
| const uint64_t mod_time = reader->ReadUnsignedLEB128(start, |
| &templen); |
| oplen += templen; |
| |
| const uint64_t filelength = reader->ReadUnsignedLEB128(start, |
| &templen); |
| oplen += templen; |
| |
| if (handler) { |
| handler->DefineFile(filename, -1, static_cast<uint32_t>(dirindex), |
| mod_time, filelength); |
| } |
| } |
| break; |
| } |
| } |
| break; |
| |
| default: { |
| // Ignore unknown opcode silently |
| if (header.std_opcode_lengths) { |
| for (int i = 0; i < (*header.std_opcode_lengths)[opcode]; i++) { |
| reader->ReadUnsignedLEB128(start, &templen); |
| start += templen; |
| oplen += templen; |
| } |
| } |
| } |
| break; |
| } |
| *len = oplen; |
| return false; |
| } |
| |
| void LineInfo::ReadLines() { |
| struct LineStateMachine lsm; |
| |
| // lengthstart is the place the length field is based on. |
| // It is the point in the header after the initial length field |
| const uint8_t* lengthstart = buffer_; |
| |
| // In 64 bit dwarf, the initial length is 12 bytes, because of the |
| // 0xffffffff at the start. |
| if (reader_->OffsetSize() == 8) |
| lengthstart += 12; |
| else |
| lengthstart += 4; |
| |
| const uint8_t* lineptr = after_header_; |
| lsm.Reset(header_.default_is_stmt); |
| |
| // The LineInfoHandler interface expects each line's length along |
| // with its address, but DWARF only provides addresses (sans |
| // length), and an end-of-sequence address; one infers the length |
| // from the next address. So we report a line only when we get the |
| // next line's address, or the end-of-sequence address. |
| bool have_pending_line = false; |
| uint64_t pending_address = 0; |
| uint32_t pending_file_num = 0, pending_line_num = 0, pending_column_num = 0; |
| |
| while (lineptr < lengthstart + header_.total_length) { |
| size_t oplength; |
| bool add_row = ProcessOneOpcode(reader_, handler_, header_, |
| lineptr, &lsm, &oplength, (uintptr)-1, |
| NULL); |
| if (add_row) { |
| if (have_pending_line) |
| handler_->AddLine(pending_address, lsm.address - pending_address, |
| pending_file_num, pending_line_num, |
| pending_column_num); |
| if (lsm.end_sequence) { |
| lsm.Reset(header_.default_is_stmt); |
| have_pending_line = false; |
| } else { |
| pending_address = lsm.address; |
| pending_file_num = lsm.file_num; |
| pending_line_num = lsm.line_num; |
| pending_column_num = lsm.column_num; |
| have_pending_line = true; |
| } |
| } |
| lineptr += oplength; |
| } |
| |
| after_header_ = lengthstart + header_.total_length; |
| } |
| |
| RangeListReader::RangeListReader(const uint8_t* buffer, uint64_t size, |
| ByteReader* reader, RangeListHandler* handler) |
| : buffer_(buffer), size_(size), reader_(reader), handler_(handler) { } |
| |
| bool RangeListReader::ReadRangeList(uint64_t offset) { |
| const uint64_t max_address = |
| (reader_->AddressSize() == 4) ? 0xffffffffUL |
| : 0xffffffffffffffffULL; |
| const uint64_t entry_size = reader_->AddressSize() * 2; |
| bool list_end = false; |
| |
| do { |
| if (offset > size_ - entry_size) { |
| return false; // Invalid range detected |
| } |
| |
| uint64_t start_address = reader_->ReadAddress(buffer_ + offset); |
| uint64_t end_address = |
| reader_->ReadAddress(buffer_ + offset + reader_->AddressSize()); |
| |
| if (start_address == max_address) { // Base address selection |
| handler_->SetBaseAddress(end_address); |
| } else if (start_address == 0 && end_address == 0) { // End-of-list |
| handler_->Finish(); |
| list_end = true; |
| } else { // Add a range entry |
| handler_->AddRange(start_address, end_address); |
| } |
| |
| offset += entry_size; |
| } while (!list_end); |
| |
| return true; |
| } |
| |
| // A DWARF rule for recovering the address or value of a register, or |
| // computing the canonical frame address. There is one subclass of this for |
| // each '*Rule' member function in CallFrameInfo::Handler. |
| // |
| // It's annoying that we have to handle Rules using pointers (because |
| // the concrete instances can have an arbitrary size). They're small, |
| // so it would be much nicer if we could just handle them by value |
| // instead of fretting about ownership and destruction. |
| // |
| // It seems like all these could simply be instances of std::tr1::bind, |
| // except that we need instances to be EqualityComparable, too. |
| // |
| // This could logically be nested within State, but then the qualified names |
| // get horrendous. |
| class CallFrameInfo::Rule { |
| public: |
| virtual ~Rule() { } |
| |
| // Tell HANDLER that, at ADDRESS in the program, REG can be recovered using |
| // this rule. If REG is kCFARegister, then this rule describes how to compute |
| // the canonical frame address. Return what the HANDLER member function |
| // returned. |
| virtual bool Handle(Handler* handler, |
| uint64_t address, int reg) const = 0; |
| |
| // Equality on rules. We use these to decide which rules we need |
| // to report after a DW_CFA_restore_state instruction. |
| virtual bool operator==(const Rule& rhs) const = 0; |
| |
| bool operator!=(const Rule& rhs) const { return ! (*this == rhs); } |
| |
| // Return a pointer to a copy of this rule. |
| virtual Rule* Copy() const = 0; |
| |
| // If this is a base+offset rule, change its base register to REG. |
| // Otherwise, do nothing. (Ugly, but required for DW_CFA_def_cfa_register.) |
| virtual void SetBaseRegister(unsigned reg) { } |
| |
| // If this is a base+offset rule, change its offset to OFFSET. Otherwise, |
| // do nothing. (Ugly, but required for DW_CFA_def_cfa_offset.) |
| virtual void SetOffset(long long offset) { } |
| }; |
| |
| // Rule: the value the register had in the caller cannot be recovered. |
| class CallFrameInfo::UndefinedRule: public CallFrameInfo::Rule { |
| public: |
| UndefinedRule() { } |
| ~UndefinedRule() { } |
| bool Handle(Handler* handler, uint64_t address, int reg) const { |
| return handler->UndefinedRule(address, reg); |
| } |
| bool operator==(const Rule& rhs) const { |
| // dynamic_cast is allowed by the Google C++ Style Guide, if the use has |
| // been carefully considered; cheap RTTI-like workarounds are forbidden. |
| const UndefinedRule* our_rhs = dynamic_cast<const UndefinedRule*>(&rhs); |
| return (our_rhs != NULL); |
| } |
| Rule* Copy() const { return new UndefinedRule(*this); } |
| }; |
| |
| // Rule: the register's value is the same as that it had in the caller. |
| class CallFrameInfo::SameValueRule: public CallFrameInfo::Rule { |
| public: |
| SameValueRule() { } |
| ~SameValueRule() { } |
| bool Handle(Handler* handler, uint64_t address, int reg) const { |
| return handler->SameValueRule(address, reg); |
| } |
| bool operator==(const Rule& rhs) const { |
| // dynamic_cast is allowed by the Google C++ Style Guide, if the use has |
| // been carefully considered; cheap RTTI-like workarounds are forbidden. |
| const SameValueRule* our_rhs = dynamic_cast<const SameValueRule*>(&rhs); |
| return (our_rhs != NULL); |
| } |
| Rule* Copy() const { return new SameValueRule(*this); } |
| }; |
| |
| // Rule: the register is saved at OFFSET from BASE_REGISTER. BASE_REGISTER |
| // may be CallFrameInfo::Handler::kCFARegister. |
| class CallFrameInfo::OffsetRule: public CallFrameInfo::Rule { |
| public: |
| OffsetRule(int base_register, long offset) |
