| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008-2015 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_META_H |
| #define EIGEN_META_H |
| |
| #if defined(EIGEN_GPU_COMPILE_PHASE) |
| |
| #include <cfloat> |
| |
| #if defined(EIGEN_CUDA_ARCH) |
| #include <math_constants.h> |
| #endif |
| |
| #if defined(EIGEN_HIP_DEVICE_COMPILE) |
| #include "Eigen/src/Core/arch/HIP/hcc/math_constants.h" |
| #endif |
| |
| #endif |
| |
| #if EIGEN_COMP_ICC>=1600 && __cplusplus >= 201103L |
| #include <cstdint> |
| #endif |
| |
| namespace Eigen { |
| |
| typedef EIGEN_DEFAULT_DENSE_INDEX_TYPE DenseIndex; |
| |
| /** |
| * \brief The Index type as used for the API. |
| * \details To change this, \c \#define the preprocessor symbol \c EIGEN_DEFAULT_DENSE_INDEX_TYPE. |
| * \sa \blank \ref TopicPreprocessorDirectives, StorageIndex. |
| */ |
| |
| typedef EIGEN_DEFAULT_DENSE_INDEX_TYPE Index; |
| |
| namespace internal { |
| |
| /** \internal |
| * \file Meta.h |
| * This file contains generic metaprogramming classes which are not specifically related to Eigen. |
| * \note In case you wonder, yes we're aware that Boost already provides all these features, |
| * we however don't want to add a dependency to Boost. |
| */ |
| |
| // Only recent versions of ICC complain about using ptrdiff_t to hold pointers, |
| // and older versions do not provide *intptr_t types. |
| #if EIGEN_COMP_ICC>=1600 && __cplusplus >= 201103L |
| typedef std::intptr_t IntPtr; |
| typedef std::uintptr_t UIntPtr; |
| #else |
| typedef std::ptrdiff_t IntPtr; |
| typedef std::size_t UIntPtr; |
| #endif |
| |
| struct true_type { enum { value = 1 }; }; |
| struct false_type { enum { value = 0 }; }; |
| |
| template<bool Condition> |
| struct bool_constant; |
| |
| template<> |
| struct bool_constant<true> : true_type {}; |
| |
| template<> |
| struct bool_constant<false> : false_type {}; |
| |
| template<bool Condition, typename Then, typename Else> |
| struct conditional { typedef Then type; }; |
| |
| template<typename Then, typename Else> |
| struct conditional <false, Then, Else> { typedef Else type; }; |
| |
| template<typename T> struct remove_reference { typedef T type; }; |
| template<typename T> struct remove_reference<T&> { typedef T type; }; |
| |
| template<typename T> struct remove_pointer { typedef T type; }; |
| template<typename T> struct remove_pointer<T*> { typedef T type; }; |
| template<typename T> struct remove_pointer<T*const> { typedef T type; }; |
| |
| template <class T> struct remove_const { typedef T type; }; |
| template <class T> struct remove_const<const T> { typedef T type; }; |
| template <class T> struct remove_const<const T[]> { typedef T type[]; }; |
| template <class T, unsigned int Size> struct remove_const<const T[Size]> { typedef T type[Size]; }; |
| |
| template<typename T> struct remove_all { typedef T type; }; |
| template<typename T> struct remove_all<const T> { typedef typename remove_all<T>::type type; }; |
| template<typename T> struct remove_all<T const&> { typedef typename remove_all<T>::type type; }; |
| template<typename T> struct remove_all<T&> { typedef typename remove_all<T>::type type; }; |
| template<typename T> struct remove_all<T const*> { typedef typename remove_all<T>::type type; }; |
| template<typename T> struct remove_all<T*> { typedef typename remove_all<T>::type type; }; |
| |
