| // Copyright (c) 2014 Marshall A. Greenblatt. Portions copyright (c) 2012 |
| // Google Inc. All rights reserved. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following disclaimer |
| // in the documentation and/or other materials provided with the |
| // distribution. |
| // * Neither the name of Google Inc. nor the name Chromium Embedded |
| // Framework nor the names of its contributors may be used to endorse |
| // or promote products derived from this software without specific prior |
| // written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| // Scopers help you manage ownership of a pointer, helping you easily manage a |
| // pointer within a scope, and automatically destroying the pointer at the end |
| // of a scope. There are two main classes you will use, which correspond to the |
| // operators new/delete and new[]/delete[]. |
| // |
| // Example usage (scoped_ptr<T>): |
| // { |
| // scoped_ptr<Foo> foo(new Foo("wee")); |
| // } // foo goes out of scope, releasing the pointer with it. |
| // |
| // { |
| // scoped_ptr<Foo> foo; // No pointer managed. |
| // foo.reset(new Foo("wee")); // Now a pointer is managed. |
| // foo.reset(new Foo("wee2")); // Foo("wee") was destroyed. |
| // foo.reset(new Foo("wee3")); // Foo("wee2") was destroyed. |
| // foo->Method(); // Foo::Method() called. |
| // foo.get()->Method(); // Foo::Method() called. |
| // SomeFunc(foo.release()); // SomeFunc takes ownership, foo no longer |
| // // manages a pointer. |
| // foo.reset(new Foo("wee4")); // foo manages a pointer again. |
| // foo.reset(); // Foo("wee4") destroyed, foo no longer |
| // // manages a pointer. |
| // } // foo wasn't managing a pointer, so nothing was destroyed. |
| // |
| // Example usage (scoped_ptr<T[]>): |
| // { |
| // scoped_ptr<Foo[]> foo(new Foo[100]); |
| // foo.get()->Method(); // Foo::Method on the 0th element. |
| // foo[10].Method(); // Foo::Method on the 10th element. |
| // } |
| // |
| // These scopers also implement part of the functionality of C++11 unique_ptr |
| // in that they are "movable but not copyable." You can use the scopers in |
| // the parameter and return types of functions to signify ownership transfer |
| // in to and out of a function. When calling a function that has a scoper |
| // as the argument type, it must be called with the result of an analogous |
| // scoper's Pass() function or another function that generates a temporary; |
| // passing by copy will NOT work. Here is an example using scoped_ptr: |
| // |
| // void TakesOwnership(scoped_ptr<Foo> arg) { |
| // // Do something with arg |
| // } |
| // scoped_ptr<Foo> CreateFoo() { |
| // // No need for calling Pass() because we are constructing a temporary |
| // // for the return value. |
| // return scoped_ptr<Foo>(new Foo("new")); |
| // } |
| // scoped_ptr<Foo> PassThru(scoped_ptr<Foo> arg) { |
| // return arg.Pass(); |
| // } |
| // |
| // { |
| // scoped_ptr<Foo> ptr(new Foo("yay")); // ptr manages Foo("yay"). |
| // TakesOwnership(ptr.Pass()); // ptr no longer owns Foo("yay"). |
| // scoped_ptr<Foo> ptr2 = CreateFoo(); // ptr2 owns the return Foo. |
| // scoped_ptr<Foo> ptr3 = // ptr3 now owns what was in ptr2. |
| // PassThru(ptr2.Pass()); // ptr2 is correspondingly NULL. |
| // } |
| // |
| // Notice that if you do not call Pass() when returning from PassThru(), or |
| // when invoking TakesOwnership(), the code will not compile because scopers |
| // are not copyable; they only implement move semantics which require calling |
| // the Pass() function to signify a destructive transfer of state. CreateFoo() |
| // is different though because we are constructing a temporary on the return |
| // line and thus can avoid needing to call Pass(). |
| // |
| // Pass() properly handles upcast in initialization, i.e. you can use a |
| // scoped_ptr<Child> to initialize a scoped_ptr<Parent>: |
| // |
| // scoped_ptr<Foo> foo(new Foo()); |
| // scoped_ptr<FooParent> parent(foo.Pass()); |
| // |
| // PassAs<>() should be used to upcast return value in return statement: |
| // |
| // scoped_ptr<Foo> CreateFoo() { |
