blob: 968caa74b04f7f7a5d892d91090e705bf4245d8e [file] [log] [blame]
/*
chronyd/chronyc - Programs for keeping computer clocks accurate.
**********************************************************************
* Copyright (C) Miroslav Lichvar 2009-2011, 2013-2014, 2016-2019
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
**********************************************************************
=======================================================================
Routines implementing reference clocks.
*/
#include "config.h"
#include "array.h"
#include "refclock.h"
#include "reference.h"
#include "conf.h"
#include "local.h"
#include "memory.h"
#include "util.h"
#include "sources.h"
#include "logging.h"
#include "regress.h"
#include "samplefilt.h"
#include "sched.h"
/* Maximum offset of locked reference as a fraction of the PPS interval */
#define PPS_LOCK_LIMIT 0.4
/* list of refclock drivers */
extern RefclockDriver RCL_SHM_driver;
extern RefclockDriver RCL_SOCK_driver;
extern RefclockDriver RCL_PPS_driver;
extern RefclockDriver RCL_PHC_driver;
struct FilterSample {
double offset;
double dispersion;
struct timespec sample_time;
};
struct MedianFilter {
int length;
int index;
int used;
int last;
int avg_var_n;
double avg_var;
double max_var;
struct FilterSample *samples;
int *selected;
double *x_data;
double *y_data;
double *w_data;
};
struct RCL_Instance_Record {
RefclockDriver *driver;
void *data;
char *driver_parameter;
int driver_parameter_length;
int driver_poll;
int driver_polled;
int poll;
int leap_status;
int pps_forced;
int pps_rate;
int pps_active;
int max_lock_age;
int stratum;
int tai;
uint32_t ref_id;
uint32_t lock_ref;
double offset;
double delay;
double precision;
double pulse_width;
SPF_Instance filter;
SCH_TimeoutID timeout_id;
SRC_Instance source;
};
/* Array of pointers to RCL_Instance_Record */
static ARR_Instance refclocks;
static LOG_FileID logfileid;
static int valid_sample_time(RCL_Instance instance, struct timespec *sample_time);
static int pps_stratum(RCL_Instance instance, struct timespec *ts);
static void poll_timeout(void *arg);
static void slew_samples(struct timespec *raw, struct timespec *cooked, double dfreq,
double doffset, LCL_ChangeType change_type, void *anything);
static void add_dispersion(double dispersion, void *anything);
static void log_sample(RCL_Instance instance, struct timespec *sample_time, int filtered, int pulse, double raw_offset, double cooked_offset, double dispersion);
static RCL_Instance
get_refclock(unsigned int index)
{
return *(RCL_Instance *)ARR_GetElement(refclocks, index);
}
void
RCL_Initialise(void)
{
refclocks = ARR_CreateInstance(sizeof (RCL_Instance));
CNF_AddRefclocks();
if (ARR_GetSize(refclocks) > 0) {
LCL_AddParameterChangeHandler(slew_samples, NULL);
LCL_AddDispersionNotifyHandler(add_dispersion, NULL);
}
logfileid = CNF_GetLogRefclocks() ? LOG_FileOpen("refclocks",
" Date (UTC) Time Refid DP L P Raw offset Cooked offset Disp.")
: -1;
}
void
RCL_Finalise(void)
{
unsigned int i;
for (i = 0; i < ARR_GetSize(refclocks); i++) {
RCL_Instance inst = get_refclock(i);
if (inst->driver->fini)
inst->driver->fini(inst);
SPF_DestroyInstance(inst->filter);
Free(inst->driver_parameter);
SRC_DestroyInstance(inst->source);
Free(inst);
}
if (ARR_GetSize(refclocks) > 0) {
LCL_RemoveParameterChangeHandler(slew_samples, NULL);
LCL_RemoveDispersionNotifyHandler(add_dispersion, NULL);
}
ARR_DestroyInstance(refclocks);
}
int
RCL_AddRefclock(RefclockParameters *params)
{
RCL_Instance inst;
inst = MallocNew(struct RCL_Instance_Record);
*(RCL_Instance *)ARR_GetNewElement(refclocks) = inst;
if (strcmp(params->driver_name, "SHM") == 0) {
inst->driver = &RCL_SHM_driver;
} else if (strcmp(params->driver_name, "SOCK") == 0) {
inst->driver = &RCL_SOCK_driver;
} else if (strcmp(params->driver_name, "PPS") == 0) {
