blob: ab1ae0d03526cefe8e5dcd105a24c09a8d7d022f [file] [log] [blame]
/*******************************************************************************
* Copyright (c) 1998, 2013 Oracle and/or its affiliates. All rights reserved.
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License v1.0 and Eclipse Distribution License v. 1.0
* which accompanies this distribution.
* The Eclipse Public License is available at http://www.eclipse.org/legal/epl-v10.html
* and the Eclipse Distribution License is available at
* http://www.eclipse.org/org/documents/edl-v10.php.
*
* Contributors:
* Oracle - initial API and implementation from Oracle TopLink
* 02/11/2009-1.1 Michael O'Brien
* - 259993: As part 2) During mergeClonesAfterCompletion()
* If the the acquire and release threads are different
* switch back to the stored acquire thread stored on the mergeManager.
* tware, David Mulligan - fix performance issue with releasing locks
******************************************************************************/
package org.eclipse.persistence.internal.helper;
import java.util.*;
import org.eclipse.persistence.descriptors.ClassDescriptor;
import org.eclipse.persistence.descriptors.FetchGroupManager;
import org.eclipse.persistence.exceptions.ConcurrencyException;
import org.eclipse.persistence.internal.queries.ContainerPolicy;
import org.eclipse.persistence.mappings.DatabaseMapping;
import org.eclipse.persistence.internal.sessions.*;
import org.eclipse.persistence.internal.identitymaps.*;
import org.eclipse.persistence.internal.localization.TraceLocalization;
import org.eclipse.persistence.internal.helper.linkedlist.*;
import org.eclipse.persistence.logging.SessionLog;
/**
* INTERNAL:
* <p>
* <b>Purpose</b>: Acquires all required locks for a particular merge process.
* Implements a deadlock avoidance algorithm to prevent concurrent merge conflicts.
*
* <p>
* <b>Responsibilities</b>:
* <ul>
* <li> Acquires locks for writing threads.
* <li> Provides deadlock avoidance behavior.
* <li> Releases locks for writing threads.
* </ul>
* @author Gordon Yorke
* @since 10.0.3
*/
public class WriteLockManager {
// this will allow us to prevent a readlock thread from looping forever.
public static int MAXTRIES = 10000;
public static int MAX_WAIT = 600000; //10 mins
/* This attribute stores the list of threads that have had a problem acquiring locks */
/* the first element in this list will be the prevailing thread */
protected ExposedNodeLinkedList prevailingQueue;
public WriteLockManager() {
this.prevailingQueue = new ExposedNodeLinkedList();
}
/**
* INTERNAL:
* This method will return once the object is locked and all non-indirect
* related objects are also locked.
*/
public Map acquireLocksForClone(Object objectForClone, ClassDescriptor descriptor, CacheKey cacheKey, AbstractSession cloningSession) {
boolean successful = false;
IdentityHashMap lockedObjects = new IdentityHashMap();
IdentityHashMap refreshedObjects = new IdentityHashMap();
try {
// if the descriptor has indirection for all mappings then wait as there will be no deadlock risks
CacheKey toWaitOn = acquireLockAndRelatedLocks(objectForClone, lockedObjects, refreshedObjects, cacheKey, descriptor, cloningSession);
int tries = 0;
while (toWaitOn != null) {// loop until we've tried too many times.
for (Iterator lockedList = lockedObjects.values().iterator(); lockedList.hasNext();) {
((CacheKey)lockedList.next()).releaseReadLock();
lockedList.remove();
}
synchronized (toWaitOn) {
try {
if (toWaitOn.isAcquired()) {//last minute check to insure it is still locked.
toWaitOn.wait();// wait for lock on object to be released
}
} catch (InterruptedException ex) {
// Ignore exception thread should continue.
}
}
Object waitObject = toWaitOn.getObject();
// Object may be null for loss of identity.
if (waitObject != null) {
cloningSession.checkAndRefreshInvalidObject(waitObject, toWaitOn, cloningSession.getDescriptor(waitObject));
refreshedObjects.put(waitObject, waitObject);
}
toWaitOn = acquireLockAndRelatedLocks(objectForClone, lockedObjects, refreshedObjects, cacheKey, descriptor, cloningSession);
if ((toWaitOn != null) && ((++tries) > MAXTRIES)) {
// If we've tried too many times abort.
throw ConcurrencyException.maxTriesLockOnCloneExceded(objectForClone);
}
}
successful = true;//successfully acquired all locks
} finally {
if (!successful) {//did not acquire locks but we are exiting
for (Iterator lockedList = lockedObjects.values().iterator(); lockedList.hasNext();) {
((CacheKey)lockedList.next()).releaseReadLock();
lockedList.remove();
}
}
}
return lockedObjects;
}
/**
* INTERNAL:
* This is a recursive method used to acquire read locks on all objects that
* will be cloned. These include all related objects for which there is no
* indirection.