| : base_register_(base_register), offset_(offset) { } |
| ~OffsetRule() { } |
| bool Handle(Handler* handler, uint64_t address, int reg) const { |
| return handler->OffsetRule(address, reg, base_register_, offset_); |
| } |
| bool operator==(const Rule& rhs) const { |
| // dynamic_cast is allowed by the Google C++ Style Guide, if the use has |
| // been carefully considered; cheap RTTI-like workarounds are forbidden. |
| const OffsetRule* our_rhs = dynamic_cast<const OffsetRule*>(&rhs); |
| return (our_rhs && |
| base_register_ == our_rhs->base_register_ && |
| offset_ == our_rhs->offset_); |
| } |
| Rule* Copy() const { return new OffsetRule(*this); } |
| // We don't actually need SetBaseRegister or SetOffset here, since they |
| // are only ever applied to CFA rules, for DW_CFA_def_cfa_offset, and it |
| // doesn't make sense to use OffsetRule for computing the CFA: it |
| // computes the address at which a register is saved, not a value. |
| private: |
| int base_register_; |
| long offset_; |
| }; |
| |
| // Rule: the value the register had in the caller is the value of |
| // BASE_REGISTER plus offset. BASE_REGISTER may be |
| // CallFrameInfo::Handler::kCFARegister. |
| class CallFrameInfo::ValOffsetRule: public CallFrameInfo::Rule { |
| public: |
| ValOffsetRule(int base_register, long offset) |
| : base_register_(base_register), offset_(offset) { } |
| ~ValOffsetRule() { } |
| bool Handle(Handler* handler, uint64_t address, int reg) const { |
| return handler->ValOffsetRule(address, reg, base_register_, offset_); |
| } |
| bool operator==(const Rule& rhs) const { |
| // dynamic_cast is allowed by the Google C++ Style Guide, if the use has |
| // been carefully considered; cheap RTTI-like workarounds are forbidden. |
| const ValOffsetRule* our_rhs = dynamic_cast<const ValOffsetRule*>(&rhs); |
| return (our_rhs && |
| base_register_ == our_rhs->base_register_ && |
| offset_ == our_rhs->offset_); |
| } |
| Rule* Copy() const { return new ValOffsetRule(*this); } |
| void SetBaseRegister(unsigned reg) { base_register_ = reg; } |
| void SetOffset(long long offset) { offset_ = offset; } |
| private: |
| int base_register_; |
| long offset_; |
| }; |
| |
| // Rule: the register has been saved in another register REGISTER_NUMBER_. |
| class CallFrameInfo::RegisterRule: public CallFrameInfo::Rule { |
| public: |
| explicit RegisterRule(int register_number) |
| : register_number_(register_number) { } |
| ~RegisterRule() { } |
| bool Handle(Handler* handler, uint64_t address, int reg) const { |
| return handler->RegisterRule(address, reg, register_number_); |
| } |
| bool operator==(const Rule& rhs) const { |
| // dynamic_cast is allowed by the Google C++ Style Guide, if the use has |
| // been carefully considered; cheap RTTI-like workarounds are forbidden. |
| const RegisterRule* our_rhs = dynamic_cast<const RegisterRule*>(&rhs); |
| return (our_rhs && register_number_ == our_rhs->register_number_); |
| } |
| Rule* Copy() const { return new RegisterRule(*this); } |
| private: |
| int register_number_; |
| }; |
| |
| // Rule: EXPRESSION evaluates to the address at which the register is saved. |
| class CallFrameInfo::ExpressionRule: public CallFrameInfo::Rule { |
| public: |
| explicit ExpressionRule(const string& expression) |
| : expression_(expression) { } |
| ~ExpressionRule() { } |
| bool Handle(Handler* handler, uint64_t address, int reg) const { |
| return handler->ExpressionRule(address, reg, expression_); |
| } |
| bool operator==(const Rule& rhs) const { |
| // dynamic_cast is allowed by the Google C++ Style Guide, if the use has |
| // been carefully considered; cheap RTTI-like workarounds are forbidden. |
| const ExpressionRule* our_rhs = dynamic_cast<const ExpressionRule*>(&rhs); |
| return (our_rhs && expression_ == our_rhs->expression_); |
| } |
| Rule* Copy() const { return new ExpressionRule(*this); } |
| private: |
| string expression_; |
| }; |
| |
| // Rule: EXPRESSION evaluates to the address at which the register is saved. |
| class CallFrameInfo::ValExpressionRule: public CallFrameInfo::Rule { |
| public: |
| explicit ValExpressionRule(const string& expression) |
| : expression_(expression) { } |
| ~ValExpressionRule() { } |
| bool Handle(Handler* handler, uint64_t address, int reg) const { |
| return handler->ValExpressionRule(address, reg, expression_); |
| } |
| bool operator==(const Rule& rhs) const { |
| // dynamic_cast is allowed by the Google C++ Style Guide, if the use has |
| // been carefully considered; cheap RTTI-like workarounds are forbidden. |
| const ValExpressionRule* our_rhs = |
| dynamic_cast<const ValExpressionRule*>(&rhs); |
| return (our_rhs && expression_ == our_rhs->expression_); |
| } |
| Rule* Copy() const { return new ValExpressionRule(*this); } |
| private: |
| string expression_; |
| }; |
| |
| // A map from register numbers to rules. |
| class CallFrameInfo::RuleMap { |
| public: |
| RuleMap() : cfa_rule_(NULL) { } |
| RuleMap(const RuleMap& rhs) : cfa_rule_(NULL) { *this = rhs; } |
| ~RuleMap() { Clear(); } |
| |
| RuleMap& operator=(const RuleMap& rhs); |
| |
| // Set the rule for computing the CFA to RULE. Take ownership of RULE. |
| void SetCFARule(Rule* rule) { delete cfa_rule_; cfa_rule_ = rule; } |
| |
| // Return the current CFA rule. Unlike RegisterRule, this RuleMap retains |
| // ownership of the rule. We use this for DW_CFA_def_cfa_offset and |
| // DW_CFA_def_cfa_register, and for detecting references to the CFA before |
| // a rule for it has been established. |
| Rule* CFARule() const { return cfa_rule_; } |
| |
| // Return the rule for REG, or NULL if there is none. The caller takes |
| // ownership of the result. |
| Rule* RegisterRule(int reg) const; |
| |
| // Set the rule for computing REG to RULE. Take ownership of RULE. |
| void SetRegisterRule(int reg, Rule* rule); |
| |
| // Make all the appropriate calls to HANDLER as if we were changing from |
| // this RuleMap to NEW_RULES at ADDRESS. We use this to implement |
| // DW_CFA_restore_state, where lots of rules can change simultaneously. |
| // Return true if all handlers returned true; otherwise, return false. |
| bool HandleTransitionTo(Handler* handler, uint64_t address, |
| const RuleMap& new_rules) const; |
| |
| private: |
| // A map from register numbers to Rules. |
| typedef std::map<int, Rule*> RuleByNumber; |
| |
| // Remove all register rules and clear cfa_rule_. |
| void Clear(); |
| |
| // The rule for computing the canonical frame address. This RuleMap owns |
| // this rule. |
| Rule* cfa_rule_; |
| |
| // A map from register numbers to postfix expressions to recover |
| // their values. This RuleMap owns the Rules the map refers to. |
| RuleByNumber registers_; |
| }; |
| |
| CallFrameInfo::RuleMap& CallFrameInfo::RuleMap::operator=(const RuleMap& rhs) { |
| Clear(); |
| // Since each map owns the rules it refers to, assignment must copy them. |
| if (rhs.cfa_rule_) cfa_rule_ = rhs.cfa_rule_->Copy(); |
| for (RuleByNumber::const_iterator it = rhs.registers_.begin(); |
| it != rhs.registers_.end(); it++) |
| registers_[it->first] = it->second->Copy(); |
| return *this; |
| } |
| |
| CallFrameInfo::Rule* CallFrameInfo::RuleMap::RegisterRule(int reg) const { |
