blob: 99447b21dcf856b2d8ebf4971387de6569ca1132 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2016 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#define EIGEN_TEST_NO_LONGDOUBLE
#define EIGEN_USE_GPU
#include "main.h"
#include <unsupported/Eigen/CXX11/Tensor>
using Eigen::Tensor;
template<typename T>
void test_cuda_complex_cwise_ops() {
const int kNumItems = 2;
std::size_t complex_bytes = kNumItems * sizeof(std::complex<T>);
std::complex<T>* d_in1;
std::complex<T>* d_in2;
std::complex<T>* d_out;
cudaMalloc((void**)(&d_in1), complex_bytes);
cudaMalloc((void**)(&d_in2), complex_bytes);
cudaMalloc((void**)(&d_out), complex_bytes);
Eigen::GpuStreamDevice stream;
Eigen::GpuDevice gpu_device(&stream);
Eigen::TensorMap<Eigen::Tensor<std::complex<T>, 1, 0, int>, Eigen::Aligned> gpu_in1(
d_in1, kNumItems);
Eigen::TensorMap<Eigen::Tensor<std::complex<T>, 1, 0, int>, Eigen::Aligned> gpu_in2(
d_in2, kNumItems);
Eigen::TensorMap<Eigen::Tensor<std::complex<T>, 1, 0, int>, Eigen::Aligned> gpu_out(
d_out, kNumItems);
const std::complex<T> a(3.14f, 2.7f);
const std::complex<T> b(-10.6f, 1.4f);
gpu_in1.device(gpu_device) = gpu_in1.constant(a);
gpu_in2.device(gpu_device) = gpu_in2.constant(b);
enum CwiseOp {
Add = 0,
Sub,
Mul,
Div,
Neg,
NbOps
};
Tensor<std::complex<T>, 1, 0, int> actual(kNumItems);
for (int op = Add; op < NbOps; op++) {
std::complex<T> expected;
switch (static_cast<CwiseOp>(op)) {
case Add:
gpu_out.device(gpu_device) = gpu_in1 + gpu_in2;
expected = a + b;
break;
case Sub:
gpu_out.device(gpu_device) = gpu_in1 - gpu_in2;
expected = a - b;
break;
case Mul:
gpu_out.device(gpu_device) = gpu_in1 * gpu_in2;
expected = a * b;
break;
case Div:
gpu_out.device(gpu_device) = gpu_in1 / gpu_in2;
expected = a / b;
break;
case Neg:
gpu_out.device(gpu_device) = -gpu_in1;
expected = -a;
break;
case NbOps:
break;
}
assert(cudaMemcpyAsync(actual.data(), d_out, complex_bytes, cudaMemcpyDeviceToHost,
gpu_device.stream()) == cudaSuccess);
assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess);
for (int i = 0; i < kNumItems; ++i) {
VERIFY_IS_APPROX(actual(i), expected);
}
}
cudaFree(d_in1);
cudaFree(d_in2);
cudaFree(d_out);
}
EIGEN_DECLARE_TEST(test_cxx11_tensor_complex_cwise_ops)
{
CALL_SUBTEST(test_cuda_complex_cwise_ops<float>());
CALL_SUBTEST(test_cuda_complex_cwise_ops<double>());
}