* The returned object is the first object that the lock could not be acquired for.
* The caller must try for exceptions and release locked objects in the case
* of an exception.
*/
public CacheKey acquireLockAndRelatedLocks(Object objectForClone, Map lockedObjects, Map refreshedObjects, CacheKey cacheKey, ClassDescriptor descriptor, AbstractSession cloningSession) {
if (!refreshedObjects.containsKey(objectForClone) && cloningSession.isConsideredInvalid(objectForClone, cacheKey, descriptor)) {
return cacheKey;
}
// Attempt to get a read-lock, null is returned if cannot be read-locked.
if (cacheKey.acquireReadLockNoWait()) {
if (cacheKey.getObject() == null) {
// This will be the case for deleted objects, NoIdentityMap, and aggregates.
lockedObjects.put(objectForClone, cacheKey);
} else {
objectForClone = cacheKey.getObject();
if (lockedObjects.containsKey(objectForClone)) {
// This is a check for loss of identity, the original check in
// checkAndLockObject() will shortcircuit in the usual case.
cacheKey.releaseReadLock();
return null;
}
// Store locked cachekey for release later.
lockedObjects.put(objectForClone, cacheKey);
}
return traverseRelatedLocks(objectForClone, lockedObjects, refreshedObjects, descriptor, cloningSession);
} else {
// Return the cache key that could not be locked.
return cacheKey;
}
}
/**
* INTERNAL:
* This method will transition the previously acquired active
* locks to deferred locks in the case a readlock could not be acquired for
* a related object. Deferred locks must be employed to prevent deadlock
* when waiting for the readlock while still protecting readers from
* incomplete data.
*/
public void transitionToDeferredLocks(MergeManager mergeManager){
try{
if (mergeManager.isTransitionedToDeferredLocks()) return;
for (CacheKey cacheKey : mergeManager.getAcquiredLocks()){
cacheKey.transitionToDeferredLock();
}
mergeManager.transitionToDeferredLocks();
}catch (RuntimeException ex){
for (CacheKey cacheKey : mergeManager.getAcquiredLocks()){
cacheKey.release();
}
ConcurrencyManager.getDeferredLockManager(Thread.currentThread()).setIsThreadComplete(true);
ConcurrencyManager.removeDeferredLockManager(Thread.currentThread());
mergeManager.getAcquiredLocks().clear();
throw ex;
}
}
/**
* INTERNAL:
* Traverse the object and acquire locks on all related objects.
*/
public CacheKey traverseRelatedLocks(Object objectForClone, Map lockedObjects, Map refreshedObjects, ClassDescriptor descriptor, AbstractSession cloningSession) {
// If all mappings have indirection short-circuit.
if (descriptor.shouldAcquireCascadedLocks()) {
FetchGroupManager fetchGroupManager = descriptor.getFetchGroupManager();
boolean isPartialObject = (fetchGroupManager != null) && fetchGroupManager.isPartialObject(objectForClone);
for (Iterator mappings = descriptor.getLockableMappings().iterator();
mappings.hasNext();) {
DatabaseMapping mapping = (DatabaseMapping)mappings.next();
// Only cascade fetched mappings.
if (!isPartialObject || (fetchGroupManager.isAttributeFetched(objectForClone, mapping.getAttributeName()))) {
// any mapping in this list must not have indirection.
