| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2015-2016 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| // workaround issue between gcc >= 4.7 and cuda 5.5 |
| #if (defined __GNUC__) && (__GNUC__>4 || __GNUC_MINOR__>=7) |
| #undef _GLIBCXX_ATOMIC_BUILTINS |
| #undef _GLIBCXX_USE_INT128 |
| #endif |
| |
| #define EIGEN_TEST_NO_LONGDOUBLE |
| #define EIGEN_TEST_NO_COMPLEX |
| #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int |
| |
| #include "main.h" |
| #include "gpu_common.h" |
| |
| // Check that dense modules can be properly parsed by nvcc |
| #include <Eigen/Dense> |
| |
| // struct Foo{ |
| // EIGEN_DEVICE_FUNC |
| // void operator()(int i, const float* mats, float* vecs) const { |
| // using namespace Eigen; |
| // // Matrix3f M(data); |
| // // Vector3f x(data+9); |
| // // Map<Vector3f>(data+9) = M.inverse() * x; |
| // Matrix3f M(mats+i/16); |
| // Vector3f x(vecs+i*3); |
| // // using std::min; |
| // // using std::sqrt; |
| // Map<Vector3f>(vecs+i*3) << x.minCoeff(), 1, 2;// / x.dot(x);//(M.inverse() * x) / x.x(); |
| // //x = x*2 + x.y() * x + x * x.maxCoeff() - x / x.sum(); |
| // } |
| // }; |
| |
| template<typename T> |
| struct coeff_wise { |
| EIGEN_DEVICE_FUNC |
| void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const |
| { |
| using namespace Eigen; |
| T x1(in+i); |
| T x2(in+i+1); |
| T x3(in+i+2); |
| Map<T> res(out+i*T::MaxSizeAtCompileTime); |
| |
| res.array() += (in[0] * x1 + x2).array() * x3.array(); |
| } |
| }; |
| |
| template<typename T> |
| struct replicate { |
| EIGEN_DEVICE_FUNC |
| void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const |
| { |
| using namespace Eigen; |
| T x1(in+i); |
| int step = x1.size() * 4; |
| int stride = 3 * step; |
| |
| typedef Map<Array<typename T::Scalar,Dynamic,Dynamic> > MapType; |
| MapType(out+i*stride+0*step, x1.rows()*2, x1.cols()*2) = x1.replicate(2,2); |
| MapType(out+i*stride+1*step, x1.rows()*3, x1.cols()) = in[i] * x1.colwise().replicate(3); |
| MapType(out+i*stride+2*step, x1.rows(), x1.cols()*3) = in[i] * x1.rowwise().replicate(3); |
| } |
| }; |
| |
| template<typename T> |
| struct redux { |
| EIGEN_DEVICE_FUNC |
| void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const |
| { |
| using namespace Eigen; |
| int N = 10; |
| T x1(in+i); |
| out[i*N+0] = x1.minCoeff(); |
| out[i*N+1] = x1.maxCoeff(); |
| out[i*N+2] = x1.sum(); |
| out[i*N+3] = x1.prod(); |
| out[i*N+4] = x1.matrix().squaredNorm(); |
| out[i*N+5] = x1.matrix().norm(); |
| out[i*N+6] = x1.colwise().sum().maxCoeff(); |
| out[i*N+7] = x1.rowwise().maxCoeff().sum(); |
| out[i*N+8] = x1.matrix().colwise().squaredNorm().sum(); |
| } |
| }; |
| |
| template<typename T1, typename T2> |
| struct prod_test { |
| EIGEN_DEVICE_FUNC |
| void operator()(int i, const typename T1::Scalar* in, typename T1::Scalar* out) const |
| { |
| using namespace Eigen; |
| typedef Matrix<typename T1::Scalar, T1::RowsAtCompileTime, T2::ColsAtCompileTime> T3; |
| T1 x1(in+i); |
| T2 x2(in+i+1); |
| Map<T3> res(out+i*T3::MaxSizeAtCompileTime); |
| res += in[i] * x1 * x2; |
| } |
| }; |
| |
| template<typename T1, typename T2> |
| struct diagonal { |
| EIGEN_DEVICE_FUNC |
| void operator()(int i, const typename T1::Scalar* in, typename T1::Scalar* out) const |
| { |
| using namespace Eigen; |
| T1 x1(in+i); |
| Map<T2> res(out+i*T2::MaxSizeAtCompileTime); |
| res += x1.diagonal(); |
| } |
| }; |
| |
| template<typename T> |
| struct eigenvalues_direct { |
| EIGEN_DEVICE_FUNC |