| assert(reg != Handler::kCFARegister); |
| RuleByNumber::const_iterator it = registers_.find(reg); |
| if (it != registers_.end()) |
| return it->second->Copy(); |
| else |
| return NULL; |
| } |
| |
| void CallFrameInfo::RuleMap::SetRegisterRule(int reg, Rule* rule) { |
| assert(reg != Handler::kCFARegister); |
| assert(rule); |
| Rule** slot = ®isters_[reg]; |
| delete *slot; |
| *slot = rule; |
| } |
| |
| bool CallFrameInfo::RuleMap::HandleTransitionTo( |
| Handler* handler, |
| uint64_t address, |
| const RuleMap& new_rules) const { |
| // Transition from cfa_rule_ to new_rules.cfa_rule_. |
| if (cfa_rule_ && new_rules.cfa_rule_) { |
| if (*cfa_rule_ != *new_rules.cfa_rule_ && |
| !new_rules.cfa_rule_->Handle(handler, address, |
| Handler::kCFARegister)) |
| return false; |
| } else if (cfa_rule_) { |
| // this RuleMap has a CFA rule but new_rules doesn't. |
| // CallFrameInfo::Handler has no way to handle this --- and shouldn't; |
| // it's garbage input. The instruction interpreter should have |
| // detected this and warned, so take no action here. |
| } else if (new_rules.cfa_rule_) { |
| // This shouldn't be possible: NEW_RULES is some prior state, and |
| // there's no way to remove entries. |
| assert(0); |
| } else { |
| // Both CFA rules are empty. No action needed. |
| } |
| |
| // Traverse the two maps in order by register number, and report |
| // whatever differences we find. |
| RuleByNumber::const_iterator old_it = registers_.begin(); |
| RuleByNumber::const_iterator new_it = new_rules.registers_.begin(); |
| while (old_it != registers_.end() && new_it != new_rules.registers_.end()) { |
| if (old_it->first < new_it->first) { |
| // This RuleMap has an entry for old_it->first, but NEW_RULES |
| // doesn't. |
| // |
| // This isn't really the right thing to do, but since CFI generally |
| // only mentions callee-saves registers, and GCC's convention for |
| // callee-saves registers is that they are unchanged, it's a good |
| // approximation. |
| if (!handler->SameValueRule(address, old_it->first)) |
| return false; |
| old_it++; |
| } else if (old_it->first > new_it->first) { |
| // NEW_RULES has entry for new_it->first, but this RuleMap |
| // doesn't. This shouldn't be possible: NEW_RULES is some prior |
| // state, and there's no way to remove entries. |
| assert(0); |
| } else { |
| // Both maps have an entry for this register. Report the new |
| // rule if it is different. |
| if (*old_it->second != *new_it->second && |
| !new_it->second->Handle(handler, address, new_it->first)) |
| return false; |
| new_it++, old_it++; |
| } |
| } |
| // Finish off entries from this RuleMap with no counterparts in new_rules. |
| while (old_it != registers_.end()) { |
| if (!handler->SameValueRule(address, old_it->first)) |
| return false; |
| old_it++; |
| } |
| // Since we only make transitions from a rule set to some previously |
| // saved rule set, and we can only add rules to the map, NEW_RULES |
| // must have fewer rules than *this. |
| assert(new_it == new_rules.registers_.end()); |
| |
| return true; |
| } |
| |
| // Remove all register rules and clear cfa_rule_. |
| void CallFrameInfo::RuleMap::Clear() { |
| delete cfa_rule_; |
| cfa_rule_ = NULL; |
| for (RuleByNumber::iterator it = registers_.begin(); |
| it != registers_.end(); it++) |
| delete it->second; |
| registers_.clear(); |
| } |
| |
| // The state of the call frame information interpreter as it processes |
| // instructions from a CIE and FDE. |
| class CallFrameInfo::State { |
| public: |
| // Create a call frame information interpreter state with the given |
| // reporter, reader, handler, and initial call frame info address. |
| State(ByteReader* reader, Handler* handler, Reporter* reporter, |
| uint64_t address) |
| : reader_(reader), handler_(handler), reporter_(reporter), |
| address_(address), entry_(NULL), cursor_(NULL) { } |
| |
| // Interpret instructions from CIE, save the resulting rule set for |
| // DW_CFA_restore instructions, and return true. On error, report |
| // the problem to reporter_ and return false. |
| bool InterpretCIE(const CIE& cie); |
| |
| // Interpret instructions from FDE, and return true. On error, |
| // report the problem to reporter_ and return false. |
| bool InterpretFDE(const FDE& fde); |
| |
| private: |
| // The operands of a CFI instruction, for ParseOperands. |
| struct Operands { |
| unsigned register_number; // A register number. |
| uint64_t offset; // An offset or address. |
| long signed_offset; // A signed offset. |
| string expression; // A DWARF expression. |
| }; |
| |
| // Parse CFI instruction operands from STATE's instruction stream as |
| // described by FORMAT. On success, populate OPERANDS with the |
| // results, and return true. On failure, report the problem and |
| // return false. |
| // |
| // Each character of FORMAT should be one of the following: |
| // |
| // 'r' unsigned LEB128 register number (OPERANDS->register_number) |
| // 'o' unsigned LEB128 offset (OPERANDS->offset) |
| // 's' signed LEB128 offset (OPERANDS->signed_offset) |
| // 'a' machine-size address (OPERANDS->offset) |
| // (If the CIE has a 'z' augmentation string, 'a' uses the |
| // encoding specified by the 'R' argument.) |
| // '1' a one-byte offset (OPERANDS->offset) |
| // '2' a two-byte offset (OPERANDS->offset) |
| // '4' a four-byte offset (OPERANDS->offset) |
| // '8' an eight-byte offset (OPERANDS->offset) |
| // 'e' a DW_FORM_block holding a (OPERANDS->expression) |
| // DWARF expression |
| bool ParseOperands(const char* format, Operands* operands); |
| |
| // Interpret one CFI instruction from STATE's instruction stream, update |
| // STATE, report any rule changes to handler_, and return true. On |
| // failure, report the problem and return false. |
| bool DoInstruction(); |
| |
| // The following Do* member functions are subroutines of DoInstruction, |
| // factoring out the actual work of operations that have several |
| // different encodings. |
| |
| // Set the CFA rule to be the value of BASE_REGISTER plus OFFSET, and |
| // return true. On failure, report and return false. (Used for |
| // DW_CFA_def_cfa and DW_CFA_def_cfa_sf.) |
| bool DoDefCFA(unsigned base_register, long offset); |
| |
| // Change the offset of the CFA rule to OFFSET, and return true. On |
| // failure, report and return false. (Subroutine for |
| // DW_CFA_def_cfa_offset and DW_CFA_def_cfa_offset_sf.) |
| bool DoDefCFAOffset(long offset); |
| |
| // Specify that REG can be recovered using RULE, and return true. On |
| // failure, report and return false. |
| bool DoRule(unsigned reg, Rule* rule); |
| |
| // Specify that REG can be found at OFFSET from the CFA, and return true. |
| // On failure, report and return false. (Subroutine for DW_CFA_offset, |
| // DW_CFA_offset_extended, and DW_CFA_offset_extended_sf.) |
| bool DoOffset(unsigned reg, long offset); |
| |
| // Specify that the caller's value for REG is the CFA plus OFFSET, |
| // and return true. On failure, report and return false. (Subroutine |
| // for DW_CFA_val_offset and DW_CFA_val_offset_sf.) |
| bool DoValOffset(unsigned reg, long offset); |
| |
| // Restore REG to the rule established in the CIE, and return true. On |
| // failure, report and return false. (Subroutine for DW_CFA_restore and |