| template<typename T> struct is_arithmetic { enum { value = false }; }; |
| template<> struct is_arithmetic<float> { enum { value = true }; }; |
| template<> struct is_arithmetic<double> { enum { value = true }; }; |
| template<> struct is_arithmetic<long double> { enum { value = true }; }; |
| template<> struct is_arithmetic<bool> { enum { value = true }; }; |
| template<> struct is_arithmetic<char> { enum { value = true }; }; |
| template<> struct is_arithmetic<signed char> { enum { value = true }; }; |
| template<> struct is_arithmetic<unsigned char> { enum { value = true }; }; |
| template<> struct is_arithmetic<signed short> { enum { value = true }; }; |
| template<> struct is_arithmetic<unsigned short>{ enum { value = true }; }; |
| template<> struct is_arithmetic<signed int> { enum { value = true }; }; |
| template<> struct is_arithmetic<unsigned int> { enum { value = true }; }; |
| template<> struct is_arithmetic<signed long> { enum { value = true }; }; |
| template<> struct is_arithmetic<unsigned long> { enum { value = true }; }; |
| |
| template<typename T, typename U> struct is_same { enum { value = 0 }; }; |
| template<typename T> struct is_same<T,T> { enum { value = 1 }; }; |
| |
| template< class T > |
| struct is_void : is_same<void, typename remove_const<T>::type> {}; |
| |
| #if EIGEN_HAS_CXX11 |
| template<> struct is_arithmetic<signed long long> { enum { value = true }; }; |
| template<> struct is_arithmetic<unsigned long long> { enum { value = true }; }; |
| using std::is_integral; |
| #else |
| template<typename T> struct is_integral { enum { value = false }; }; |
| template<> struct is_integral<bool> { enum { value = true }; }; |
| template<> struct is_integral<char> { enum { value = true }; }; |
| template<> struct is_integral<signed char> { enum { value = true }; }; |
| template<> struct is_integral<unsigned char> { enum { value = true }; }; |
| template<> struct is_integral<signed short> { enum { value = true }; }; |
| template<> struct is_integral<unsigned short> { enum { value = true }; }; |
| template<> struct is_integral<signed int> { enum { value = true }; }; |
| template<> struct is_integral<unsigned int> { enum { value = true }; }; |
| template<> struct is_integral<signed long> { enum { value = true }; }; |
| template<> struct is_integral<unsigned long> { enum { value = true }; }; |
| #if EIGEN_COMP_MSVC |
| template<> struct is_integral<signed __int64> { enum { value = true }; }; |
| template<> struct is_integral<unsigned __int64> { enum { value = true }; }; |
| #endif |
| #endif |
| |
| #if EIGEN_HAS_CXX11 |
| using std::make_unsigned; |
| #else |
| // TODO: Possibly improve this implementation of make_unsigned. |
| // It is currently used only by |
| // template<typename Scalar> struct random_default_impl<Scalar, false, true>. |
| template<typename> struct make_unsigned; |
| template<> struct make_unsigned<char> { typedef unsigned char type; }; |
| template<> struct make_unsigned<signed char> { typedef unsigned char type; }; |
| template<> struct make_unsigned<unsigned char> { typedef unsigned char type; }; |
| template<> struct make_unsigned<signed short> { typedef unsigned short type; }; |
| template<> struct make_unsigned<unsigned short> { typedef unsigned short type; }; |
| template<> struct make_unsigned<signed int> { typedef unsigned int type; }; |
| template<> struct make_unsigned<unsigned int> { typedef unsigned int type; }; |