inst->driver = &RCL_PPS_driver;
} else if (strcmp(params->driver_name, "PHC") == 0) {
inst->driver = &RCL_PHC_driver;
} else {
LOG_FATAL("unknown refclock driver %s", params->driver_name);
}
if (!inst->driver->init && !inst->driver->poll)
LOG_FATAL("refclock driver %s is not compiled in", params->driver_name);
if (params->tai && !CNF_GetLeapSecTimezone())
LOG_FATAL("refclock tai option requires leapsectz");
inst->data = NULL;
inst->driver_parameter = Strdup(params->driver_parameter);
inst->driver_parameter_length = 0;
inst->driver_poll = params->driver_poll;
inst->poll = params->poll;
inst->driver_polled = 0;
inst->leap_status = LEAP_Normal;
inst->pps_forced = params->pps_forced;
inst->pps_rate = params->pps_rate;
inst->pps_active = 0;
inst->max_lock_age = params->max_lock_age;
inst->stratum = params->stratum;
inst->tai = params->tai;
inst->lock_ref = params->lock_ref_id;
inst->offset = params->offset;
inst->delay = params->delay;
inst->precision = LCL_GetSysPrecisionAsQuantum();
inst->precision = MAX(inst->precision, params->precision);
inst->pulse_width = params->pulse_width;
inst->timeout_id = -1;
inst->source = NULL;
if (inst->driver_parameter) {
int i;
inst->driver_parameter_length = strlen(inst->driver_parameter);
for (i = 0; i < inst->driver_parameter_length; i++)
if (inst->driver_parameter[i] == ':')
inst->driver_parameter[i] = '\0';
}
if (inst->pps_rate < 1)
inst->pps_rate = 1;
if (params->ref_id)
inst->ref_id = params->ref_id;
else {
unsigned char ref[5] = { 0, 0, 0, 0, 0 };
unsigned int index = ARR_GetSize(refclocks) - 1;
snprintf((char *)ref, sizeof (ref), "%3.3s", params->driver_name);
ref[3] = index % 10 + '0';
if (index >= 10)
ref[2] = (index / 10) % 10 + '0';
inst->ref_id = (uint32_t)ref[0] << 24 | ref[1] << 16 | ref[2] << 8 | ref[3];
}
if (inst->driver->poll) {
int max_samples;
if (inst->driver_poll > inst->poll)
inst->driver_poll = inst->poll;
max_samples = 1 << (inst->poll - inst->driver_poll);
if (max_samples < params->filter_length) {
if (max_samples < 4) {
LOG(LOGS_WARN, "Setting filter length for %s to %d",
UTI_RefidToString(inst->ref_id), max_samples);
}
params->filter_length = max_samples;
}
}
if (inst->driver->init && !inst->driver->init(inst))
LOG_FATAL("refclock %s initialisation failed", params->driver_name);
/* Require the filter to have at least 4 samples to produce a filtered
sample, or be full for shorter lengths, and combine 60% of samples
closest to the median */
inst->filter = SPF_CreateInstance(MIN(params->filter_length, 4), params->filter_length,
params->max_dispersion, 0.6);
inst->source = SRC_CreateNewInstance(inst->ref_id, SRC_REFCLOCK, 0, params->sel_options,
NULL, params->min_samples, params->max_samples,
0.0, 0.0);
DEBUG_LOG("refclock %s refid=%s poll=%d dpoll=%d filter=%d",
params->driver_name, UTI_RefidToString(inst->ref_id),
inst->poll, inst->driver_poll, params->filter_length);
return 1;
}
void
RCL_StartRefclocks(void)
{
unsigned int i, j, n, lock_index;
n = ARR_GetSize(refclocks);
for (i = 0; i < n; i++) {
RCL_Instance inst = get_refclock(i);
SRC_SetActive(inst->source);
inst->timeout_id = SCH_AddTimeoutByDelay(0.0, poll_timeout, (void *)inst);
/* Replace lock refid with the refclock's index, or -1 if not valid */
lock_index = -1;
if (inst->lock_ref != 0) {
for (j = 0; j < n; j++) {
RCL_Instance inst2 = get_refclock(j);
if (inst->lock_ref != inst2->ref_id)
continue;
if (inst->driver->poll && inst2->driver->poll &&
(double)inst->max_lock_age / inst->pps_rate < UTI_Log2ToDouble(inst2->driver_poll))
LOG(LOGS_WARN, "%s maxlockage too small for %s",
UTI_RefidToString(inst->ref_id), UTI_RefidToString(inst2->ref_id));
lock_index = j;
break;
}
if (lock_index == -1 || lock_index == i)
LOG(LOGS_WARN, "Invalid lock refid %s", UTI_RefidToString(inst->lock_ref));
}
