blob: 1afe8feb0aa2df3f5555216c345dcebd3f96d19e [file] [log] [blame]
// Copyright (c) 2016 The Chromium Embedded Framework Authors. All rights
// reserved. Use of this source code is governed by a BSD-style license that
// can be found in the LICENSE file.
#include "tests/shared/browser/main_message_loop_external_pump.h"
#include <errno.h>
#include <fcntl.h>
#include <math.h>
#include <glib.h>
#include "include/base/cef_logging.h"
#include "include/cef_app.h"
// From base/posix/eintr_wrapper.h.
// This provides a wrapper around system calls which may be interrupted by a
// signal and return EINTR. See man 7 signal.
// To prevent long-lasting loops (which would likely be a bug, such as a signal
// that should be masked) to go unnoticed, there is a limit after which the
// caller will nonetheless see an EINTR in Debug builds.
#if !defined(HANDLE_EINTR)
#if !DCHECK_IS_ON()
#define HANDLE_EINTR(x) \
({ \
decltype(x) eintr_wrapper_result; \
do { \
eintr_wrapper_result = (x); \
} while (eintr_wrapper_result == -1 && errno == EINTR); \
eintr_wrapper_result; \
})
#else
#define HANDLE_EINTR(x) \
({ \
int eintr_wrapper_counter = 0; \
decltype(x) eintr_wrapper_result; \
do { \
eintr_wrapper_result = (x); \
} while (eintr_wrapper_result == -1 && errno == EINTR && \
eintr_wrapper_counter++ < 100); \
eintr_wrapper_result; \
})
#endif // !DCHECK_IS_ON()
#endif // !defined(HANDLE_EINTR)
namespace client {
namespace {
class MainMessageLoopExternalPumpLinux : public MainMessageLoopExternalPump {
public:
MainMessageLoopExternalPumpLinux();
~MainMessageLoopExternalPumpLinux();
// MainMessageLoopStd methods:
void Quit() OVERRIDE;
int Run() OVERRIDE;
// MainMessageLoopExternalPump methods:
void OnScheduleMessagePumpWork(int64 delay_ms) OVERRIDE;
// Internal methods used for processing the pump callbacks. They are public
// for simplicity but should not be used directly. HandlePrepare is called
// during the prepare step of glib, and returns a timeout that will be passed
// to the poll. HandleCheck is called after the poll has completed, and
// returns whether or not HandleDispatch should be called. HandleDispatch is
// called if HandleCheck returned true.
int HandlePrepare();
bool HandleCheck();
void HandleDispatch();
protected:
// MainMessageLoopExternalPump methods:
void SetTimer(int64 delay_ms) OVERRIDE;
void KillTimer() OVERRIDE;
bool IsTimerPending() OVERRIDE;
private:
// Used to flag that the Run() invocation should return ASAP.
bool should_quit_;
// A GLib structure that we can add event sources to. We use the default GLib
// context, which is the one to which all GTK events are dispatched.
GMainContext* context_;
// The work source. It is destroyed when the message pump is destroyed.
GSource* work_source_;
// The time when we need to do delayed work.
CefTime delayed_work_time_;
// We use a wakeup pipe to make sure we'll get out of the glib polling phase
// when another thread has scheduled us to do some work. There is a glib
// mechanism g_main_context_wakeup, but this won't guarantee that our event's
// Dispatch() will be called.
int wakeup_pipe_read_;
int wakeup_pipe_write_;
// Use a scoped_ptr to avoid needing the definition of GPollFD in the header.
scoped_ptr<GPollFD> wakeup_gpollfd_;
};
// Return a timeout suitable for the glib loop, -1 to block forever,
// 0 to return right away, or a timeout in milliseconds from now.
int GetTimeIntervalMilliseconds(const CefTime& from) {
if (from.GetDoubleT() == 0.0)
return -1;
CefTime now;
now.Now();
// Be careful here. CefTime has a precision of microseconds, but we want a
// value in milliseconds. If there are 5.5ms left, should the delay be 5 or
// 6? It should be 6 to avoid executing delayed work too early.
int delay =
static_cast<int>(ceil((from.GetDoubleT() - now.GetDoubleT()) * 1000.0));
// If this value is negative, then we need to run delayed work soon.
return delay < 0 ? 0 : delay;
}
struct WorkSource : public GSource {
MainMessageLoopExternalPumpLinux* pump;
};
gboolean WorkSourcePrepare(GSource* source, gint* timeout_ms) {
*timeout_ms = static_cast<WorkSource*>(source)->pump->HandlePrepare();
// We always return FALSE, so that our timeout is honored. If we were
// to return TRUE, the timeout would be considered to be 0 and the poll
// would never block. Once the poll is finished, Check will be called.
return FALSE;
}
gboolean WorkSourceCheck(GSource* source) {
// Only return TRUE if Dispatch should be called.
return static_cast<WorkSource*>(source)->pump->HandleCheck();
}
gboolean WorkSourceDispatch(GSource* source,
GSourceFunc unused_func,
gpointer unused_data) {
static_cast<WorkSource*>(source)->pump->HandleDispatch();
// Always return TRUE so our source stays registered.
return TRUE;
}
// I wish these could be const, but g_source_new wants non-const.