| template<> struct make_unsigned<signed long> { typedef unsigned long type; }; |
| template<> struct make_unsigned<unsigned long> { typedef unsigned long type; }; |
| #if EIGEN_COMP_MSVC |
| template<> struct make_unsigned<signed __int64> { typedef unsigned __int64 type; }; |
| template<> struct make_unsigned<unsigned __int64> { typedef unsigned __int64 type; }; |
| #endif |
| #endif |
| |
| template <typename T> struct add_const { typedef const T type; }; |
| template <typename T> struct add_const<T&> { typedef T& type; }; |
| |
| template <typename T> struct is_const { enum { value = 0 }; }; |
| template <typename T> struct is_const<T const> { enum { value = 1 }; }; |
| |
| template<typename T> struct add_const_on_value_type { typedef const T type; }; |
| template<typename T> struct add_const_on_value_type<T&> { typedef T const& type; }; |
| template<typename T> struct add_const_on_value_type<T*> { typedef T const* type; }; |
| template<typename T> struct add_const_on_value_type<T* const> { typedef T const* const type; }; |
| template<typename T> struct add_const_on_value_type<T const* const> { typedef T const* const type; }; |
| |
| #if EIGEN_HAS_CXX11 |
| |
| using std::is_convertible; |
| |
| #else |
| |
| template<typename From, typename To> |
| struct is_convertible_impl |
| { |
| private: |
| struct any_conversion |
| { |
| template <typename T> any_conversion(const volatile T&); |
| template <typename T> any_conversion(T&); |
| }; |
| struct yes {int a[1];}; |
| struct no {int a[2];}; |
| |
| template<typename T> |
| static yes test(T, int); |
| |
| template<typename T> |
| static no test(any_conversion, ...); |
| |
| public: |
| static typename internal::remove_reference<From>::type* ms_from; |
| #ifdef __INTEL_COMPILER |
| #pragma warning push |
| #pragma warning ( disable : 2259 ) |
| #endif |
| enum { value = sizeof(test<To>(*ms_from, 0))==sizeof(yes) }; |
| #ifdef __INTEL_COMPILER |
| #pragma warning pop |
| #endif |
| }; |
| |
| template<typename From, typename To> |
| struct is_convertible |
| { |
| enum { value = is_convertible_impl<From,To>::value }; |
| }; |
| |
| template<typename T> |
| struct is_convertible<T,T&> { enum { value = false }; }; |
| |
| template<typename T> |
| struct is_convertible<const T,const T&> { enum { value = true }; }; |
| |
| #endif |
| |
| /** \internal Allows to enable/disable an overload |
| * according to a compile time condition. |
| */ |
| template<bool Condition, typename T=void> struct enable_if; |
| |
| template<typename T> struct enable_if<true,T> |
| { typedef T type; }; |
| |
| #if defined(EIGEN_GPU_COMPILE_PHASE) |
| #if !defined(__FLT_EPSILON__) |
| #define __FLT_EPSILON__ FLT_EPSILON |
| #define __DBL_EPSILON__ DBL_EPSILON |
| #endif |
| |
| namespace device { |
| |
| template<typename T> struct numeric_limits |
| { |
| EIGEN_DEVICE_FUNC |
| static T epsilon() { return 0; } |
| static T (max)() { assert(false && "Highest not supported for this type"); } |
| static T (min)() { assert(false && "Lowest not supported for this type"); } |
| static T infinity() { assert(false && "Infinity not supported for this type"); } |
| static T quiet_NaN() { assert(false && "quiet_NaN not supported for this type"); } |
| }; |
| template<> struct numeric_limits<float> |
| { |
| EIGEN_DEVICE_FUNC |
| static float epsilon() { return __FLT_EPSILON__; } |
| EIGEN_DEVICE_FUNC |