inst->lock_ref = lock_index;
}
}
void
RCL_ReportSource(RPT_SourceReport *report, struct timespec *now)
{
unsigned int i;
uint32_t ref_id;
assert(report->ip_addr.family == IPADDR_INET4);
ref_id = report->ip_addr.addr.in4;
for (i = 0; i < ARR_GetSize(refclocks); i++) {
RCL_Instance inst = get_refclock(i);
if (inst->ref_id == ref_id) {
report->poll = inst->poll;
report->mode = RPT_LOCAL_REFERENCE;
break;
}
}
}
void
RCL_SetDriverData(RCL_Instance instance, void *data)
{
instance->data = data;
}
void *
RCL_GetDriverData(RCL_Instance instance)
{
return instance->data;
}
char *
RCL_GetDriverParameter(RCL_Instance instance)
{
return instance->driver_parameter;
}
static char *
get_next_driver_option(RCL_Instance instance, char *option)
{
if (option == NULL)
option = instance->driver_parameter;
option += strlen(option) + 1;
if (option >= instance->driver_parameter + instance->driver_parameter_length)
return NULL;
return option;
}
void
RCL_CheckDriverOptions(RCL_Instance instance, const char **options)
{
char *option;
int i, len;
for (option = get_next_driver_option(instance, NULL);
option;
option = get_next_driver_option(instance, option)) {
for (i = 0; options && options[i]; i++) {
len = strlen(options[i]);
if (!strncmp(options[i], option, len) &&
(option[len] == '=' || option[len] == '\0'))
break;
}
if (!options || !options[i])
LOG_FATAL("Invalid refclock driver option %s", option);
}
}
char *
RCL_GetDriverOption(RCL_Instance instance, char *name)
{
char *option;
int len;
len = strlen(name);
for (option = get_next_driver_option(instance, NULL);
option;
option = get_next_driver_option(instance, option)) {
if (!strncmp(name, option, len)) {
if (option[len] == '=')
return option + len + 1;
if (option[len] == '\0')
return option + len;
}
}
return NULL;
}
static int
convert_tai_offset(struct timespec *sample_time, double *offset)
{
struct timespec tai_ts, utc_ts;
int tai_offset;
/* Get approximate TAI-UTC offset for the reference time in TAI */
UTI_AddDoubleToTimespec(sample_time, *offset, &tai_ts);
tai_offset = REF_GetTaiOffset(&tai_ts);
/* Get TAI-UTC offset for the reference time in UTC +/- 1 second */
UTI_AddDoubleToTimespec(&tai_ts, -tai_offset, &utc_ts);
tai_offset = REF_GetTaiOffset(&utc_ts);
if (!tai_offset)
return 0;
*offset -= tai_offset;
return 1;
}
static int
accumulate_sample(RCL_Instance instance, struct timespec *sample_time, double offset, double dispersion)
{
NTP_Sample sample;
sample.time = *sample_time;
sample.offset = offset;
sample.peer_delay = instance->delay;
sample.root_delay = instance->delay;
sample.peer_dispersion = dispersion;
sample.root_dispersion = dispersion;
return SPF_AccumulateSample(instance->filter, &sample);
}
int
RCL_AddSample(RCL_Instance instance, struct timespec *sample_time, double offset, int leap)
{
double correction, dispersion;
struct timespec cooked_time;
if (instance->pps_forced)
return RCL_AddPulse(instance, sample_time, -offset);
LCL_GetOffsetCorrection(sample_time, &correction, &dispersion);
UTI_AddDoubleToTimespec(sample_time, correction, &cooked_time);
dispersion += instance->precision;
/* Make sure the timestamp and offset provided by the driver are sane */
if (!UTI_IsTimeOffsetSane(sample_time, offset) ||
!valid_sample_time(instance, &cooked_time))
return 0;
switch (leap) {
case LEAP_Normal:
case LEAP_InsertSecond:
case LEAP_DeleteSecond:
instance->leap_status = leap;
break;
default:
DEBUG_LOG("refclock sample ignored bad leap %d", leap);
return 0;
}
if (instance->tai && !convert_tai_offset(sample_time, &offset)) {
DEBUG_LOG("refclock sample ignored unknown TAI offset");
return 0;
}
if (!accumulate_sample(instance, &cooked_time,
offset - correction + instance->offset, dispersion))
return 0;
instance->pps_active = 0;
log_sample(instance, &cooked_time, 0, 0, offset, offset - correction + instance->offset, dispersion);