| // scoped_ptr<FooChild> result(new FooChild()); |
| // return result.PassAs<Foo>(); |
| // } |
| // |
| // Note that PassAs<>() is implemented only for scoped_ptr<T>, but not for |
| // scoped_ptr<T[]>. This is because casting array pointers may not be safe. |
| |
| #ifndef CEF_INCLUDE_BASE_CEF_MEMORY_SCOPED_PTR_H_ |
| #define CEF_INCLUDE_BASE_CEF_MEMORY_SCOPED_PTR_H_ |
| #pragma once |
| |
| #if defined(BASE_MEMORY_SCOPED_PTR_H_) |
| // Do nothing if the Chromium header has already been included. |
| // This can happen in cases where Chromium code is used directly by the |
| // client application. When using Chromium code directly always include |
| // the Chromium header first to avoid type conflicts. |
| #elif defined(USING_CHROMIUM_INCLUDES) |
| // Do nothing when building CEF. |
| #else // !USING_CHROMIUM_INCLUDES |
| // The following is substantially similar to the Chromium implementation. |
| // If the Chromium implementation diverges the below implementation should be |
| // updated to match. |
| |
| // This is an implementation designed to match the anticipated future TR2 |
| // implementation of the scoped_ptr class. |
| |
| #include <assert.h> |
| #include <stddef.h> |
| #include <stdlib.h> |
| |
| #include <algorithm> // For std::swap(). |
| |
| #include "include/base/cef_basictypes.h" |
| #include "include/base/cef_build.h" |
| #include "include/base/cef_macros.h" |
| #include "include/base/cef_move.h" |
| #include "include/base/cef_template_util.h" |
| |
| namespace base { |
| |
| namespace subtle { |
| class RefCountedBase; |
| class RefCountedThreadSafeBase; |
| } // namespace subtle |
| |
| // Function object which deletes its parameter, which must be a pointer. |
| // If C is an array type, invokes 'delete[]' on the parameter; otherwise, |
| // invokes 'delete'. The default deleter for scoped_ptr<T>. |
| template <class T> |
| struct DefaultDeleter { |
| DefaultDeleter() {} |
| template <typename U> |
| DefaultDeleter(const DefaultDeleter<U>& other) { |
| // IMPLEMENTATION NOTE: C++11 20.7.1.1.2p2 only provides this constructor |
| // if U* is implicitly convertible to T* and U is not an array type. |
| // |
| // Correct implementation should use SFINAE to disable this |
| // constructor. However, since there are no other 1-argument constructors, |
| // using a COMPILE_ASSERT() based on is_convertible<> and requiring |
| // complete types is simpler and will cause compile failures for equivalent |
| // misuses. |
| // |
| // Note, the is_convertible<U*, T*> check also ensures that U is not an |
| // array. T is guaranteed to be a non-array, so any U* where U is an array |
| // cannot convert to T*. |
| enum { T_must_be_complete = sizeof(T) }; |
| enum { U_must_be_complete = sizeof(U) }; |
| COMPILE_ASSERT((base::is_convertible<U*, T*>::value), |
| U_ptr_must_implicitly_convert_to_T_ptr); |
| } |
| inline void operator()(T* ptr) const { |
| enum { type_must_be_complete = sizeof(T) }; |
| delete ptr; |
| } |
| }; |
| |
| // Specialization of DefaultDeleter for array types. |
| template <class T> |
| struct DefaultDeleter<T[]> { |
| inline void operator()(T* ptr) const { |
| enum { type_must_be_complete = sizeof(T) }; |
| delete[] ptr; |
| } |
| |
| private: |
| // Disable this operator for any U != T because it is undefined to execute |
| // an array delete when the static type of the array mismatches the dynamic |
| // type. |
| // |
| // References: |
| // C++98 [expr.delete]p3 |
| // http://cplusplus.github.com/LWG/lwg-defects.html#938 |
| template <typename U> |
| void operator()(U* array) const; |
| }; |
| |
| template <class T, int n> |
| struct DefaultDeleter<T[n]> { |
| // Never allow someone to declare something like scoped_ptr<int[10]>. |
| COMPILE_ASSERT(sizeof(T) == -1, do_not_use_array_with_size_as_type); |
| }; |
| |
| // Function object which invokes 'free' on its parameter, which must be |
| // a pointer. Can be used to store malloc-allocated pointers in scoped_ptr: |
| // |
| // scoped_ptr<int, base::FreeDeleter> foo_ptr( |
| // static_cast<int*>(malloc(sizeof(int)))); |
| struct FreeDeleter { |