| static float (max)() { |
| #if defined(EIGEN_CUDA_ARCH) |
| return CUDART_MAX_NORMAL_F; |
| #else |
| return HIPRT_MAX_NORMAL_F; |
| #endif |
| } |
| EIGEN_DEVICE_FUNC |
| static float (min)() { return FLT_MIN; } |
| EIGEN_DEVICE_FUNC |
| static float infinity() { |
| #if defined(EIGEN_CUDA_ARCH) |
| return CUDART_INF_F; |
| #else |
| return HIPRT_INF_F; |
| #endif |
| } |
| EIGEN_DEVICE_FUNC |
| static float quiet_NaN() { |
| #if defined(EIGEN_CUDA_ARCH) |
| return CUDART_NAN_F; |
| #else |
| return HIPRT_NAN_F; |
| #endif |
| } |
| }; |
| template<> struct numeric_limits<double> |
| { |
| EIGEN_DEVICE_FUNC |
| static double epsilon() { return __DBL_EPSILON__; } |
| EIGEN_DEVICE_FUNC |
| static double (max)() { return DBL_MAX; } |
| EIGEN_DEVICE_FUNC |
| static double (min)() { return DBL_MIN; } |
| EIGEN_DEVICE_FUNC |
| static double infinity() { |
| #if defined(EIGEN_CUDA_ARCH) |
| return CUDART_INF; |
| #else |
| return HIPRT_INF; |
| #endif |
| } |
| EIGEN_DEVICE_FUNC |
| static double quiet_NaN() { |
| #if defined(EIGEN_CUDA_ARCH) |
| return CUDART_NAN; |
| #else |
| return HIPRT_NAN; |
| #endif |
| } |
| }; |
| template<> struct numeric_limits<int> |
| { |
| EIGEN_DEVICE_FUNC |
| static int epsilon() { return 0; } |
| EIGEN_DEVICE_FUNC |
| static int (max)() { return INT_MAX; } |
| EIGEN_DEVICE_FUNC |
| static int (min)() { return INT_MIN; } |
| }; |
| template<> struct numeric_limits<unsigned int> |
| { |
| EIGEN_DEVICE_FUNC |
| static unsigned int epsilon() { return 0; } |
| EIGEN_DEVICE_FUNC |
| static unsigned int (max)() { return UINT_MAX; } |
| EIGEN_DEVICE_FUNC |
| static unsigned int (min)() { return 0; } |
| }; |
| template<> struct numeric_limits<long> |
| { |
| EIGEN_DEVICE_FUNC |
| static long epsilon() { return 0; } |
| EIGEN_DEVICE_FUNC |
| static long (max)() { return LONG_MAX; } |
| EIGEN_DEVICE_FUNC |
| static long (min)() { return LONG_MIN; } |
| }; |
| template<> struct numeric_limits<unsigned long> |
| { |
| EIGEN_DEVICE_FUNC |
| static unsigned long epsilon() { return 0; } |
| EIGEN_DEVICE_FUNC |
| static unsigned long (max)() { return ULONG_MAX; } |
| EIGEN_DEVICE_FUNC |
| static unsigned long (min)() { return 0; } |
| }; |
| template<> struct numeric_limits<long long> |
| { |
| EIGEN_DEVICE_FUNC |
| static long long epsilon() { return 0; } |
| EIGEN_DEVICE_FUNC |
| static long long (max)() { return LLONG_MAX; } |
| EIGEN_DEVICE_FUNC |
| static long long (min)() { return LLONG_MIN; } |
| }; |
| template<> struct numeric_limits<unsigned long long> |
| { |
| EIGEN_DEVICE_FUNC |
| static unsigned long long epsilon() { return 0; } |
| EIGEN_DEVICE_FUNC |
| static unsigned long long (max)() { return ULLONG_MAX; } |
| EIGEN_DEVICE_FUNC |
| static unsigned long long (min)() { return 0; } |
| }; |
| template<> struct numeric_limits<bool> |
| { |
| EIGEN_DEVICE_FUNC |
| static bool epsilon() { return false; } |
| EIGEN_DEVICE_FUNC |
| static bool (max)() { return true; } |
| EIGEN_DEVICE_FUNC |
| static bool (min)() { return false; } |
| }; |
| |
| } |
| |
| #endif |
| |
| /** \internal |
| * A base class do disable default copy ctor and copy assignment operator. |
| */ |
| class noncopyable |
| { |
| EIGEN_DEVICE_FUNC noncopyable(const noncopyable&); |
| EIGEN_DEVICE_FUNC const noncopyable& operator=(const noncopyable&); |
| protected: |
| EIGEN_DEVICE_FUNC noncopyable() {} |
| EIGEN_DEVICE_FUNC ~noncopyable() {} |
| }; |