| void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const |
| { |
| using namespace Eigen; |
| typedef Matrix<typename T::Scalar, T::RowsAtCompileTime, 1> Vec; |
| T M(in+i); |
| Map<Vec> res(out+i*Vec::MaxSizeAtCompileTime); |
| T A = M*M.adjoint(); |
| SelfAdjointEigenSolver<T> eig; |
| eig.computeDirect(A); |
| res = eig.eigenvalues(); |
| } |
| }; |
| |
| template<typename T> |
| struct eigenvalues { |
| EIGEN_DEVICE_FUNC |
| void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const |
| { |
| using namespace Eigen; |
| typedef Matrix<typename T::Scalar, T::RowsAtCompileTime, 1> Vec; |
| T M(in+i); |
| Map<Vec> res(out+i*Vec::MaxSizeAtCompileTime); |
| T A = M*M.adjoint(); |
| SelfAdjointEigenSolver<T> eig; |
| eig.compute(A); |
| res = eig.eigenvalues(); |
| } |
| }; |
| |
| template<typename T> |
| struct matrix_inverse { |
| EIGEN_DEVICE_FUNC |
| void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const |
| { |
| using namespace Eigen; |
| T M(in+i); |
| Map<T> res(out+i*T::MaxSizeAtCompileTime); |
| res = M.inverse(); |
| } |
| }; |
| |
| EIGEN_DECLARE_TEST(gpu_basic) |
| { |
| ei_test_init_gpu(); |
| |
| int nthreads = 100; |
| Eigen::VectorXf in, out; |
| |
| #if !defined(__CUDA_ARCH__) && !defined(__HIP_DEVICE_COMPILE__) |
| int data_size = nthreads * 512; |
| in.setRandom(data_size); |
| out.setRandom(data_size); |
| #endif |
| |
| CALL_SUBTEST( run_and_compare_to_gpu(coeff_wise<Vector3f>(), nthreads, in, out) ); |
| CALL_SUBTEST( run_and_compare_to_gpu(coeff_wise<Array44f>(), nthreads, in, out) ); |
| |
| #if !defined(EIGEN_USE_HIP) |
| // FIXME |
| // These subtests result in a compile failure on the HIP platform |
| // |
| // eigen-upstream/Eigen/src/Core/Replicate.h:61:65: error: |
| // base class 'internal::dense_xpr_base<Replicate<Array<float, 4, 1, 0, 4, 1>, -1, -1> >::type' |
| // (aka 'ArrayBase<Eigen::Replicate<Eigen::Array<float, 4, 1, 0, 4, 1>, -1, -1> >') has protected default constructor |
| CALL_SUBTEST( run_and_compare_to_gpu(replicate<Array4f>(), nthreads, in, out) ); |
| CALL_SUBTEST( run_and_compare_to_gpu(replicate<Array33f>(), nthreads, in, out) ); |
| #endif |
| |
| CALL_SUBTEST( run_and_compare_to_gpu(redux<Array4f>(), nthreads, in, out) ); |
| CALL_SUBTEST( run_and_compare_to_gpu(redux<Matrix3f>(), nthreads, in, out) ); |
| |
| CALL_SUBTEST( run_and_compare_to_gpu(prod_test<Matrix3f,Matrix3f>(), nthreads, in, out) ); |
| CALL_SUBTEST( run_and_compare_to_gpu(prod_test<Matrix4f,Vector4f>(), nthreads, in, out) ); |
| |
| CALL_SUBTEST( run_and_compare_to_gpu(diagonal<Matrix3f,Vector3f>(), nthreads, in, out) ); |
| CALL_SUBTEST( run_and_compare_to_gpu(diagonal<Matrix4f,Vector4f>(), nthreads, in, out) ); |
| |
| CALL_SUBTEST( run_and_compare_to_gpu(matrix_inverse<Matrix2f>(), nthreads, in, out) ); |
| CALL_SUBTEST( run_and_compare_to_gpu(matrix_inverse<Matrix3f>(), nthreads, in, out) ); |
| CALL_SUBTEST( run_and_compare_to_gpu(matrix_inverse<Matrix4f>(), nthreads, in, out) ); |
| |
| CALL_SUBTEST( run_and_compare_to_gpu(eigenvalues_direct<Matrix3f>(), nthreads, in, out) ); |
| CALL_SUBTEST( run_and_compare_to_gpu(eigenvalues_direct<Matrix2f>(), nthreads, in, out) ); |
| |
| #if defined(__NVCC__) |
| // FIXME |
| // These subtests compiles only with nvcc and fail with HIPCC and clang-cuda |
| CALL_SUBTEST( run_and_compare_to_gpu(eigenvalues<Matrix4f>(), nthreads, in, out) ); |
| typedef Matrix<float,6,6> Matrix6f; |
| CALL_SUBTEST( run_and_compare_to_gpu(eigenvalues<Matrix6f>(), nthreads, in, out) ); |
| #endif |
| } |