| // DW_CFA_restore_extended.) |
| bool DoRestore(unsigned reg); |
| |
| // Return the section offset of the instruction at cursor. For use |
| // in error messages. |
| uint64_t CursorOffset() { return entry_->offset + (cursor_ - entry_->start); } |
| |
| // Report that entry_ is incomplete, and return false. For brevity. |
| bool ReportIncomplete() { |
| reporter_->Incomplete(entry_->offset, entry_->kind); |
| return false; |
| } |
| |
| // For reading multi-byte values with the appropriate endianness. |
| ByteReader* reader_; |
| |
| // The handler to which we should report the data we find. |
| Handler* handler_; |
| |
| // For reporting problems in the info we're parsing. |
| Reporter* reporter_; |
| |
| // The code address to which the next instruction in the stream applies. |
| uint64_t address_; |
| |
| // The entry whose instructions we are currently processing. This is |
| // first a CIE, and then an FDE. |
| const Entry* entry_; |
| |
| // The next instruction to process. |
| const uint8_t* cursor_; |
| |
| // The current set of rules. |
| RuleMap rules_; |
| |
| // The set of rules established by the CIE, used by DW_CFA_restore |
| // and DW_CFA_restore_extended. We set this after interpreting the |
| // CIE's instructions. |
| RuleMap cie_rules_; |
| |
| // A stack of saved states, for DW_CFA_remember_state and |
| // DW_CFA_restore_state. |
| std::stack<RuleMap> saved_rules_; |
| }; |
| |
| bool CallFrameInfo::State::InterpretCIE(const CIE& cie) { |
| entry_ = &cie; |
| cursor_ = entry_->instructions; |
| while (cursor_ < entry_->end) |
| if (!DoInstruction()) |
| return false; |
| // Note the rules established by the CIE, for use by DW_CFA_restore |
| // and DW_CFA_restore_extended. |
| cie_rules_ = rules_; |
| return true; |
| } |
| |
| bool CallFrameInfo::State::InterpretFDE(const FDE& fde) { |
| entry_ = &fde; |
| cursor_ = entry_->instructions; |
| while (cursor_ < entry_->end) |
| if (!DoInstruction()) |
| return false; |
| return true; |
| } |
| |
| bool CallFrameInfo::State::ParseOperands(const char* format, |
| Operands* operands) { |
| size_t len; |
| const char* operand; |
| |
| for (operand = format; *operand; operand++) { |
| size_t bytes_left = entry_->end - cursor_; |
| switch (*operand) { |
| case 'r': |
| operands->register_number = reader_->ReadUnsignedLEB128(cursor_, &len); |
| if (len > bytes_left) return ReportIncomplete(); |
| cursor_ += len; |
| break; |
| |
| case 'o': |
| operands->offset = reader_->ReadUnsignedLEB128(cursor_, &len); |
| if (len > bytes_left) return ReportIncomplete(); |
| cursor_ += len; |
| break; |
| |
| case 's': |
| operands->signed_offset = reader_->ReadSignedLEB128(cursor_, &len); |
| if (len > bytes_left) return ReportIncomplete(); |
| cursor_ += len; |
| break; |
| |
| case 'a': |
| operands->offset = |
| reader_->ReadEncodedPointer(cursor_, entry_->cie->pointer_encoding, |
| &len); |
| if (len > bytes_left) return ReportIncomplete(); |
| cursor_ += len; |
| break; |
| |
| case '1': |
| if (1 > bytes_left) return ReportIncomplete(); |
| operands->offset = static_cast<unsigned char>(*cursor_++); |
| break; |
| |
| case '2': |
| if (2 > bytes_left) return ReportIncomplete(); |
| operands->offset = reader_->ReadTwoBytes(cursor_); |
| cursor_ += 2; |
| break; |
| |
| case '4': |
| if (4 > bytes_left) return ReportIncomplete(); |
| operands->offset = reader_->ReadFourBytes(cursor_); |
| cursor_ += 4; |
| break; |
| |
| case '8': |
| if (8 > bytes_left) return ReportIncomplete(); |
| operands->offset = reader_->ReadEightBytes(cursor_); |
| cursor_ += 8; |
| break; |
| |
| case 'e': { |
| size_t expression_length = reader_->ReadUnsignedLEB128(cursor_, &len); |
| if (len > bytes_left || expression_length > bytes_left - len) |
| return ReportIncomplete(); |
| cursor_ += len; |
| operands->expression = string(reinterpret_cast<const char*>(cursor_), |
| expression_length); |
| cursor_ += expression_length; |
| break; |
| } |
| |
| default: |
| assert(0); |
| } |
| } |
| |
| return true; |
| } |
| |
| bool CallFrameInfo::State::DoInstruction() { |
| CIE* cie = entry_->cie; |
| Operands ops; |
| |
| // Our entry's kind should have been set by now. |
| assert(entry_->kind != kUnknown); |
| |
| // We shouldn't have been invoked unless there were more |
| // instructions to parse. |
| assert(cursor_ < entry_->end); |
| |
| unsigned opcode = *cursor_++; |
| if ((opcode & 0xc0) != 0) { |
| switch (opcode & 0xc0) { |
| // Advance the address. |
| case DW_CFA_advance_loc: { |
| size_t code_offset = opcode & 0x3f; |
| address_ += code_offset * cie->code_alignment_factor; |
| break; |
| } |
| |
| // Find a register at an offset from the CFA. |
| case DW_CFA_offset: |
| if (!ParseOperands("o", &ops) || |
| !DoOffset(opcode & 0x3f, ops.offset * cie->data_alignment_factor)) |
| return false; |
| break; |
| |
| // Restore the rule established for a register by the CIE. |
| case DW_CFA_restore: |
| if (!DoRestore(opcode & 0x3f)) return false; |
| break; |
| |
| // The 'if' above should have excluded this possibility. |
| default: |
| assert(0); |
| } |
| |
| // Return here, so the big switch below won't be indented. |
| return true; |
| } |
| |
| switch (opcode) { |
| // Set the address. |
| case DW_CFA_set_loc: |
| if (!ParseOperands("a", &ops)) return false; |
| address_ = ops.offset; |
| break; |
| |
| // Advance the address. |
| case DW_CFA_advance_loc1: |
| if (!ParseOperands("1", &ops)) return false; |
| address_ += ops.offset * cie->code_alignment_factor; |
| break; |
| |
| // Advance the address. |
| case DW_CFA_advance_loc2: |
| if (!ParseOperands("2", &ops)) return false; |
| address_ += ops.offset * cie->code_alignment_factor; |
| break; |
| |
| // Advance the address. |
| case DW_CFA_advance_loc4: |
| if (!ParseOperands("4", &ops)) return false; |
| address_ += ops.offset * cie->code_alignment_factor; |
| break; |
| |
| // Advance the address. |
| case DW_CFA_MIPS_advance_loc8: |
| if (!ParseOperands("8", &ops)) return false; |
| address_ += ops.offset * cie->code_alignment_factor; |
| break; |
| |
| // Compute the CFA by adding an offset to a register. |
| case DW_CFA_def_cfa: |
| if (!ParseOperands("ro", &ops) || |
| !DoDefCFA(ops.register_number, ops.offset)) |
| return false; |
| break; |
| |
| // Compute the CFA by adding an offset to a register. |
| case DW_CFA_def_cfa_sf: |
| if (!ParseOperands("rs", &ops) || |
| !DoDefCFA(ops.register_number, |
| ops.signed_offset * cie->data_alignment_factor)) |
| return false; |
| break; |
| |
| // Change the base register used to compute the CFA. |
| case DW_CFA_def_cfa_register: { |
| if (!ParseOperands("r", &ops)) return false; |
| Rule* cfa_rule = rules_.CFARule(); |
| if (!cfa_rule) { |
| if (!DoDefCFA(ops.register_number, ops.offset)) { |
| reporter_->NoCFARule(entry_->offset, entry_->kind, CursorOffset()); |
| return false; |
| } |
| } else { |
| cfa_rule->SetBaseRegister(ops.register_number); |
| if (!cfa_rule->Handle(handler_, address_, |
| Handler::kCFARegister)) |
| return false; |
| } |
| break; |
| } |
| |
| // Change the offset used to compute the CFA. |
| case DW_CFA_def_cfa_offset: |
| if (!ParseOperands("o", &ops) || |
| !DoDefCFAOffset(ops.offset)) |
| return false; |
| break; |
| |