| inline void operator()(void* ptr) const { free(ptr); } |
| }; |
| |
| namespace cef_internal { |
| |
| template <typename T> |
| struct IsNotRefCounted { |
| enum { |
| value = |
| !base::is_convertible<T*, base::subtle::RefCountedBase*>::value && |
| !base::is_convertible<T*, |
| base::subtle::RefCountedThreadSafeBase*>::value |
| }; |
| }; |
| |
| // Minimal implementation of the core logic of scoped_ptr, suitable for |
| // reuse in both scoped_ptr and its specializations. |
| template <class T, class D> |
| class scoped_ptr_impl { |
| public: |
| explicit scoped_ptr_impl(T* p) : data_(p) {} |
| |
| // Initializer for deleters that have data parameters. |
| scoped_ptr_impl(T* p, const D& d) : data_(p, d) {} |
| |
| // Templated constructor that destructively takes the value from another |
| // scoped_ptr_impl. |
| template <typename U, typename V> |
| scoped_ptr_impl(scoped_ptr_impl<U, V>* other) |
| : data_(other->release(), other->get_deleter()) { |
| // We do not support move-only deleters. We could modify our move |
| // emulation to have base::subtle::move() and base::subtle::forward() |
| // functions that are imperfect emulations of their C++11 equivalents, |
| // but until there's a requirement, just assume deleters are copyable. |
| } |
| |
| template <typename U, typename V> |
| void TakeState(scoped_ptr_impl<U, V>* other) { |
| // See comment in templated constructor above regarding lack of support |
| // for move-only deleters. |
| reset(other->release()); |
| get_deleter() = other->get_deleter(); |
| } |
| |
| ~scoped_ptr_impl() { |
| if (data_.ptr != NULL) { |
| // Not using get_deleter() saves one function call in non-optimized |
| // builds. |
| static_cast<D&>(data_)(data_.ptr); |
| } |
| } |
| |
| void reset(T* p) { |
| // This is a self-reset, which is no longer allowed: http://crbug.com/162971 |
| if (p != NULL && p == data_.ptr) |
| abort(); |
| |
| // Note that running data_.ptr = p can lead to undefined behavior if |
| // get_deleter()(get()) deletes this. In order to prevent this, reset() |
| // should update the stored pointer before deleting its old value. |
| // |
| // However, changing reset() to use that behavior may cause current code to |
| // break in unexpected ways. If the destruction of the owned object |
| // dereferences the scoped_ptr when it is destroyed by a call to reset(), |
| // then it will incorrectly dispatch calls to |p| rather than the original |
| // value of |data_.ptr|. |
| // |
| // During the transition period, set the stored pointer to NULL while |
| // deleting the object. Eventually, this safety check will be removed to |
| // prevent the scenario initially described from occuring and |
| // http://crbug.com/176091 can be closed. |
| T* old = data_.ptr; |
| data_.ptr = NULL; |
| if (old != NULL) |
| static_cast<D&>(data_)(old); |
| data_.ptr = p; |
| } |
| |
| T* get() const { return data_.ptr; } |
| |
| D& get_deleter() { return data_; } |
| const D& get_deleter() const { return data_; } |
| |
| void swap(scoped_ptr_impl& p2) { |
| // Standard swap idiom: 'using std::swap' ensures that std::swap is |
| // present in the overload set, but we call swap unqualified so that |
| // any more-specific overloads can be used, if available. |
| using std::swap; |
| swap(static_cast<D&>(data_), static_cast<D&>(p2.data_)); |
| swap(data_.ptr, p2.data_.ptr); |
| } |
| |
| T* release() { |
| T* old_ptr = data_.ptr; |
| data_.ptr = NULL; |
| return old_ptr; |
| } |
| |
| private: |
| // Needed to allow type-converting constructor. |
| template <typename U, typename V> |
| friend class scoped_ptr_impl; |
| |
| // Use the empty base class optimization to allow us to have a D |
| // member, while avoiding any space overhead for it when D is an |
| // empty class. See e.g. http://www.cantrip.org/emptyopt.html for a good |
| // discussion of this technique. |
| struct Data : public D { |
| explicit Data(T* ptr_in) : ptr(ptr_in) {} |
| Data(T* ptr_in, const D& other) : D(other), ptr(ptr_in) {} |
| T* ptr; |
| }; |
| |
| Data data_; |
| |
| DISALLOW_COPY_AND_ASSIGN(scoped_ptr_impl); |
| }; |
| |