Object objectToLock = mapping.getAttributeValueFromObject(objectForClone);
if (mapping.isCollectionMapping()) {
// Ignore null, means empty.
if (objectToLock != null) {
ContainerPolicy cp = mapping.getContainerPolicy();
Object iterator = cp.iteratorFor(objectToLock);
while (cp.hasNext(iterator)) {
Object object = cp.next(iterator, cloningSession);
if (mapping.getReferenceDescriptor().hasWrapperPolicy()) {
object = mapping.getReferenceDescriptor().getWrapperPolicy().unwrapObject(object, cloningSession);
}
CacheKey toWaitOn = checkAndLockObject(object, lockedObjects, refreshedObjects, mapping, cloningSession);
if (toWaitOn != null) {
return toWaitOn;
}
}
}
} else {
if (mapping.getReferenceDescriptor().hasWrapperPolicy()) {
objectToLock = mapping.getReferenceDescriptor().getWrapperPolicy().unwrapObject(objectToLock, cloningSession);
}
CacheKey toWaitOn = checkAndLockObject(objectToLock, lockedObjects, refreshedObjects, mapping, cloningSession);
if (toWaitOn != null) {
return toWaitOn;
}
}
}
}
}
return null;
}
/**
* INTERNAL:
* This method will be the entry point for threads attempting to acquire locks for all objects that have
* a changeset. This method will hand off the processing of the deadlock algorithm to other member
* methods. The mergeManager must be the active mergemanager for the calling thread.
* Returns true if all required locks were acquired
*/
public void acquireRequiredLocks(MergeManager mergeManager, UnitOfWorkChangeSet changeSet) {
if (!MergeManager.LOCK_ON_MERGE) {//lockOnMerge is a backdoor and not public
return;
}
boolean locksToAcquire = true;
//while that thread has locks to acquire continue to loop.
try {
// initialize the MergeManager during this commit or merge for insert/updates only
// this call is not required in acquireLocksForClone() or acquireLockAndRelatedLocks()
mergeManager.setLockThread(Thread.currentThread());
AbstractSession session = mergeManager.getSession();
// If the session in the mergemanager is not a unit of work then the
// merge is of a changeSet into a distributed session.
if (session.isUnitOfWork()) {
session = ((UnitOfWorkImpl)session).getParent();
}
while (locksToAcquire) {
//lets assume all locks will be acquired
locksToAcquire = false;
//first access the changeSet and begin to acquire locks
ClassDescriptor descriptor = null;
for (ObjectChangeSet objectChangeSet : changeSet.getAllChangeSets().values()) {
// No Need to acquire locks for invalidated objects.
if ((mergeManager.shouldMergeChangesIntoDistributedCache() && (objectChangeSet.getSynchronizationType() == ClassDescriptor.INVALIDATE_CHANGED_OBJECTS))
|| objectChangeSet.getId() == null) {
//skip this process as we will be unable to acquire the correct cachekey anyway
//this is a new object with identity after write sequencing, ? huh, all objects must have an id by merge?
continue;
}
descriptor = objectChangeSet.getDescriptor();
// Maybe null for distributed merge, initialize it.
if (descriptor == null) {
descriptor = session.getDescriptor(objectChangeSet.getClassType(session));
objectChangeSet.setDescriptor(descriptor);
}
// PERF: Do not merge nor lock into the session cache if descriptor set to unit of work isolated.
if (descriptor.getCachePolicy().shouldIsolateObjectsInUnitOfWork()) {
continue;
}
AbstractSession targetSession = session.getParentIdentityMapSession(descriptor, true, true);
CacheKey activeCacheKey = attemptToAcquireLock(descriptor, objectChangeSet.getId(), targetSession);
if (activeCacheKey == null) {
// if cacheKey is null then the lock was not available no need to synchronize this block,because if the
// check fails then this thread will just return to the queue until it gets woken up.
if (this.prevailingQueue.getFirst() == mergeManager) {
// wait on this object until it is free, or until wait time expires because
// this thread is the prevailing thread
activeCacheKey = waitOnObjectLock(descriptor, objectChangeSet.getId(), targetSession, (int)Math.round((Math.random()*500)));
}
if (activeCacheKey == null) {
// failed to acquire lock, release all acquired
// locks and place thread on waiting list
releaseAllAcquiredLocks(mergeManager);
// get cacheKey
activeCacheKey = targetSession.getIdentityMapAccessorInstance().getCacheKeyForObjectForLock(objectChangeSet.getId(), descriptor.getJavaClass(), descriptor);
if (session.shouldLog(SessionLog.FINER, SessionLog.CACHE)) {
Object[] params = new Object[3];
params[0] = descriptor.getJavaClass();
params[1] = objectChangeSet.getId();
params[2] = Thread.currentThread().getName();
session.log(SessionLog.FINER, SessionLog.CACHE, "dead_lock_encountered_on_write_no_cachekey", params, null);
}
if (mergeManager.getWriteLockQueued() == null) {
// thread is entering the wait queue for the
// first time
// set the QueueNode to be the node from the
// linked list for quick removal upon
// acquiring all locks
synchronized (this.prevailingQueue) {
mergeManager.setQueueNode(this.prevailingQueue.addLast(mergeManager));
}
}
// set the cache key on the merge manager for
// the object that could not be acquired
mergeManager.setWriteLockQueued(objectChangeSet.getId());
try {
if (activeCacheKey != null){
//wait on the lock of the object that we couldn't get.