| |
| /** \internal |
| * Provides access to the number of elements in the object of as a compile-time constant expression. |
| * It "returns" Eigen::Dynamic if the size cannot be resolved at compile-time (default). |
| * |
| * Similar to std::tuple_size, but more general. |
| * |
| * It currently supports: |
| * - any types T defining T::SizeAtCompileTime |
| * - plain C arrays as T[N] |
| * - std::array (c++11) |
| * - some internal types such as SingleRange and AllRange |
| * |
| * The second template parameter eases SFINAE-based specializations. |
| */ |
| template<typename T, typename EnableIf = void> struct array_size { |
| enum { value = Dynamic }; |
| }; |
| |
| template<typename T> struct array_size<T,typename internal::enable_if<((T::SizeAtCompileTime&0)==0)>::type> { |
| enum { value = T::SizeAtCompileTime }; |
| }; |
| |
| template<typename T, int N> struct array_size<const T (&)[N]> { |
| enum { value = N }; |
| }; |
| template<typename T, int N> struct array_size<T (&)[N]> { |
| enum { value = N }; |
| }; |
| |
| #if EIGEN_HAS_CXX11 |
| template<typename T, std::size_t N> struct array_size<const std::array<T,N> > { |
| enum { value = N }; |
| }; |
| template<typename T, std::size_t N> struct array_size<std::array<T,N> > { |
| enum { value = N }; |
| }; |
| #endif |
| |
| /** \internal |
| * Analogue of the std::size free function. |
| * It returns the size of the container or view \a x of type \c T |
| * |
| * It currently supports: |
| * - any types T defining a member T::size() const |
| * - plain C arrays as T[N] |
| * |
| */ |
| template<typename T> |
| Index size(const T& x) { return x.size(); } |
| |
| template<typename T,std::size_t N> |
| Index size(const T (&) [N]) { return N; } |
| |
| /** \internal |
| * Convenient struct to get the result type of a unary or binary functor. |
| * |
| * It supports both the current STL mechanism (using the result_type member) as well as |
| * upcoming next STL generation (using a templated result member). |
| * If none of these members is provided, then the type of the first argument is returned. FIXME, that behavior is a pretty bad hack. |
| */ |
| #if EIGEN_HAS_STD_RESULT_OF |
| template<typename T> struct result_of { |
| typedef typename std::result_of<T>::type type1; |
| typedef typename remove_all<type1>::type type; |
| }; |
| #else |
| template<typename T> struct result_of { }; |
| |
| struct has_none {int a[1];}; |
| struct has_std_result_type {int a[2];}; |
| struct has_tr1_result {int a[3];}; |
| |
| template<typename Func, typename ArgType, int SizeOf=sizeof(has_none)> |
| struct unary_result_of_select {typedef typename internal::remove_all<ArgType>::type type;}; |
| |
| template<typename Func, typename ArgType> |
| struct unary_result_of_select<Func, ArgType, sizeof(has_std_result_type)> {typedef typename Func::result_type type;}; |
| |
| template<typename Func, typename ArgType> |
| struct unary_result_of_select<Func, ArgType, sizeof(has_tr1_result)> {typedef typename Func::template result<Func(ArgType)>::type type;}; |
| |
| template<typename Func, typename ArgType> |
| struct result_of<Func(ArgType)> { |
| template<typename T> |
| static has_std_result_type testFunctor(T const *, typename T::result_type const * = 0); |
| template<typename T> |
| static has_tr1_result testFunctor(T const *, typename T::template result<T(ArgType)>::type const * = 0); |