| // Change the offset used to compute the CFA. |
| case DW_CFA_def_cfa_offset_sf: |
| if (!ParseOperands("s", &ops) || |
| !DoDefCFAOffset(ops.signed_offset * cie->data_alignment_factor)) |
| return false; |
| break; |
| |
| // Specify an expression whose value is the CFA. |
| case DW_CFA_def_cfa_expression: { |
| if (!ParseOperands("e", &ops)) |
| return false; |
| Rule* rule = new ValExpressionRule(ops.expression); |
| rules_.SetCFARule(rule); |
| if (!rule->Handle(handler_, address_, |
| Handler::kCFARegister)) |
| return false; |
| break; |
| } |
| |
| // The register's value cannot be recovered. |
| case DW_CFA_undefined: { |
| if (!ParseOperands("r", &ops) || |
| !DoRule(ops.register_number, new UndefinedRule())) |
| return false; |
| break; |
| } |
| |
| // The register's value is unchanged from its value in the caller. |
| case DW_CFA_same_value: { |
| if (!ParseOperands("r", &ops) || |
| !DoRule(ops.register_number, new SameValueRule())) |
| return false; |
| break; |
| } |
| |
| // Find a register at an offset from the CFA. |
| case DW_CFA_offset_extended: |
| if (!ParseOperands("ro", &ops) || |
| !DoOffset(ops.register_number, |
| ops.offset * cie->data_alignment_factor)) |
| return false; |
| break; |
| |
| // The register is saved at an offset from the CFA. |
| case DW_CFA_offset_extended_sf: |
| if (!ParseOperands("rs", &ops) || |
| !DoOffset(ops.register_number, |
| ops.signed_offset * cie->data_alignment_factor)) |
| return false; |
| break; |
| |
| // The register is saved at an offset from the CFA. |
| case DW_CFA_GNU_negative_offset_extended: |
| if (!ParseOperands("ro", &ops) || |
| !DoOffset(ops.register_number, |
| -ops.offset * cie->data_alignment_factor)) |
| return false; |
| break; |
| |
| // The register's value is the sum of the CFA plus an offset. |
| case DW_CFA_val_offset: |
| if (!ParseOperands("ro", &ops) || |
| !DoValOffset(ops.register_number, |
| ops.offset * cie->data_alignment_factor)) |
| return false; |
| break; |
| |
| // The register's value is the sum of the CFA plus an offset. |
| case DW_CFA_val_offset_sf: |
| if (!ParseOperands("rs", &ops) || |
| !DoValOffset(ops.register_number, |
| ops.signed_offset * cie->data_alignment_factor)) |
| return false; |
| break; |
| |
| // The register has been saved in another register. |
| case DW_CFA_register: { |
| if (!ParseOperands("ro", &ops) || |
| !DoRule(ops.register_number, new RegisterRule(ops.offset))) |
| return false; |
| break; |
| } |
| |
| // An expression yields the address at which the register is saved. |
| case DW_CFA_expression: { |
| if (!ParseOperands("re", &ops) || |
| !DoRule(ops.register_number, new ExpressionRule(ops.expression))) |
| return false; |
| break; |
| } |
| |
| // An expression yields the caller's value for the register. |
| case DW_CFA_val_expression: { |
| if (!ParseOperands("re", &ops) || |
| !DoRule(ops.register_number, new ValExpressionRule(ops.expression))) |
| return false; |
| break; |
| } |
| |
| // Restore the rule established for a register by the CIE. |
| case DW_CFA_restore_extended: |
| if (!ParseOperands("r", &ops) || |
| !DoRestore( ops.register_number)) |
| return false; |
| break; |
| |
| // Save the current set of rules on a stack. |
| case DW_CFA_remember_state: |
| saved_rules_.push(rules_); |
| break; |
| |
| // Pop the current set of rules off the stack. |
| case DW_CFA_restore_state: { |
| if (saved_rules_.empty()) { |
| reporter_->EmptyStateStack(entry_->offset, entry_->kind, |
| CursorOffset()); |
| return false; |
| } |
| const RuleMap& new_rules = saved_rules_.top(); |
| if (rules_.CFARule() && !new_rules.CFARule()) { |
| reporter_->ClearingCFARule(entry_->offset, entry_->kind, |
| CursorOffset()); |
| return false; |
| } |
| rules_.HandleTransitionTo(handler_, address_, new_rules); |
| rules_ = new_rules; |
| saved_rules_.pop(); |
| break; |
| } |
| |
| // No operation. (Padding instruction.) |
| case DW_CFA_nop: |
| break; |
| |
| // A SPARC register window save: Registers 8 through 15 (%o0-%o7) |
| // are saved in registers 24 through 31 (%i0-%i7), and registers |
| // 16 through 31 (%l0-%l7 and %i0-%i7) are saved at CFA offsets |
| // (0-15 * the register size). The register numbers must be |
| // hard-coded. A GNU extension, and not a pretty one. |
| case DW_CFA_GNU_window_save: { |
| // Save %o0-%o7 in %i0-%i7. |
| for (int i = 8; i < 16; i++) |
| if (!DoRule(i, new RegisterRule(i + 16))) |
| return false; |
| // Save %l0-%l7 and %i0-%i7 at the CFA. |
| for (int i = 16; i < 32; i++) |
| // Assume that the byte reader's address size is the same as |
| // the architecture's register size. !@#%*^ hilarious. |
| if (!DoRule(i, new OffsetRule(Handler::kCFARegister, |
| (i - 16) * reader_->AddressSize()))) |
| return false; |
| break; |
| } |
| |
| // I'm not sure what this is. GDB doesn't use it for unwinding. |
| case DW_CFA_GNU_args_size: |
| if (!ParseOperands("o", &ops)) return false; |
| break; |
| |
| // An opcode we don't recognize. |
| default: { |
| reporter_->BadInstruction(entry_->offset, entry_->kind, CursorOffset()); |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| bool CallFrameInfo::State::DoDefCFA(unsigned base_register, long offset) { |
| Rule* rule = new ValOffsetRule(base_register, offset); |
| rules_.SetCFARule(rule); |
| return rule->Handle(handler_, address_, |
| Handler::kCFARegister); |
| } |
| |
| bool CallFrameInfo::State::DoDefCFAOffset(long offset) { |
| Rule* cfa_rule = rules_.CFARule(); |
| if (!cfa_rule) { |
| reporter_->NoCFARule(entry_->offset, entry_->kind, CursorOffset()); |
| return false; |
| } |
| cfa_rule->SetOffset(offset); |
| return cfa_rule->Handle(handler_, address_, |
| Handler::kCFARegister); |
| } |
| |
| bool CallFrameInfo::State::DoRule(unsigned reg, Rule* rule) { |
| rules_.SetRegisterRule(reg, rule); |
| return rule->Handle(handler_, address_, reg); |
| } |
| |
| bool CallFrameInfo::State::DoOffset(unsigned reg, long offset) { |
| if (!rules_.CFARule()) { |
| reporter_->NoCFARule(entry_->offset, entry_->kind, CursorOffset()); |
| return false; |
| } |
| return DoRule(reg, |
| new OffsetRule(Handler::kCFARegister, offset)); |
| } |
| |
| bool CallFrameInfo::State::DoValOffset(unsigned reg, long offset) { |
| if (!rules_.CFARule()) { |
| reporter_->NoCFARule(entry_->offset, entry_->kind, CursorOffset()); |
| return false; |
| } |
| return DoRule(reg, |
| new ValOffsetRule(Handler::kCFARegister, offset)); |
| } |
| |
| bool CallFrameInfo::State::DoRestore(unsigned reg) { |
| // DW_CFA_restore and DW_CFA_restore_extended don't make sense in a CIE. |
| if (entry_->kind == kCIE) { |
| reporter_->RestoreInCIE(entry_->offset, CursorOffset()); |
| return false; |
| } |
| Rule* rule = cie_rules_.RegisterRule(reg); |
| if (!rule) { |
| // This isn't really the right thing to do, but since CFI generally |
| // only mentions callee-saves registers, and GCC's convention for |
| // callee-saves registers is that they are unchanged, it's a good |
| // approximation. |
| rule = new SameValueRule(); |
| } |
| return DoRule(reg, rule); |
| } |
| |
| bool CallFrameInfo::ReadEntryPrologue(const uint8_t* cursor, Entry* entry) { |
| const uint8_t* buffer_end = buffer_ + buffer_length_; |
| |
| // Initialize enough of ENTRY for use in error reporting. |