/* for logging purposes */
if (!instance->driver->poll)
instance->driver_polled++;
return 1;
}
int
RCL_AddPulse(RCL_Instance instance, struct timespec *pulse_time, double second)
{
double correction, dispersion;
struct timespec cooked_time;
LCL_GetOffsetCorrection(pulse_time, &correction, &dispersion);
UTI_AddDoubleToTimespec(pulse_time, correction, &cooked_time);
second += correction;
if (!UTI_IsTimeOffsetSane(pulse_time, 0.0))
return 0;
return RCL_AddCookedPulse(instance, &cooked_time, second, dispersion, correction);
}
static int
check_pulse_edge(RCL_Instance instance, double offset, double distance)
{
double max_error;
if (instance->pulse_width <= 0.0)
return 1;
max_error = 1.0 / instance->pps_rate - instance->pulse_width;
max_error = MIN(instance->pulse_width, max_error);
max_error *= 0.5;
if (fabs(offset) > max_error || distance > max_error) {
DEBUG_LOG("refclock pulse ignored offset=%.9f distance=%.9f max_error=%.9f",
offset, distance, max_error);
return 0;
}
return 1;
}
int
RCL_AddCookedPulse(RCL_Instance instance, struct timespec *cooked_time,
double second, double dispersion, double raw_correction)
{
double offset;
int rate;
NTP_Leap leap;
if (!UTI_IsTimeOffsetSane(cooked_time, second) ||
!valid_sample_time(instance, cooked_time))
return 0;
leap = LEAP_Normal;
dispersion += instance->precision;
rate = instance->pps_rate;
offset = -second + instance->offset;
/* Adjust the offset to [-0.5/rate, 0.5/rate) interval */
offset -= (long)(offset * rate) / (double)rate;
if (offset < -0.5 / rate)
offset += 1.0 / rate;
else if (offset >= 0.5 / rate)
offset -= 1.0 / rate;
if (instance->lock_ref != -1) {
RCL_Instance lock_refclock;
NTP_Sample ref_sample;
double sample_diff, shift;
lock_refclock = get_refclock(instance->lock_ref);
if (!SPF_GetLastSample(lock_refclock->filter, &ref_sample)) {
DEBUG_LOG("refclock pulse ignored no ref sample");
return 0;
}
ref_sample.root_dispersion += SPF_GetAvgSampleDispersion(lock_refclock->filter);
sample_diff = UTI_DiffTimespecsToDouble(cooked_time, &ref_sample.time);
if (fabs(sample_diff) >= (double)instance->max_lock_age / rate) {
DEBUG_LOG("refclock pulse ignored samplediff=%.9f",
sample_diff);
return 0;
}
/* Align the offset to the reference sample */
shift = round((ref_sample.offset - offset) * rate) / rate;
offset += shift;
if (fabs(ref_sample.offset - offset) +
ref_sample.root_dispersion + dispersion > PPS_LOCK_LIMIT / rate) {
DEBUG_LOG("refclock pulse ignored offdiff=%.9f refdisp=%.9f disp=%.9f",
ref_sample.offset - offset, ref_sample.root_dispersion, dispersion);
return 0;
}
if (!check_pulse_edge(instance, ref_sample.offset - offset, 0.0))
return 0;
leap = lock_refclock->leap_status;
DEBUG_LOG("refclock pulse offset=%.9f offdiff=%.9f samplediff=%.9f",
offset, ref_sample.offset - offset, sample_diff);
} else {
struct timespec ref_time;
int is_synchronised, stratum;
double root_delay, root_dispersion, distance;
uint32_t ref_id;
/* Ignore the pulse if we are not well synchronized and the local
reference is not active */
REF_GetReferenceParams(cooked_time, &is_synchronised, &leap, &stratum,
&ref_id, &ref_time, &root_delay, &root_dispersion);
distance = fabs(root_delay) / 2 + root_dispersion;
if (leap == LEAP_Unsynchronised || distance >= 0.5 / rate) {
DEBUG_LOG("refclock pulse ignored offset=%.9f sync=%d dist=%.9f",
offset, leap != LEAP_Unsynchronised, distance);
/* Drop also all stored samples */
SPF_DropSamples(instance->filter);
return 0;
}
if (!check_pulse_edge(instance, offset, distance))
return 0;
}
if (!accumulate_sample(instance, cooked_time, offset, dispersion))
return 0;
instance->leap_status = leap;
instance->pps_active = 1;
log_sample(instance, cooked_time, 0, 1, offset + raw_correction - instance->offset,
offset, dispersion);
/* for logging purposes */