| static has_none testFunctor(...); |
| |
| // note that the following indirection is needed for gcc-3.3 |
| enum {FunctorType = sizeof(testFunctor(static_cast<Func*>(0)))}; |
| typedef typename unary_result_of_select<Func, ArgType, FunctorType>::type type; |
| }; |
| |
| template<typename Func, typename ArgType0, typename ArgType1, int SizeOf=sizeof(has_none)> |
| struct binary_result_of_select {typedef typename internal::remove_all<ArgType0>::type type;}; |
| |
| template<typename Func, typename ArgType0, typename ArgType1> |
| struct binary_result_of_select<Func, ArgType0, ArgType1, sizeof(has_std_result_type)> |
| {typedef typename Func::result_type type;}; |
| |
| template<typename Func, typename ArgType0, typename ArgType1> |
| struct binary_result_of_select<Func, ArgType0, ArgType1, sizeof(has_tr1_result)> |
| {typedef typename Func::template result<Func(ArgType0,ArgType1)>::type type;}; |
| |
| template<typename Func, typename ArgType0, typename ArgType1> |
| struct result_of<Func(ArgType0,ArgType1)> { |
| template<typename T> |
| static has_std_result_type testFunctor(T const *, typename T::result_type const * = 0); |
| template<typename T> |
| static has_tr1_result testFunctor(T const *, typename T::template result<T(ArgType0,ArgType1)>::type const * = 0); |
| static has_none testFunctor(...); |
| |
| // note that the following indirection is needed for gcc-3.3 |
| enum {FunctorType = sizeof(testFunctor(static_cast<Func*>(0)))}; |
| typedef typename binary_result_of_select<Func, ArgType0, ArgType1, FunctorType>::type type; |
| }; |
| |
| template<typename Func, typename ArgType0, typename ArgType1, typename ArgType2, int SizeOf=sizeof(has_none)> |
| struct ternary_result_of_select {typedef typename internal::remove_all<ArgType0>::type type;}; |
| |
| template<typename Func, typename ArgType0, typename ArgType1, typename ArgType2> |
| struct ternary_result_of_select<Func, ArgType0, ArgType1, ArgType2, sizeof(has_std_result_type)> |
| {typedef typename Func::result_type type;}; |
| |
| template<typename Func, typename ArgType0, typename ArgType1, typename ArgType2> |
| struct ternary_result_of_select<Func, ArgType0, ArgType1, ArgType2, sizeof(has_tr1_result)> |
| {typedef typename Func::template result<Func(ArgType0,ArgType1,ArgType2)>::type type;}; |
| |
| template<typename Func, typename ArgType0, typename ArgType1, typename ArgType2> |
| struct result_of<Func(ArgType0,ArgType1,ArgType2)> { |
| template<typename T> |
| static has_std_result_type testFunctor(T const *, typename T::result_type const * = 0); |
| template<typename T> |
| static has_tr1_result testFunctor(T const *, typename T::template result<T(ArgType0,ArgType1,ArgType2)>::type const * = 0); |
| static has_none testFunctor(...); |
| |
| // note that the following indirection is needed for gcc-3.3 |
| enum {FunctorType = sizeof(testFunctor(static_cast<Func*>(0)))}; |
| typedef typename ternary_result_of_select<Func, ArgType0, ArgType1, ArgType2, FunctorType>::type type; |
| }; |
| #endif |
| |
| struct meta_yes { char a[1]; }; |
| struct meta_no { char a[2]; }; |
| |
| // Check whether T::ReturnType does exist |
| template <typename T> |
| struct has_ReturnType |
| { |
| template <typename C> static meta_yes testFunctor(C const *, typename C::ReturnType const * = 0); |
| template <typename C> static meta_no testFunctor(...); |
| |