| entry->offset = cursor - buffer_; |
| entry->start = cursor; |
| entry->kind = kUnknown; |
| entry->end = NULL; |
| |
| // Read the initial length. This sets reader_'s offset size. |
| size_t length_size; |
| uint64_t length = reader_->ReadInitialLength(cursor, &length_size); |
| if (length_size > size_t(buffer_end - cursor)) |
| return ReportIncomplete(entry); |
| cursor += length_size; |
| |
| // In a .eh_frame section, a length of zero marks the end of the series |
| // of entries. |
| if (length == 0 && eh_frame_) { |
| entry->kind = kTerminator; |
| entry->end = cursor; |
| return true; |
| } |
| |
| // Validate the length. |
| if (length > size_t(buffer_end - cursor)) |
| return ReportIncomplete(entry); |
| |
| // The length is the number of bytes after the initial length field; |
| // we have that position handy at this point, so compute the end |
| // now. (If we're parsing 64-bit-offset DWARF on a 32-bit machine, |
| // and the length didn't fit in a size_t, we would have rejected it |
| // above.) |
| entry->end = cursor + length; |
| |
| // Parse the next field: either the offset of a CIE or a CIE id. |
| size_t offset_size = reader_->OffsetSize(); |
| if (offset_size > size_t(entry->end - cursor)) return ReportIncomplete(entry); |
| entry->id = reader_->ReadOffset(cursor); |
| |
| // Don't advance cursor past id field yet; in .eh_frame data we need |
| // the id's position to compute the section offset of an FDE's CIE. |
| |
| // Now we can decide what kind of entry this is. |
| if (eh_frame_) { |
| // In .eh_frame data, an ID of zero marks the entry as a CIE, and |
| // anything else is an offset from the id field of the FDE to the start |
| // of the CIE. |
| if (entry->id == 0) { |
| entry->kind = kCIE; |
| } else { |
| entry->kind = kFDE; |
| // Turn the offset from the id into an offset from the buffer's start. |
| entry->id = (cursor - buffer_) - entry->id; |
| } |
| } else { |
| // In DWARF CFI data, an ID of ~0 (of the appropriate width, given the |
| // offset size for the entry) marks the entry as a CIE, and anything |
| // else is the offset of the CIE from the beginning of the section. |
| if (offset_size == 4) |
| entry->kind = (entry->id == 0xffffffff) ? kCIE : kFDE; |
| else { |
| assert(offset_size == 8); |
| entry->kind = (entry->id == 0xffffffffffffffffULL) ? kCIE : kFDE; |
| } |
| } |
| |
| // Now advance cursor past the id. |
| cursor += offset_size; |
| |
| // The fields specific to this kind of entry start here. |
| entry->fields = cursor; |
| |
| entry->cie = NULL; |
| |
| return true; |
| } |
| |
| bool CallFrameInfo::ReadCIEFields(CIE* cie) { |
| const uint8_t* cursor = cie->fields; |
| size_t len; |
| |
| assert(cie->kind == kCIE); |
| |
| // Prepare for early exit. |
| cie->version = 0; |
| cie->augmentation.clear(); |
| cie->code_alignment_factor = 0; |
| cie->data_alignment_factor = 0; |
| cie->return_address_register = 0; |
| cie->has_z_augmentation = false; |
| cie->pointer_encoding = DW_EH_PE_absptr; |
| cie->instructions = 0; |
| |
| // Parse the version number. |
| if (cie->end - cursor < 1) |
| return ReportIncomplete(cie); |
| cie->version = reader_->ReadOneByte(cursor); |
| cursor++; |
| |
| // If we don't recognize the version, we can't parse any more fields of the |
| // CIE. For DWARF CFI, we handle versions 1 through 4 (there was never a |
| // version 2 of CFI data). For .eh_frame, we handle versions 1 and 4 as well; |
| // the difference between those versions seems to be the same as for |
| // .debug_frame. |
| if (cie->version < 1 || cie->version > 4) { |
| reporter_->UnrecognizedVersion(cie->offset, cie->version); |
| return false; |
| } |
| |
| const uint8_t* augmentation_start = cursor; |
| const uint8_t* augmentation_end = |
| reinterpret_cast<const uint8_t*>(memchr(augmentation_start, '\0', |
| cie->end - augmentation_start)); |
| if (! augmentation_end) return ReportIncomplete(cie); |
| cursor = augmentation_end; |
| cie->augmentation = string(reinterpret_cast<const char*>(augmentation_start), |
| cursor - augmentation_start); |
| // Skip the terminating '\0'. |
| cursor++; |
| |
| // Is this CFI augmented? |
| if (!cie->augmentation.empty()) { |
| // Is it an augmentation we recognize? |
| if (cie->augmentation[0] == DW_Z_augmentation_start) { |
| // Linux C++ ABI 'z' augmentation, used for exception handling data. |
| cie->has_z_augmentation = true; |
| } else { |
| // Not an augmentation we recognize. Augmentations can have arbitrary |
| // effects on the form of rest of the content, so we have to give up. |
| reporter_->UnrecognizedAugmentation(cie->offset, cie->augmentation); |
| return false; |
| } |
| } |
| |
| if (cie->version >= 4) { |
| cie->address_size = *cursor++; |
| if (cie->address_size != 8 && cie->address_size != 4) { |
| reporter_->UnexpectedAddressSize(cie->offset, cie->address_size); |
| return false; |
| } |
| |
| cie->segment_size = *cursor++; |
| if (cie->segment_size != 0) { |
| reporter_->UnexpectedSegmentSize(cie->offset, cie->segment_size); |
| return false; |
| } |
| } |
| |
| // Parse the code alignment factor. |
| cie->code_alignment_factor = reader_->ReadUnsignedLEB128(cursor, &len); |
| if (size_t(cie->end - cursor) < len) return ReportIncomplete(cie); |
| cursor += len; |
| |
| // Parse the data alignment factor. |
| cie->data_alignment_factor = reader_->ReadSignedLEB128(cursor, &len); |
| if (size_t(cie->end - cursor) < len) return ReportIncomplete(cie); |
| cursor += len; |
| |
| // Parse the return address register. This is a ubyte in version 1, and |
| // a ULEB128 in version 3. |
| if (cie->version == 1) { |
| if (cursor >= cie->end) return ReportIncomplete(cie); |
| cie->return_address_register = uint8_t(*cursor++); |
| } else { |
| cie->return_address_register = reader_->ReadUnsignedLEB128(cursor, &len); |
| if (size_t(cie->end - cursor) < len) return ReportIncomplete(cie); |
| cursor += len; |
| } |
| |
| // If we have a 'z' augmentation string, find the augmentation data and |
| // use the augmentation string to parse it. |
| if (cie->has_z_augmentation) { |
| uint64_t data_size = reader_->ReadUnsignedLEB128(cursor, &len); |
| if (size_t(cie->end - cursor) < len + data_size) |
| return ReportIncomplete(cie); |
| cursor += len; |
| const uint8_t* data = cursor; |
| cursor += data_size; |
| const uint8_t* data_end = cursor; |
| |
| cie->has_z_lsda = false; |
| cie->has_z_personality = false; |
| cie->has_z_signal_frame = false; |
| |
| // Walk the augmentation string, and extract values from the |
| // augmentation data as the string directs. |
| for (size_t i = 1; i < cie->augmentation.size(); i++) { |
| switch (cie->augmentation[i]) { |
| case DW_Z_has_LSDA: |
| // The CIE's augmentation data holds the language-specific data |
| // area pointer's encoding, and the FDE's augmentation data holds |
| // the pointer itself. |
| cie->has_z_lsda = true; |
| // Fetch the LSDA encoding from the augmentation data. |
| if (data >= data_end) return ReportIncomplete(cie); |
| cie->lsda_encoding = DwarfPointerEncoding(*data++); |
| if (!reader_->ValidEncoding(cie->lsda_encoding)) { |
| reporter_->InvalidPointerEncoding(cie->offset, cie->lsda_encoding); |
| return false; |
| } |
| // Don't check if the encoding is usable here --- we haven't |