| } // namespace cef_internal |
| |
| } // namespace base |
| |
| // A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T> |
| // automatically deletes the pointer it holds (if any). |
| // That is, scoped_ptr<T> owns the T object that it points to. |
| // Like a T*, a scoped_ptr<T> may hold either NULL or a pointer to a T object. |
| // Also like T*, scoped_ptr<T> is thread-compatible, and once you |
| // dereference it, you get the thread safety guarantees of T. |
| // |
| // The size of scoped_ptr is small. On most compilers, when using the |
| // DefaultDeleter, sizeof(scoped_ptr<T>) == sizeof(T*). Custom deleters will |
| // increase the size proportional to whatever state they need to have. See |
| // comments inside scoped_ptr_impl<> for details. |
| // |
| // Current implementation targets having a strict subset of C++11's |
| // unique_ptr<> features. Known deficiencies include not supporting move-only |
| // deleteres, function pointers as deleters, and deleters with reference |
| // types. |
| template <class T, class D = base::DefaultDeleter<T>> |
| class scoped_ptr { |
| MOVE_ONLY_TYPE_FOR_CPP_03(scoped_ptr, RValue) |
| |
| COMPILE_ASSERT(base::cef_internal::IsNotRefCounted<T>::value, |
| T_is_refcounted_type_and_needs_scoped_refptr); |
| |
| public: |
| // The element and deleter types. |
| typedef T element_type; |
| typedef D deleter_type; |
| |
| // Constructor. Defaults to initializing with NULL. |
| scoped_ptr() : impl_(NULL) {} |
| |
| // Constructor. Takes ownership of p. |
| explicit scoped_ptr(element_type* p) : impl_(p) {} |
| |
| // Constructor. Allows initialization of a stateful deleter. |
| scoped_ptr(element_type* p, const D& d) : impl_(p, d) {} |
| |
| // Constructor. Allows construction from a scoped_ptr rvalue for a |
| // convertible type and deleter. |
| // |
| // IMPLEMENTATION NOTE: C++11 unique_ptr<> keeps this constructor distinct |
| // from the normal move constructor. By C++11 20.7.1.2.1.21, this constructor |
| // has different post-conditions if D is a reference type. Since this |
| // implementation does not support deleters with reference type, |
| // we do not need a separate move constructor allowing us to avoid one |
| // use of SFINAE. You only need to care about this if you modify the |
| // implementation of scoped_ptr. |
| template <typename U, typename V> |
| scoped_ptr(scoped_ptr<U, V> other) : impl_(&other.impl_) { |
| COMPILE_ASSERT(!base::is_array<U>::value, U_cannot_be_an_array); |
| } |
| |
| // Constructor. Move constructor for C++03 move emulation of this type. |
| scoped_ptr(RValue rvalue) : impl_(&rvalue.object->impl_) {} |
| |
| // operator=. Allows assignment from a scoped_ptr rvalue for a convertible |
| // type and deleter. |
| // |
| // IMPLEMENTATION NOTE: C++11 unique_ptr<> keeps this operator= distinct from |
| // the normal move assignment operator. By C++11 20.7.1.2.3.4, this templated |
| // form has different requirements on for move-only Deleters. Since this |
| // implementation does not support move-only Deleters, we do not need a |
| // separate move assignment operator allowing us to avoid one use of SFINAE. |
| // You only need to care about this if you modify the implementation of |
| // scoped_ptr. |
| template <typename U, typename V> |
| scoped_ptr& operator=(scoped_ptr<U, V> rhs) { |
| COMPILE_ASSERT(!base::is_array<U>::value, U_cannot_be_an_array); |
| impl_.TakeState(&rhs.impl_); |
| return *this; |
| } |
| |
| // Reset. Deletes the currently owned object, if any. |
| // Then takes ownership of a new object, if given. |
| void reset(element_type* p = NULL) { impl_.reset(p); } |
| |
| // Accessors to get the owned object. |
| // operator* and operator-> will assert() if there is no current object. |
| element_type& operator*() const { |
| assert(impl_.get() != NULL); |
| return *impl_.get(); |
| } |
| element_type* operator->() const { |
| assert(impl_.get() != NULL); |
| return impl_.get(); |
| } |
| element_type* get() const { return impl_.get(); } |
| |
| // Access to the deleter. |
| deleter_type& get_deleter() { return impl_.get_deleter(); } |
