| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2015 Eugene Brevdo <ebrevdo@google.com> |
| // Benoit Steiner <benoit.steiner.goog@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "main.h" |
| |
| #include <Eigen/CXX11/Tensor> |
| |
| using Eigen::Tensor; |
| using Eigen::array; |
| using Eigen::Tuple; |
| |
| template <int DataLayout> |
| static void test_simple_index_tuples() |
| { |
| Tensor<float, 4, DataLayout> tensor(2,3,5,7); |
| tensor.setRandom(); |
| tensor = (tensor + tensor.constant(0.5)).log(); |
| |
| Tensor<Tuple<DenseIndex, float>, 4, DataLayout> index_tuples(2,3,5,7); |
| index_tuples = tensor.index_tuples(); |
| |
| for (DenseIndex n = 0; n < 2*3*5*7; ++n) { |
| const Tuple<DenseIndex, float>& v = index_tuples.coeff(n); |
| VERIFY_IS_EQUAL(v.first, n); |
| VERIFY_IS_EQUAL(v.second, tensor.coeff(n)); |
| } |
| } |
| |
| template <int DataLayout> |
| static void test_index_tuples_dim() |
| { |
| Tensor<float, 4, DataLayout> tensor(2,3,5,7); |
| tensor.setRandom(); |
| tensor = (tensor + tensor.constant(0.5)).log(); |
| |
| Tensor<Tuple<DenseIndex, float>, 4, DataLayout> index_tuples(2,3,5,7); |
| |
| index_tuples = tensor.index_tuples(); |
| |
| for (Eigen::DenseIndex n = 0; n < tensor.size(); ++n) { |
| const Tuple<DenseIndex, float>& v = index_tuples(n); //(i, j, k, l); |
| VERIFY_IS_EQUAL(v.first, n); |
| VERIFY_IS_EQUAL(v.second, tensor(n)); |
| } |
| } |
| |
| template <int DataLayout> |
| static void test_argmax_tuple_reducer() |
| { |
| Tensor<float, 4, DataLayout> tensor(2,3,5,7); |
| tensor.setRandom(); |
| tensor = (tensor + tensor.constant(0.5)).log(); |
| |
| Tensor<Tuple<DenseIndex, float>, 4, DataLayout> index_tuples(2,3,5,7); |
| index_tuples = tensor.index_tuples(); |
| |
| Tensor<Tuple<DenseIndex, float>, 0, DataLayout> reduced; |
| DimensionList<DenseIndex, 4> dims; |
| reduced = index_tuples.reduce( |
| dims, internal::ArgMaxTupleReducer<Tuple<DenseIndex, float> >()); |
| |
| Tensor<float, 0, DataLayout> maxi = tensor.maximum(); |
| |
| VERIFY_IS_EQUAL(maxi(), reduced(0).second); |
| |
| array<DenseIndex, 3> reduce_dims; |
| for (int d = 0; d < 3; ++d) reduce_dims[d] = d; |
| Tensor<Tuple<DenseIndex, float>, 1, DataLayout> reduced_by_dims(7); |
| reduced_by_dims = index_tuples.reduce( |
| reduce_dims, internal::ArgMaxTupleReducer<Tuple<DenseIndex, float> >()); |
| |
| Tensor<float, 1, DataLayout> max_by_dims = tensor.maximum(reduce_dims); |
| |
| for (int l = 0; l < 7; ++l) { |
| VERIFY_IS_EQUAL(max_by_dims(l), reduced_by_dims(l).second); |
| } |
| } |
| |
| template <int DataLayout> |
| static void test_argmin_tuple_reducer() |
| { |
| Tensor<float, 4, DataLayout> tensor(2,3,5,7); |
| tensor.setRandom(); |
| tensor = (tensor + tensor.constant(0.5)).log(); |
| |
| Tensor<Tuple<DenseIndex, float>, 4, DataLayout> index_tuples(2,3,5,7); |
| index_tuples = tensor.index_tuples(); |
| |
| Tensor<Tuple<DenseIndex, float>, 0, DataLayout> reduced; |
| DimensionList<DenseIndex, 4> dims; |
| reduced = index_tuples.reduce( |