| // read the FDE's fields yet, so we're not prepared for |
| // DW_EH_PE_funcrel, although that's a fine encoding for the |
| // LSDA to use, since it appears in the FDE. |
| break; |
| |
| case DW_Z_has_personality_routine: |
| // The CIE's augmentation data holds the personality routine |
| // pointer's encoding, followed by the pointer itself. |
| cie->has_z_personality = true; |
| // Fetch the personality routine pointer's encoding from the |
| // augmentation data. |
| if (data >= data_end) return ReportIncomplete(cie); |
| cie->personality_encoding = DwarfPointerEncoding(*data++); |
| if (!reader_->ValidEncoding(cie->personality_encoding)) { |
| reporter_->InvalidPointerEncoding(cie->offset, |
| cie->personality_encoding); |
| return false; |
| } |
| if (!reader_->UsableEncoding(cie->personality_encoding)) { |
| reporter_->UnusablePointerEncoding(cie->offset, |
| cie->personality_encoding); |
| return false; |
| } |
| // Fetch the personality routine's pointer itself from the data. |
| cie->personality_address = |
| reader_->ReadEncodedPointer(data, cie->personality_encoding, |
| &len); |
| if (len > size_t(data_end - data)) |
| return ReportIncomplete(cie); |
| data += len; |
| break; |
| |
| case DW_Z_has_FDE_address_encoding: |
| // The CIE's augmentation data holds the pointer encoding to use |
| // for addresses in the FDE. |
| if (data >= data_end) return ReportIncomplete(cie); |
| cie->pointer_encoding = DwarfPointerEncoding(*data++); |
| if (!reader_->ValidEncoding(cie->pointer_encoding)) { |
| reporter_->InvalidPointerEncoding(cie->offset, |
| cie->pointer_encoding); |
| return false; |
| } |
| if (!reader_->UsableEncoding(cie->pointer_encoding)) { |
| reporter_->UnusablePointerEncoding(cie->offset, |
| cie->pointer_encoding); |
| return false; |
| } |
| break; |
| |
| case DW_Z_is_signal_trampoline: |
| // Frames using this CIE are signal delivery frames. |
| cie->has_z_signal_frame = true; |
| break; |
| |
| default: |
| // An augmentation we don't recognize. |
| reporter_->UnrecognizedAugmentation(cie->offset, cie->augmentation); |
| return false; |
| } |
| } |
| } |
| |
| // The CIE's instructions start here. |
| cie->instructions = cursor; |
| |
| return true; |
| } |
| |
| bool CallFrameInfo::ReadFDEFields(FDE* fde) { |
| const uint8_t* cursor = fde->fields; |
| size_t size; |
| |
| fde->address = reader_->ReadEncodedPointer(cursor, fde->cie->pointer_encoding, |
| &size); |
| if (size > size_t(fde->end - cursor)) |
| return ReportIncomplete(fde); |
| cursor += size; |
| reader_->SetFunctionBase(fde->address); |
| |
| // For the length, we strip off the upper nybble of the encoding used for |
| // the starting address. |
| DwarfPointerEncoding length_encoding = |
| DwarfPointerEncoding(fde->cie->pointer_encoding & 0x0f); |
| fde->size = reader_->ReadEncodedPointer(cursor, length_encoding, &size); |
| if (size > size_t(fde->end - cursor)) |
| return ReportIncomplete(fde); |
| cursor += size; |
| |
| // If the CIE has a 'z' augmentation string, then augmentation data |
| // appears here. |
| if (fde->cie->has_z_augmentation) { |
| uint64_t data_size = reader_->ReadUnsignedLEB128(cursor, &size); |
| if (size_t(fde->end - cursor) < size + data_size) |
| return ReportIncomplete(fde); |
| cursor += size; |
| |
| // In the abstract, we should walk the augmentation string, and extract |
| // items from the FDE's augmentation data as we encounter augmentation |
| // string characters that specify their presence: the ordering of items |
| // in the augmentation string determines the arrangement of values in |
| // the augmentation data. |
| // |
| // In practice, there's only ever one value in FDE augmentation data |
| // that we support --- the LSDA pointer --- and we have to bail if we |
| // see any unrecognized augmentation string characters. So if there is |
| // anything here at all, we know what it is, and where it starts. |
| if (fde->cie->has_z_lsda) { |
| // Check whether the LSDA's pointer encoding is usable now: only once |
| // we've parsed the FDE's starting address do we call reader_-> |
| // SetFunctionBase, so that the DW_EH_PE_funcrel encoding becomes |
| // usable. |
| if (!reader_->UsableEncoding(fde->cie->lsda_encoding)) { |
| reporter_->UnusablePointerEncoding(fde->cie->offset, |
| fde->cie->lsda_encoding); |
| return false; |
| } |
| |
| fde->lsda_address = |
| reader_->ReadEncodedPointer(cursor, fde->cie->lsda_encoding, &size); |
| if (size > data_size) |
| return ReportIncomplete(fde); |
| // Ideally, we would also complain here if there were unconsumed |
| // augmentation data. |
| } |
| |
| cursor += data_size; |
| } |
| |
| // The FDE's instructions start after those. |
| fde->instructions = cursor; |
| |
| return true; |
| } |
| |
| bool CallFrameInfo::Start() { |
| const uint8_t* buffer_end = buffer_ + buffer_length_; |
| const uint8_t* cursor; |
| bool all_ok = true; |
| const uint8_t* entry_end; |
| bool ok; |
| |
| // Traverse all the entries in buffer_, skipping CIEs and offering |
| // FDEs to the handler. |
| for (cursor = buffer_; cursor < buffer_end; |
| cursor = entry_end, all_ok = all_ok && ok) { |
| FDE fde; |
| |
| // Make it easy to skip this entry with 'continue': assume that |
| // things are not okay until we've checked all the data, and |
| // prepare the address of the next entry. |
| ok = false; |
| |
| // Read the entry's prologue. |
| if (!ReadEntryPrologue(cursor, &fde)) { |
| if (!fde.end) { |
| // If we couldn't even figure out this entry's extent, then we |
| // must stop processing entries altogether. |
| all_ok = false; |
| break; |
| } |
| entry_end = fde.end; |
| continue; |
| } |
| |
| // The next iteration picks up after this entry. |
| entry_end = fde.end; |
| |
| // Did we see an .eh_frame terminating mark? |
| if (fde.kind == kTerminator) { |
| // If there appears to be more data left in the section after the |
| // terminating mark, warn the user. But this is just a warning; |
| // we leave all_ok true. |
| if (fde.end < buffer_end) reporter_->EarlyEHTerminator(fde.offset); |
| break; |
| } |
| |
| // In this loop, we skip CIEs. We only parse them fully when we |
| // parse an FDE that refers to them. This limits our memory |
| // consumption (beyond the buffer itself) to that needed to |
| // process the largest single entry. |
| if (fde.kind != kFDE) { |
| ok = true; |
| continue; |
| } |
| |
| // Validate the CIE pointer. |
| if (fde.id > buffer_length_) { |
| reporter_->CIEPointerOutOfRange(fde.offset, fde.id); |
| continue; |
| } |
| |
| CIE cie; |
| |
| // Parse this FDE's CIE header. |
| if (!ReadEntryPrologue(buffer_ + fde.id, &cie)) |
| continue; |
| // This had better be an actual CIE. |
| if (cie.kind != kCIE) { |
| reporter_->BadCIEId(fde.offset, fde.id); |
| continue; |
| } |
| if (!ReadCIEFields(&cie)) |
| continue; |
| |
| // TODO(nbilling): This could lead to strange behavior if a single buffer |
| // contained a mixture of DWARF versions as well as address sizes. Not |
| // sure if it's worth handling such a case. |
| |
| // DWARF4 CIE specifies address_size, so use it for this call frame. |
| if (cie.version >= 4) { |
| reader_->SetAddressSize(cie.address_size); |
| } |
| |
| // We now have the values that govern both the CIE and the FDE. |