if (!instance->driver->poll)
instance->driver_polled++;
return 1;
}
double
RCL_GetPrecision(RCL_Instance instance)
{
return instance->precision;
}
int
RCL_GetDriverPoll(RCL_Instance instance)
{
return instance->driver_poll;
}
static int
valid_sample_time(RCL_Instance instance, struct timespec *sample_time)
{
struct timespec now;
double diff;
LCL_ReadCookedTime(&now, NULL);
diff = UTI_DiffTimespecsToDouble(&now, sample_time);
if (diff < 0.0 || diff > UTI_Log2ToDouble(instance->poll + 1)) {
DEBUG_LOG("%s refclock sample time %s not valid age=%.6f",
UTI_RefidToString(instance->ref_id),
UTI_TimespecToString(sample_time), diff);
return 0;
}
return 1;
}
static int
pps_stratum(RCL_Instance instance, struct timespec *ts)
{
struct timespec ref_time;
int is_synchronised, stratum;
unsigned int i;
double root_delay, root_dispersion;
NTP_Leap leap;
uint32_t ref_id;
RCL_Instance refclock;
REF_GetReferenceParams(ts, &is_synchronised, &leap, &stratum,
&ref_id, &ref_time, &root_delay, &root_dispersion);
/* Don't change our stratum if the local reference is active
or this is the current source */
if (ref_id == instance->ref_id ||
(!is_synchronised && leap != LEAP_Unsynchronised))
return stratum - 1;
/* Or the current source is another PPS refclock */
for (i = 0; i < ARR_GetSize(refclocks); i++) {
refclock = get_refclock(i);
if (refclock->ref_id == ref_id &&
refclock->pps_active && refclock->lock_ref == -1)
return stratum - 1;
}
return 0;
}
static void
poll_timeout(void *arg)
{
NTP_Sample sample;
int poll, stratum;
RCL_Instance inst = (RCL_Instance)arg;
poll = inst->poll;
if (inst->driver->poll) {
poll = inst->driver_poll;
inst->driver->poll(inst);
inst->driver_polled++;
}
if (!(inst->driver->poll && inst->driver_polled < (1 << (inst->poll - inst->driver_poll)))) {
inst->driver_polled = 0;
if (SPF_GetFilteredSample(inst->filter, &sample)) {
/* Handle special case when PPS is used with the local reference */
if (inst->pps_active && inst->lock_ref == -1)
stratum = pps_stratum(inst, &sample.time);
else
stratum = inst->stratum;
SRC_UpdateReachability(inst->source, 1);
SRC_UpdateStatus(inst->source, stratum, inst->leap_status);
SRC_AccumulateSample(inst->source, &sample);
SRC_SelectSource(inst->source);
log_sample(inst, &sample.time, 1, 0, 0.0, sample.offset, sample.peer_dispersion);
} else {
SRC_UpdateReachability(inst->source, 0);
}
}
inst->timeout_id = SCH_AddTimeoutByDelay(UTI_Log2ToDouble(poll), poll_timeout, arg);
}
static void
slew_samples(struct timespec *raw, struct timespec *cooked, double dfreq,
double doffset, LCL_ChangeType change_type, void *anything)
{
unsigned int i;
for (i = 0; i < ARR_GetSize(refclocks); i++) {
if (change_type == LCL_ChangeUnknownStep)
SPF_DropSamples(get_refclock(i)->filter);
else
SPF_SlewSamples(get_refclock(i)->filter, cooked, dfreq, doffset);
}
}
static void
add_dispersion(double dispersion, void *anything)
{
unsigned int i;
for (i = 0; i < ARR_GetSize(refclocks); i++)
SPF_AddDispersion(get_refclock(i)->filter, dispersion);
}
static void
log_sample(RCL_Instance instance, struct timespec *sample_time, int filtered, int pulse, double raw_offset, double cooked_offset, double dispersion)
{
char sync_stats[4] = {'N', '+', '-', '?'};
if (logfileid == -1)
return;
if (!filtered) {
LOG_FileWrite(logfileid, "%s.%06d %-5s %3d %1c %1d %13.6e %13.6e %10.3e",
UTI_TimeToLogForm(sample_time->tv_sec),
(int)sample_time->tv_nsec / 1000,
UTI_RefidToString(instance->ref_id),
instance->driver_polled,
sync_stats[instance->leap_status],
pulse,
raw_offset,
cooked_offset,
dispersion);
} else {
LOG_FileWrite(logfileid, "%s.%06d %-5s - %1c - - %13.6e %10.3e",
UTI_TimeToLogForm(sample_time->tv_sec),
(int)sample_time->tv_nsec / 1000,
UTI_RefidToString(instance->ref_id),
sync_stats[instance->leap_status],
cooked_offset,
dispersion);
}
}