| dims, internal::ArgMinTupleReducer<Tuple<DenseIndex, float> >()); |
| |
| Tensor<float, 0, DataLayout> mini = tensor.minimum(); |
| |
| VERIFY_IS_EQUAL(mini(), reduced(0).second); |
| |
| array<DenseIndex, 3> reduce_dims; |
| for (int d = 0; d < 3; ++d) reduce_dims[d] = d; |
| Tensor<Tuple<DenseIndex, float>, 1, DataLayout> reduced_by_dims(7); |
| reduced_by_dims = index_tuples.reduce( |
| reduce_dims, internal::ArgMinTupleReducer<Tuple<DenseIndex, float> >()); |
| |
| Tensor<float, 1, DataLayout> min_by_dims = tensor.minimum(reduce_dims); |
| |
| for (int l = 0; l < 7; ++l) { |
| VERIFY_IS_EQUAL(min_by_dims(l), reduced_by_dims(l).second); |
| } |
| } |
| |
| template <int DataLayout> |
| static void test_simple_argmax() |
| { |
| Tensor<float, 4, DataLayout> tensor(2,3,5,7); |
| tensor.setRandom(); |
| tensor = (tensor + tensor.constant(0.5)).log(); |
| tensor(0,0,0,0) = 10.0; |
| |
| Tensor<DenseIndex, 0, DataLayout> tensor_argmax; |
| |
| tensor_argmax = tensor.argmax(); |
| |
| VERIFY_IS_EQUAL(tensor_argmax(0), 0); |
| |
| tensor(1,2,4,6) = 20.0; |
| |
| tensor_argmax = tensor.argmax(); |
| |
| VERIFY_IS_EQUAL(tensor_argmax(0), 2*3*5*7 - 1); |
| } |
| |
| template <int DataLayout> |
| static void test_simple_argmin() |
| { |
| Tensor<float, 4, DataLayout> tensor(2,3,5,7); |
| tensor.setRandom(); |
| tensor = (tensor + tensor.constant(0.5)).log(); |
| tensor(0,0,0,0) = -10.0; |
| |
| Tensor<DenseIndex, 0, DataLayout> tensor_argmin; |
| |
| tensor_argmin = tensor.argmin(); |
| |
| VERIFY_IS_EQUAL(tensor_argmin(0), 0); |
| |
| tensor(1,2,4,6) = -20.0; |
| |
| tensor_argmin = tensor.argmin(); |
| |
| VERIFY_IS_EQUAL(tensor_argmin(0), 2*3*5*7 - 1); |
| } |
| |
| template <int DataLayout> |
| static void test_argmax_dim() |
| { |
| Tensor<float, 4, DataLayout> tensor(2,3,5,7); |
| std::vector<int> dims {2, 3, 5, 7}; |
| |
| for (int dim = 0; dim < 4; ++dim) { |
| tensor.setRandom(); |
| tensor = (tensor + tensor.constant(0.5)).log(); |
| |
| Tensor<DenseIndex, 3, DataLayout> tensor_argmax; |
| array<DenseIndex, 4> ix; |
| for (int i = 0; i < 2; ++i) { |
| for (int j = 0; j < 3; ++j) { |
| for (int k = 0; k < 5; ++k) { |
| for (int l = 0; l < 7; ++l) { |
| ix[0] = i; ix[1] = j; ix[2] = k; ix[3] = l; |
| if (ix[dim] != 0) continue; |
| // suppose dim == 1, then for all i, k, l, set tensor(i, 0, k, l) = 10.0 |
| tensor(ix) = 10.0; |
| } |
| } |
| } |
| } |
| |
| tensor_argmax = tensor.argmax(dim); |
| |
| VERIFY_IS_EQUAL(tensor_argmax.size(), |
| ptrdiff_t(2*3*5*7 / tensor.dimension(dim))); |
| for (ptrdiff_t n = 0; n < tensor_argmax.size(); ++n) { |
| // Expect max to be in the first index of the reduced dimension |
| VERIFY_IS_EQUAL(tensor_argmax.data()[n], 0); |
| } |
| |
| for (int i = 0; i < 2; ++i) { |
| for (int j = 0; j < 3; ++j) { |
| for (int k = 0; k < 5; ++k) { |
| for (int l = 0; l < 7; ++l) { |
| ix[0] = i; ix[1] = j; ix[2] = k; ix[3] = l; |
| if (ix[dim] != tensor.dimension(dim) - 1) continue; |
| // suppose dim == 1, then for all i, k, l, set tensor(i, 2, k, l) = 20.0 |
| tensor(ix) = 20.0; |