| cie.cie = &cie; |
| fde.cie = &cie; |
| |
| // Parse the FDE's header. |
| if (!ReadFDEFields(&fde)) |
| continue; |
| |
| // Call Entry to ask the consumer if they're interested. |
| if (!handler_->Entry(fde.offset, fde.address, fde.size, |
| cie.version, cie.augmentation, |
| cie.return_address_register)) { |
| // The handler isn't interested in this entry. That's not an error. |
| ok = true; |
| continue; |
| } |
| |
| if (cie.has_z_augmentation) { |
| // Report the personality routine address, if we have one. |
| if (cie.has_z_personality) { |
| if (!handler_ |
| ->PersonalityRoutine(cie.personality_address, |
| IsIndirectEncoding(cie.personality_encoding))) |
| continue; |
| } |
| |
| // Report the language-specific data area address, if we have one. |
| if (cie.has_z_lsda) { |
| if (!handler_ |
| ->LanguageSpecificDataArea(fde.lsda_address, |
| IsIndirectEncoding(cie.lsda_encoding))) |
| continue; |
| } |
| |
| // If this is a signal-handling frame, report that. |
| if (cie.has_z_signal_frame) { |
| if (!handler_->SignalHandler()) |
| continue; |
| } |
| } |
| |
| // Interpret the CIE's instructions, and then the FDE's instructions. |
| State state(reader_, handler_, reporter_, fde.address); |
| ok = state.InterpretCIE(cie) && state.InterpretFDE(fde); |
| |
| // Tell the ByteReader that the function start address from the |
| // FDE header is no longer valid. |
| reader_->ClearFunctionBase(); |
| |
| // Report the end of the entry. |
| handler_->End(); |
| } |
| |
| return all_ok; |
| } |
| |
| const char* CallFrameInfo::KindName(EntryKind kind) { |
| if (kind == CallFrameInfo::kUnknown) |
| return "entry"; |
| else if (kind == CallFrameInfo::kCIE) |
| return "common information entry"; |
| else if (kind == CallFrameInfo::kFDE) |
| return "frame description entry"; |
| else { |
| assert (kind == CallFrameInfo::kTerminator); |
| return ".eh_frame sequence terminator"; |
| } |
| } |
| |
| bool CallFrameInfo::ReportIncomplete(Entry* entry) { |
| reporter_->Incomplete(entry->offset, entry->kind); |
| return false; |
| } |
| |
| void CallFrameInfo::Reporter::Incomplete(uint64_t offset, |
| CallFrameInfo::EntryKind kind) { |
| fprintf(stderr, |
| "%s: CFI %s at offset 0x%" PRIx64 " in '%s': entry ends early\n", |
| filename_.c_str(), CallFrameInfo::KindName(kind), offset, |
| section_.c_str()); |
| } |
| |
| void CallFrameInfo::Reporter::EarlyEHTerminator(uint64_t offset) { |
| fprintf(stderr, |
| "%s: CFI at offset 0x%" PRIx64 " in '%s': saw end-of-data marker" |
| " before end of section contents\n", |
| filename_.c_str(), offset, section_.c_str()); |
| } |
| |
| void CallFrameInfo::Reporter::CIEPointerOutOfRange(uint64_t offset, |
| uint64_t cie_offset) { |
| fprintf(stderr, |
| "%s: CFI frame description entry at offset 0x%" PRIx64 " in '%s':" |
| " CIE pointer is out of range: 0x%" PRIx64 "\n", |
| filename_.c_str(), offset, section_.c_str(), cie_offset); |
| } |
| |
| void CallFrameInfo::Reporter::BadCIEId(uint64_t offset, uint64_t cie_offset) { |
| fprintf(stderr, |
| "%s: CFI frame description entry at offset 0x%" PRIx64 " in '%s':" |
| " CIE pointer does not point to a CIE: 0x%" PRIx64 "\n", |
| filename_.c_str(), offset, section_.c_str(), cie_offset); |
| } |
| |
| void CallFrameInfo::Reporter::UnexpectedAddressSize(uint64_t offset, |
| uint8_t address_size) { |
| fprintf(stderr, |
| "%s: CFI frame description entry at offset 0x%" PRIx64 " in '%s':" |
| " CIE specifies unexpected address size: %d\n", |
| filename_.c_str(), offset, section_.c_str(), address_size); |
| } |
| |
| void CallFrameInfo::Reporter::UnexpectedSegmentSize(uint64_t offset, |
| uint8_t segment_size) { |
| fprintf(stderr, |
| "%s: CFI frame description entry at offset 0x%" PRIx64 " in '%s':" |
| " CIE specifies unexpected segment size: %d\n", |
| filename_.c_str(), offset, section_.c_str(), segment_size); |
| } |
| |
| void CallFrameInfo::Reporter::UnrecognizedVersion(uint64_t offset, int version) { |
| fprintf(stderr, |
| "%s: CFI frame description entry at offset 0x%" PRIx64 " in '%s':" |
| " CIE specifies unrecognized version: %d\n", |
| filename_.c_str(), offset, section_.c_str(), version); |
| } |
| |
| void CallFrameInfo::Reporter::UnrecognizedAugmentation(uint64_t offset, |
| const string& aug) { |
| fprintf(stderr, |
| "%s: CFI frame description entry at offset 0x%" PRIx64 " in '%s':" |
| " CIE specifies unrecognized augmentation: '%s'\n", |
| filename_.c_str(), offset, section_.c_str(), aug.c_str()); |
| } |
| |
| void CallFrameInfo::Reporter::InvalidPointerEncoding(uint64_t offset, |
| uint8_t encoding) { |
| fprintf(stderr, |
| "%s: CFI common information entry at offset 0x%" PRIx64 " in '%s':" |
| " 'z' augmentation specifies invalid pointer encoding: 0x%02x\n", |
| filename_.c_str(), offset, section_.c_str(), encoding); |
| } |
| |
| void CallFrameInfo::Reporter::UnusablePointerEncoding(uint64_t offset, |
| uint8_t encoding) { |
| fprintf(stderr, |
| "%s: CFI common information entry at offset 0x%" PRIx64 " in '%s':" |
| " 'z' augmentation specifies a pointer encoding for which" |
| " we have no base address: 0x%02x\n", |
| filename_.c_str(), offset, section_.c_str(), encoding); |
| } |
| |
| void CallFrameInfo::Reporter::RestoreInCIE(uint64_t offset, uint64_t insn_offset) { |
| fprintf(stderr, |
| "%s: CFI common information entry at offset 0x%" PRIx64 " in '%s':" |
| " the DW_CFA_restore instruction at offset 0x%" PRIx64 |
| " cannot be used in a common information entry\n", |
| filename_.c_str(), offset, section_.c_str(), insn_offset); |
| } |
| |
| void CallFrameInfo::Reporter::BadInstruction(uint64_t offset, |
| CallFrameInfo::EntryKind kind, |
| uint64_t insn_offset) { |
| fprintf(stderr, |
| "%s: CFI %s at offset 0x%" PRIx64 " in section '%s':" |
| " the instruction at offset 0x%" PRIx64 " is unrecognized\n", |
| filename_.c_str(), CallFrameInfo::KindName(kind), |
| offset, section_.c_str(), insn_offset); |
| } |
| |
| void CallFrameInfo::Reporter::NoCFARule(uint64_t offset, |
| CallFrameInfo::EntryKind kind, |
| uint64_t insn_offset) { |
| fprintf(stderr, |
| "%s: CFI %s at offset 0x%" PRIx64 " in section '%s':" |
| " the instruction at offset 0x%" PRIx64 " assumes that a CFA rule has" |
| " been set, but none has been set\n", |
| filename_.c_str(), CallFrameInfo::KindName(kind), offset, |
| section_.c_str(), insn_offset); |
| } |
| |
| void CallFrameInfo::Reporter::EmptyStateStack(uint64_t offset, |
| CallFrameInfo::EntryKind kind, |
| uint64_t insn_offset) { |
| fprintf(stderr, |
| "%s: CFI %s at offset 0x%" PRIx64 " in section '%s':" |
| " the DW_CFA_restore_state instruction at offset 0x%" PRIx64 |
| " should pop a saved state from the stack, but the stack is empty\n", |
| filename_.c_str(), CallFrameInfo::KindName(kind), offset, |
| section_.c_str(), insn_offset); |
| } |
| |
| void CallFrameInfo::Reporter::ClearingCFARule(uint64_t offset, |
| CallFrameInfo::EntryKind kind, |
| uint64_t insn_offset) { |
| fprintf(stderr, |
| "%s: CFI %s at offset 0x%" PRIx64 " in section '%s':" |
| " the DW_CFA_restore_state instruction at offset 0x%" PRIx64 |
| " would clear the CFA rule in effect\n", |
| filename_.c_str(), CallFrameInfo::KindName(kind), offset, |
| section_.c_str(), insn_offset); |
| } |
| |
| } // namespace dwarf2reader |