synchronized (activeCacheKey) {
// verify that the cache key is still locked before we wait on it, as
//it may have been released since we tried to acquire it.
if (activeCacheKey.isAcquired() && (activeCacheKey.getActiveThread() != Thread.currentThread())) {
Thread thread = activeCacheKey.getActiveThread();
if (thread.isAlive()){
long time = System.currentTimeMillis();
activeCacheKey.wait(MAX_WAIT);
if (System.currentTimeMillis() - time >= MAX_WAIT){
Object[] params = new Object[]{MAX_WAIT /1000, descriptor.getJavaClassName(), activeCacheKey.getKey(), thread.getName()};
StringBuilder buffer = new StringBuilder(TraceLocalization.buildMessage("max_time_exceeded_for_acquirerequiredlocks_wait", params));
StackTraceElement[] trace = thread.getStackTrace();
for (StackTraceElement element : trace){
buffer.append("\t\tat");
buffer.append(element.toString());
buffer.append("\n");
}
session.log(SessionLog.SEVERE, SessionLog.CACHE, buffer.toString());
session.getIdentityMapAccessor().printIdentityMapLocks();
}
}else{
session.log(SessionLog.SEVERE, SessionLog.CACHE, "releasing_invalid_lock", new Object[] { thread.getName(),descriptor.getJavaClass(), objectChangeSet.getId()});
//thread that held lock is no longer alive. Something bad has happened like
while (activeCacheKey.isAcquired()){
// could have a depth greater than one.
activeCacheKey.release();
}
}
}
}
}
} catch (InterruptedException exception) {
throw org.eclipse.persistence.exceptions.ConcurrencyException.waitWasInterrupted(exception.getMessage());
}
// failed to acquire, exit this loop to restart all over again.
locksToAcquire = true;
break;
}else{
objectChangeSet.setActiveCacheKey(activeCacheKey);
mergeManager.getAcquiredLocks().add(activeCacheKey);
}
} else {
objectChangeSet.setActiveCacheKey(activeCacheKey);
mergeManager.getAcquiredLocks().add(activeCacheKey);
}
}
}
} catch (RuntimeException exception) {
// if there was an exception then release.
//must not release in a finally block as release only occurs in this method
// if there is a problem or all of the locks can not be acquired.
releaseAllAcquiredLocks(mergeManager);
throw exception;
}catch (Error error){
releaseAllAcquiredLocks(mergeManager);
mergeManager.getSession().logThrowable(SessionLog.SEVERE, SessionLog.TRANSACTION, error);
throw error;
}finally {
if (mergeManager.getWriteLockQueued() != null) {
//the merge manager entered the wait queue and must be cleaned up
synchronized(this.prevailingQueue) {
this.prevailingQueue.remove(mergeManager.getQueueNode());
}
mergeManager.setWriteLockQueued(null);
}
}
}
/**
* INTERNAL:
* This method will be called by a merging thread that is attempting to lock
* a new object that was not locked previously. Unlike the other methods
* within this class this method will lock only this object.
*/
public CacheKey appendLock(Object primaryKey, Object objectToLock, ClassDescriptor descriptor, MergeManager mergeManager, AbstractSession session) {
CacheKey lockedCacheKey = session.getIdentityMapAccessorInstance().acquireLockNoWait(primaryKey, descriptor.getJavaClass(), false, descriptor);
if (lockedCacheKey == null) {
session.getIdentityMapAccessorInstance().getWriteLockManager().transitionToDeferredLocks(mergeManager);
lockedCacheKey = session.getIdentityMapAccessorInstance().acquireDeferredLock(primaryKey, descriptor.getJavaClass(), descriptor, true);
Object cachedObject = lockedCacheKey.getObject();
if (cachedObject == null) {
if (lockedCacheKey.getActiveThread() == Thread.currentThread()) {
lockedCacheKey.setObject(objectToLock);
} else {
cachedObject = lockedCacheKey.waitForObject();
}
}
lockedCacheKey.releaseDeferredLock();
return lockedCacheKey;
} else {
if (lockedCacheKey.getObject() == null) {
lockedCacheKey.setObject(objectToLock); // set the object in the
// cachekey
// for others to find an prevent cycles
}
if (mergeManager.isTransitionedToDeferredLocks()){
lockedCacheKey.getDeferredLockManager(Thread.currentThread()).getActiveLocks().add(lockedCacheKey);
}else{
mergeManager.getAcquiredLocks().add(lockedCacheKey);
}
return lockedCacheKey;
}
}
/**
* INTERNAL:
* This method performs the operations of finding the cacheKey and locking it if possible.