GSourceFuncs WorkSourceFuncs = {WorkSourcePrepare, WorkSourceCheck,
WorkSourceDispatch, NULL};
MainMessageLoopExternalPumpLinux::MainMessageLoopExternalPumpLinux()
: should_quit_(false),
context_(g_main_context_default()),
wakeup_gpollfd_(new GPollFD) {
// Create our wakeup pipe, which is used to flag when work was scheduled.
int fds[2];
int ret = pipe(fds);
DCHECK_EQ(ret, 0);
(void)ret; // Prevent warning in release mode.
wakeup_pipe_read_ = fds[0];
wakeup_pipe_write_ = fds[1];
wakeup_gpollfd_->fd = wakeup_pipe_read_;
wakeup_gpollfd_->events = G_IO_IN;
work_source_ = g_source_new(&WorkSourceFuncs, sizeof(WorkSource));
static_cast<WorkSource*>(work_source_)->pump = this;
g_source_add_poll(work_source_, wakeup_gpollfd_.get());
// Use a low priority so that we let other events in the queue go first.
g_source_set_priority(work_source_, G_PRIORITY_DEFAULT_IDLE);
// This is needed to allow Run calls inside Dispatch.
g_source_set_can_recurse(work_source_, TRUE);
g_source_attach(work_source_, context_);
}
MainMessageLoopExternalPumpLinux::~MainMessageLoopExternalPumpLinux() {
g_source_destroy(work_source_);
g_source_unref(work_source_);
close(wakeup_pipe_read_);
close(wakeup_pipe_write_);
}
void MainMessageLoopExternalPumpLinux::Quit() {
should_quit_ = true;
}
int MainMessageLoopExternalPumpLinux::Run() {
// We really only do a single task for each iteration of the loop. If we
// have done something, assume there is likely something more to do. This
// will mean that we don't block on the message pump until there was nothing
// more to do. We also set this to true to make sure not to block on the
// first iteration of the loop.
bool more_work_is_plausible = true;
// We run our own loop instead of using g_main_loop_quit in one of the
// callbacks. This is so we only quit our own loops, and we don't quit
// nested loops run by others.
for (;;) {
// Don't block if we think we have more work to do.
bool block = !more_work_is_plausible;
more_work_is_plausible = g_main_context_iteration(context_, block);
if (should_quit_)
break;
}
// We need to run the message pump until it is idle. However we don't have
// that information here so we run the message loop "for a while".
for (int i = 0; i < 10; ++i) {
// Do some work.
CefDoMessageLoopWork();
// Sleep to allow the CEF proc to do work.
usleep(50000);
}
return 0;
}
void MainMessageLoopExternalPumpLinux::OnScheduleMessagePumpWork(
int64 delay_ms) {
// This can be called on any thread, so we don't want to touch any state
// variables as we would then need locks all over. This ensures that if we
// are sleeping in a poll that we will wake up.
if (HANDLE_EINTR(write(wakeup_pipe_write_, &delay_ms, sizeof(int64))) !=
sizeof(int64)) {
NOTREACHED() << "Could not write to the UI message loop wakeup pipe!";
}
}
// Return the timeout we want passed to poll.
int MainMessageLoopExternalPumpLinux::HandlePrepare() {
// We don't think we have work to do, but make sure not to block longer than
// the next time we need to run delayed work.
return GetTimeIntervalMilliseconds(delayed_work_time_);
}
bool MainMessageLoopExternalPumpLinux::HandleCheck() {
// We usually have a single message on the wakeup pipe, since we are only
// signaled when the queue went from empty to non-empty, but there can be
// two messages if a task posted a task, hence we read at most two bytes.
// The glib poll will tell us whether there was data, so this read shouldn't
// block.
if (wakeup_gpollfd_->revents & G_IO_IN) {
int64 delay_ms[2];
const size_t num_bytes =
HANDLE_EINTR(read(wakeup_pipe_read_, delay_ms, sizeof(int64) * 2));
if (num_bytes < sizeof(int64)) {
NOTREACHED() << "Error reading from the wakeup pipe.";
}
if (num_bytes == sizeof(int64))
OnScheduleWork(delay_ms[0]);
if (num_bytes == sizeof(int64) * 2)
OnScheduleWork(delay_ms[1]);
}
if (GetTimeIntervalMilliseconds(delayed_work_time_) == 0) {
// The timer has expired. That condition will stay true until we process
// that delayed work, so we don't need to record this differently.
return true;
}
return false;
}
void MainMessageLoopExternalPumpLinux::HandleDispatch() {
OnTimerTimeout();
}
void MainMessageLoopExternalPumpLinux::SetTimer(int64 delay_ms) {
DCHECK_GT(delay_ms, 0);
CefTime now;
now.Now();
delayed_work_time_ =
CefTime(now.GetDoubleT() + static_cast<double>(delay_ms) / 1000.0);
}
void MainMessageLoopExternalPumpLinux::KillTimer() {
delayed_work_time_ = CefTime();
}
bool MainMessageLoopExternalPumpLinux::IsTimerPending() {
return GetTimeIntervalMilliseconds(delayed_work_time_) > 0;
}
} // namespace
// static
scoped_ptr<MainMessageLoopExternalPump> MainMessageLoopExternalPump::Create() {
return scoped_ptr<MainMessageLoopExternalPump>(
new MainMessageLoopExternalPumpLinux());
}
} // namespace client