| enum { value = sizeof(testFunctor<T>(static_cast<T*>(0))) == sizeof(meta_yes) }; |
| }; |
| |
| template<typename T> const T* return_ptr(); |
| |
| template <typename T, typename IndexType=Index> |
| struct has_nullary_operator |
| { |
| template <typename C> static meta_yes testFunctor(C const *,typename enable_if<(sizeof(return_ptr<C>()->operator()())>0)>::type * = 0); |
| static meta_no testFunctor(...); |
| |
| enum { value = sizeof(testFunctor(static_cast<T*>(0))) == sizeof(meta_yes) }; |
| }; |
| |
| template <typename T, typename IndexType=Index> |
| struct has_unary_operator |
| { |
| template <typename C> static meta_yes testFunctor(C const *,typename enable_if<(sizeof(return_ptr<C>()->operator()(IndexType(0)))>0)>::type * = 0); |
| static meta_no testFunctor(...); |
| |
| enum { value = sizeof(testFunctor(static_cast<T*>(0))) == sizeof(meta_yes) }; |
| }; |
| |
| template <typename T, typename IndexType=Index> |
| struct has_binary_operator |
| { |
| template <typename C> static meta_yes testFunctor(C const *,typename enable_if<(sizeof(return_ptr<C>()->operator()(IndexType(0),IndexType(0)))>0)>::type * = 0); |
| static meta_no testFunctor(...); |
| |
| enum { value = sizeof(testFunctor(static_cast<T*>(0))) == sizeof(meta_yes) }; |
| }; |
| |
| /** \internal In short, it computes int(sqrt(\a Y)) with \a Y an integer. |
| * Usage example: \code meta_sqrt<1023>::ret \endcode |
| */ |
| template<int Y, |
| int InfX = 0, |
| int SupX = ((Y==1) ? 1 : Y/2), |
| bool Done = ((SupX-InfX)<=1 ? true : ((SupX*SupX <= Y) && ((SupX+1)*(SupX+1) > Y))) > |
| // use ?: instead of || just to shut up a stupid gcc 4.3 warning |
| class meta_sqrt |
| { |
| enum { |
| MidX = (InfX+SupX)/2, |
| TakeInf = MidX*MidX > Y ? 1 : 0, |
| NewInf = int(TakeInf) ? InfX : int(MidX), |
| NewSup = int(TakeInf) ? int(MidX) : SupX |
| }; |
| public: |
| enum { ret = meta_sqrt<Y,NewInf,NewSup>::ret }; |
| }; |
| |
| template<int Y, int InfX, int SupX> |
| class meta_sqrt<Y, InfX, SupX, true> { public: enum { ret = (SupX*SupX <= Y) ? SupX : InfX }; }; |
| |
| |
| /** \internal Computes the least common multiple of two positive integer A and B |
| * at compile-time. It implements a naive algorithm testing all multiples of A. |
| * It thus works better if A>=B. |
| */ |
| template<int A, int B, int K=1, bool Done = ((A*K)%B)==0> |
| struct meta_least_common_multiple |
| { |
| enum { ret = meta_least_common_multiple<A,B,K+1>::ret }; |
| }; |
| template<int A, int B, int K> |
| struct meta_least_common_multiple<A,B,K,true> |
| { |
| enum { ret = A*K }; |
| }; |
| |
| /** \internal determines whether the product of two numeric types is allowed and what the return type is */ |
| template<typename T, typename U> struct scalar_product_traits |
| { |
| enum { Defined = 0 }; |
| }; |
| |
| // FIXME quick workaround around current limitation of result_of |
| // template<typename Scalar, typename ArgType0, typename ArgType1> |
| // struct result_of<scalar_product_op<Scalar>(ArgType0,ArgType1)> { |
| // typedef typename scalar_product_traits<typename remove_all<ArgType0>::type, typename remove_all<ArgType1>::type>::ReturnType type; |
| // }; |
| |
| /** \internal Obtains a POD type suitable to use as storage for an object of a size |
| * of at most Len bytes, aligned as specified by \c Align. |
| */ |
| template<unsigned Len, unsigned Align> |
| struct aligned_storage { |
| struct type { |