| const deleter_type& get_deleter() const { return impl_.get_deleter(); } |
| |
| // Allow scoped_ptr<element_type> to be used in boolean expressions, but not |
| // implicitly convertible to a real bool (which is dangerous). |
| // |
| // Note that this trick is only safe when the == and != operators |
| // are declared explicitly, as otherwise "scoped_ptr1 == |
| // scoped_ptr2" will compile but do the wrong thing (i.e., convert |
| // to Testable and then do the comparison). |
| private: |
| typedef base::cef_internal::scoped_ptr_impl<element_type, deleter_type> |
| scoped_ptr::*Testable; |
| |
| public: |
| operator Testable() const { return impl_.get() ? &scoped_ptr::impl_ : NULL; } |
| |
| // Comparison operators. |
| // These return whether two scoped_ptr refer to the same object, not just to |
| // two different but equal objects. |
| bool operator==(const element_type* p) const { return impl_.get() == p; } |
| bool operator!=(const element_type* p) const { return impl_.get() != p; } |
| |
| // Swap two scoped pointers. |
| void swap(scoped_ptr& p2) { impl_.swap(p2.impl_); } |
| |
| // Release a pointer. |
| // The return value is the current pointer held by this object. |
| // If this object holds a NULL pointer, the return value is NULL. |
| // After this operation, this object will hold a NULL pointer, |
| // and will not own the object any more. |
| element_type* release() WARN_UNUSED_RESULT { return impl_.release(); } |
| |
| // C++98 doesn't support functions templates with default parameters which |
| // makes it hard to write a PassAs() that understands converting the deleter |
| // while preserving simple calling semantics. |
| // |
| // Until there is a use case for PassAs() with custom deleters, just ignore |
| // the custom deleter. |
| template <typename PassAsType> |
| scoped_ptr<PassAsType> PassAs() { |
| return scoped_ptr<PassAsType>(Pass()); |
| } |
| |
| private: |
| // Needed to reach into |impl_| in the constructor. |
| template <typename U, typename V> |
| friend class scoped_ptr; |
| base::cef_internal::scoped_ptr_impl<element_type, deleter_type> impl_; |
| |
| // Forbidden for API compatibility with std::unique_ptr. |
| explicit scoped_ptr(int disallow_construction_from_null); |
| |
| // Forbid comparison of scoped_ptr types. If U != T, it totally |
| // doesn't make sense, and if U == T, it still doesn't make sense |
| // because you should never have the same object owned by two different |
| // scoped_ptrs. |
| template <class U> |
| bool operator==(scoped_ptr<U> const& p2) const; |
| template <class U> |
| bool operator!=(scoped_ptr<U> const& p2) const; |
| }; |
| |
| template <class T, class D> |
| class scoped_ptr<T[], D> { |
| MOVE_ONLY_TYPE_FOR_CPP_03(scoped_ptr, RValue) |
| |
| public: |
| // The element and deleter types. |
| typedef T element_type; |
| typedef D deleter_type; |
| |
| // Constructor. Defaults to initializing with NULL. |
| scoped_ptr() : impl_(NULL) {} |
| |
| // Constructor. Stores the given array. Note that the argument's type |
| // must exactly match T*. In particular: |
| // - it cannot be a pointer to a type derived from T, because it is |
| // inherently unsafe in the general case to access an array through a |
| // pointer whose dynamic type does not match its static type (eg., if |
| // T and the derived types had different sizes access would be |
| // incorrectly calculated). Deletion is also always undefined |
| // (C++98 [expr.delete]p3). If you're doing this, fix your code. |
| // - it cannot be NULL, because NULL is an integral expression, not a |
| // pointer to T. Use the no-argument version instead of explicitly |
| // passing NULL. |
| // - it cannot be const-qualified differently from T per unique_ptr spec |
| // (http://cplusplus.github.com/LWG/lwg-active.html#2118). Users wanting |
| // to work around this may use implicit_cast<const T*>(). |
| // However, because of the first bullet in this comment, users MUST |
| // NOT use implicit_cast<Base*>() to upcast the static type of the array. |
| explicit scoped_ptr(element_type* array) : impl_(array) {} |
| |