| } |
| } |
| } |
| } |
| |
| tensor_argmax = tensor.argmax(dim); |
| |
| VERIFY_IS_EQUAL(tensor_argmax.size(), |
| ptrdiff_t(2*3*5*7 / tensor.dimension(dim))); |
| for (ptrdiff_t n = 0; n < tensor_argmax.size(); ++n) { |
| // Expect max to be in the last index of the reduced dimension |
| VERIFY_IS_EQUAL(tensor_argmax.data()[n], tensor.dimension(dim) - 1); |
| } |
| } |
| } |
| |
| template <int DataLayout> |
| static void test_argmin_dim() |
| { |
| Tensor<float, 4, DataLayout> tensor(2,3,5,7); |
| std::vector<int> dims {2, 3, 5, 7}; |
| |
| for (int dim = 0; dim < 4; ++dim) { |
| tensor.setRandom(); |
| tensor = (tensor + tensor.constant(0.5)).log(); |
| |
| Tensor<DenseIndex, 3, DataLayout> tensor_argmin; |
| array<DenseIndex, 4> ix; |
| for (int i = 0; i < 2; ++i) { |
| for (int j = 0; j < 3; ++j) { |
| for (int k = 0; k < 5; ++k) { |
| for (int l = 0; l < 7; ++l) { |
| ix[0] = i; ix[1] = j; ix[2] = k; ix[3] = l; |
| if (ix[dim] != 0) continue; |
| // suppose dim == 1, then for all i, k, l, set tensor(i, 0, k, l) = -10.0 |
| tensor(ix) = -10.0; |
| } |
| } |
| } |
| } |
| |
| tensor_argmin = tensor.argmin(dim); |
| |
| VERIFY_IS_EQUAL(tensor_argmin.size(), |
| ptrdiff_t(2*3*5*7 / tensor.dimension(dim))); |
| for (ptrdiff_t n = 0; n < tensor_argmin.size(); ++n) { |
| // Expect min to be in the first index of the reduced dimension |
| VERIFY_IS_EQUAL(tensor_argmin.data()[n], 0); |
| } |
| |
| for (int i = 0; i < 2; ++i) { |
| for (int j = 0; j < 3; ++j) { |
| for (int k = 0; k < 5; ++k) { |
| for (int l = 0; l < 7; ++l) { |
| ix[0] = i; ix[1] = j; ix[2] = k; ix[3] = l; |
| if (ix[dim] != tensor.dimension(dim) - 1) continue; |
| // suppose dim == 1, then for all i, k, l, set tensor(i, 2, k, l) = -20.0 |
| tensor(ix) = -20.0; |
| } |
| } |
| } |
| } |
| |
| tensor_argmin = tensor.argmin(dim); |
| |
| VERIFY_IS_EQUAL(tensor_argmin.size(), |
| ptrdiff_t(2*3*5*7 / tensor.dimension(dim))); |
| for (ptrdiff_t n = 0; n < tensor_argmin.size(); ++n) { |
| // Expect min to be in the last index of the reduced dimension |
| VERIFY_IS_EQUAL(tensor_argmin.data()[n], tensor.dimension(dim) - 1); |
| } |
| } |
| } |
| |
| EIGEN_DECLARE_TEST(cxx11_tensor_argmax) |
| { |
| CALL_SUBTEST(test_simple_index_tuples<RowMajor>()); |
| CALL_SUBTEST(test_simple_index_tuples<ColMajor>()); |
| CALL_SUBTEST(test_index_tuples_dim<RowMajor>()); |
| CALL_SUBTEST(test_index_tuples_dim<ColMajor>()); |
| CALL_SUBTEST(test_argmax_tuple_reducer<RowMajor>()); |
| CALL_SUBTEST(test_argmax_tuple_reducer<ColMajor>()); |
| CALL_SUBTEST(test_argmin_tuple_reducer<RowMajor>()); |
| CALL_SUBTEST(test_argmin_tuple_reducer<ColMajor>()); |
| CALL_SUBTEST(test_simple_argmax<RowMajor>()); |
| CALL_SUBTEST(test_simple_argmax<ColMajor>()); |
| CALL_SUBTEST(test_simple_argmin<RowMajor>()); |
| CALL_SUBTEST(test_simple_argmin<ColMajor>()); |
| CALL_SUBTEST(test_argmax_dim<RowMajor>()); |
| CALL_SUBTEST(test_argmax_dim<ColMajor>()); |
| CALL_SUBTEST(test_argmin_dim<RowMajor>()); |
| CALL_SUBTEST(test_argmin_dim<ColMajor>()); |
| } |