| EIGEN_ALIGN_TO_BOUNDARY(Align) unsigned char data[Len]; |
| }; |
| }; |
| |
| } // end namespace internal |
| |
| namespace numext { |
| |
| #if defined(EIGEN_GPU_COMPILE_PHASE) |
| template<typename T> EIGEN_DEVICE_FUNC void swap(T &a, T &b) { T tmp = b; b = a; a = tmp; } |
| #else |
| template<typename T> EIGEN_STRONG_INLINE void swap(T &a, T &b) { std::swap(a,b); } |
| #endif |
| |
| #if defined(EIGEN_GPU_COMPILE_PHASE) |
| using internal::device::numeric_limits; |
| #else |
| using std::numeric_limits; |
| #endif |
| |
| // Integer division with rounding up. |
| // T is assumed to be an integer type with a>=0, and b>0 |
| template<typename T> |
| EIGEN_DEVICE_FUNC |
| T div_ceil(const T &a, const T &b) |
| { |
| return (a+b-1) / b; |
| } |
| |
| // The aim of the following functions is to bypass -Wfloat-equal warnings |
| // when we really want a strict equality comparison on floating points. |
| template<typename X, typename Y> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC |
| bool equal_strict(const X& x,const Y& y) { return x == y; } |
| |
| #if !defined(EIGEN_GPU_COMPILE_PHASE) || (!defined(EIGEN_CUDA_ARCH) && defined(EIGEN_CONSTEXPR_ARE_DEVICE_FUNC)) |
| template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC |
| bool equal_strict(const float& x,const float& y) { return std::equal_to<float>()(x,y); } |
| |
| template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC |
| bool equal_strict(const double& x,const double& y) { return std::equal_to<double>()(x,y); } |
| #endif |
| |
| template<typename X, typename Y> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC |
| bool not_equal_strict(const X& x,const Y& y) { return x != y; } |
| |
| #if !defined(EIGEN_GPU_COMPILE_PHASE) || (!defined(EIGEN_CUDA_ARCH) && defined(EIGEN_CONSTEXPR_ARE_DEVICE_FUNC)) |
| template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC |
| bool not_equal_strict(const float& x,const float& y) { return std::not_equal_to<float>()(x,y); } |
| |
| template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC |
| bool not_equal_strict(const double& x,const double& y) { return std::not_equal_to<double>()(x,y); } |
| #endif |
| |
| /** \internal extract the bits of the float \a x */ |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC unsigned int as_uint(float x) |
| { |
| unsigned int ret; |
| EIGEN_USING_STD(memcpy); |
| memcpy(&ret, &x, sizeof(float)); |
| return ret; |
| } |
| |
| } // end namespace numext |
| |
| } // end namespace Eigen |
| |
| // Define portable (u)int{32,64} types |
| #if EIGEN_HAS_CXX11 |
| #include <cstdint> |
| namespace Eigen { |
| namespace numext { |
| typedef std::uint8_t uint8_t; |
| typedef std::int8_t int8_t; |
| typedef std::uint16_t uint16_t; |
| typedef std::int16_t int16_t; |
| typedef std::uint32_t uint32_t; |
| typedef std::int32_t int32_t; |
| typedef std::uint64_t uint64_t; |
| typedef std::int64_t int64_t; |
| } |
| } |
| #else |
| // Without c++11, all compilers able to compile Eigen also |
| // provides the C99 stdint.h header file. |
| #include <stdint.h> |
| namespace Eigen { |
| namespace numext { |
| typedef ::uint8_t uint8_t; |
| typedef ::int8_t int8_t; |
| typedef ::uint16_t uint16_t; |
| typedef ::int16_t int16_t; |
| typedef ::uint32_t uint32_t; |
| typedef ::int32_t int32_t; |
| typedef ::uint64_t uint64_t; |
| typedef ::int64_t int64_t; |
| } |
| } |
| #endif |
| |
| #endif // EIGEN_META_H |