* Returns True if the lock was acquired, false otherwise
*/
protected CacheKey attemptToAcquireLock(ClassDescriptor descriptor, Object primaryKey, AbstractSession session) {
return session.getIdentityMapAccessorInstance().acquireLockNoWait(primaryKey, descriptor.getJavaClass(), true, descriptor);
}
/**
* INTERNAL:
* Simply check that the object is not already locked then pass it on to the locking method
*/
protected CacheKey checkAndLockObject(Object objectToLock, Map lockedObjects, Map refreshedObjects, DatabaseMapping mapping, AbstractSession cloningSession) {
//the cachekey should always reference an object otherwise what would we be cloning.
if ((objectToLock != null) && !lockedObjects.containsKey(objectToLock)) {
Object primaryKeyToLock = null;
ClassDescriptor referenceDescriptor = null;
if (mapping.getReferenceDescriptor().hasInheritance() || mapping.getReferenceDescriptor().isDescriptorForInterface()) {
referenceDescriptor = cloningSession.getDescriptor(objectToLock);
} else {
referenceDescriptor = mapping.getReferenceDescriptor();
}
// Need to traverse aggregates, but not lock aggregates directly.
if (referenceDescriptor.isDescriptorTypeAggregate()) {
traverseRelatedLocks(objectToLock, lockedObjects, refreshedObjects, referenceDescriptor, cloningSession);
} else {
primaryKeyToLock = referenceDescriptor.getObjectBuilder().extractPrimaryKeyFromObject(objectToLock, cloningSession);
CacheKey cacheKey = cloningSession.getIdentityMapAccessorInstance().getCacheKeyForObjectForLock(primaryKeyToLock, objectToLock.getClass(), referenceDescriptor);
if (cacheKey == null) {
// Cache key may be null for no-identity map, missing or deleted object, just create a new one to be locked.
cacheKey = new CacheKey(primaryKeyToLock);
cacheKey.setReadTime(System.currentTimeMillis());
}
CacheKey toWaitOn = acquireLockAndRelatedLocks(objectToLock, lockedObjects, refreshedObjects, cacheKey, referenceDescriptor, cloningSession);
if (toWaitOn != null) {
return toWaitOn;
}
}
}
return null;
}
/**
* INTERNAL:
* This method will release all acquired locks
*/
public void releaseAllAcquiredLocks(MergeManager mergeManager) {
if (!MergeManager.LOCK_ON_MERGE) {//lockOnMerge is a backdoor and not public
return;
}
List acquiredLocks = mergeManager.getAcquiredLocks();
Iterator locks = acquiredLocks.iterator();
RuntimeException exception = null;
while (locks.hasNext()) {
try {
CacheKey cacheKeyToRemove = (CacheKey) locks.next();
if (cacheKeyToRemove.getObject() == null) {
cacheKeyToRemove.removeFromOwningMap();
}
if (mergeManager.isTransitionedToDeferredLocks()) {
cacheKeyToRemove.releaseDeferredLock();
} else {
cacheKeyToRemove.release();
}
} catch (RuntimeException e){
if (exception == null){
exception = e;
}
}
}
acquiredLocks.clear();
if (exception != null){
throw exception;
}
}
/**
* INTERNAL:
* This method performs the operations of finding the cacheKey and locking it if possible.
* Waits until the lock can be acquired
*/
protected CacheKey waitOnObjectLock(ClassDescriptor descriptor, Object primaryKey, AbstractSession session, int waitTime) {
return session.getIdentityMapAccessorInstance().acquireLockWithWait(primaryKey, descriptor.getJavaClass(), true, descriptor, waitTime);
}
}