| // Constructor. Move constructor for C++03 move emulation of this type. |
| scoped_ptr(RValue rvalue) : impl_(&rvalue.object->impl_) {} |
| |
| // operator=. Move operator= for C++03 move emulation of this type. |
| scoped_ptr& operator=(RValue rhs) { |
| impl_.TakeState(&rhs.object->impl_); |
| return *this; |
| } |
| |
| // Reset. Deletes the currently owned array, if any. |
| // Then takes ownership of a new object, if given. |
| void reset(element_type* array = NULL) { impl_.reset(array); } |
| |
| // Accessors to get the owned array. |
| element_type& operator[](size_t i) const { |
| assert(impl_.get() != NULL); |
| return impl_.get()[i]; |
| } |
| element_type* get() const { return impl_.get(); } |
| |
| // Access to the deleter. |
| deleter_type& get_deleter() { return impl_.get_deleter(); } |
| const deleter_type& get_deleter() const { return impl_.get_deleter(); } |
| |
| // Allow scoped_ptr<element_type> to be used in boolean expressions, but not |
| // implicitly convertible to a real bool (which is dangerous). |
| private: |
| typedef base::cef_internal::scoped_ptr_impl<element_type, deleter_type> |
| scoped_ptr::*Testable; |
| |
| public: |
| operator Testable() const { return impl_.get() ? &scoped_ptr::impl_ : NULL; } |
| |
| // Comparison operators. |
| // These return whether two scoped_ptr refer to the same object, not just to |
| // two different but equal objects. |
| bool operator==(element_type* array) const { return impl_.get() == array; } |
| bool operator!=(element_type* array) const { return impl_.get() != array; } |
| |
| // Swap two scoped pointers. |
| void swap(scoped_ptr& p2) { impl_.swap(p2.impl_); } |
| |
| // Release a pointer. |
| // The return value is the current pointer held by this object. |
| // If this object holds a NULL pointer, the return value is NULL. |
| // After this operation, this object will hold a NULL pointer, |
| // and will not own the object any more. |
| element_type* release() WARN_UNUSED_RESULT { return impl_.release(); } |
| |
| private: |
| // Force element_type to be a complete type. |
| enum { type_must_be_complete = sizeof(element_type) }; |
| |
| // Actually hold the data. |
| base::cef_internal::scoped_ptr_impl<element_type, deleter_type> impl_; |
| |
| // Disable initialization from any type other than element_type*, by |
| // providing a constructor that matches such an initialization, but is |
| // private and has no definition. This is disabled because it is not safe to |
| // call delete[] on an array whose static type does not match its dynamic |
| // type. |
| template <typename U> |
| explicit scoped_ptr(U* array); |
| explicit scoped_ptr(int disallow_construction_from_null); |
| |
| // Disable reset() from any type other than element_type*, for the same |
| // reasons as the constructor above. |
| template <typename U> |
| void reset(U* array); |
| void reset(int disallow_reset_from_null); |
| |
| // Forbid comparison of scoped_ptr types. If U != T, it totally |
| // doesn't make sense, and if U == T, it still doesn't make sense |
| // because you should never have the same object owned by two different |
| // scoped_ptrs. |
| template <class U> |
| bool operator==(scoped_ptr<U> const& p2) const; |
| template <class U> |
| bool operator!=(scoped_ptr<U> const& p2) const; |
| }; |
| |
| // Free functions |
| template <class T, class D> |
| void swap(scoped_ptr<T, D>& p1, scoped_ptr<T, D>& p2) { |
| p1.swap(p2); |
| } |
| |
| template <class T, class D> |
| bool operator==(T* p1, const scoped_ptr<T, D>& p2) { |
| return p1 == p2.get(); |
| } |
| |
| template <class T, class D> |
| bool operator!=(T* p1, const scoped_ptr<T, D>& p2) { |
| return p1 != p2.get(); |
| } |
| |
| // A function to convert T* into scoped_ptr<T> |
| // Doing e.g. make_scoped_ptr(new FooBarBaz<type>(arg)) is a shorter notation |
| // for scoped_ptr<FooBarBaz<type> >(new FooBarBaz<type>(arg)) |
| template <typename T> |
| scoped_ptr<T> make_scoped_ptr(T* ptr) { |
| return scoped_ptr<T>(ptr); |
| } |
| |
| #endif // !USING_CHROMIUM_INCLUDES |
| |
| #endif // CEF_INCLUDE_BASE_CEF_MEMORY_SCOPED_PTR_H_ |