| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2016 |
| // Mehdi Goli Codeplay Software Ltd. |
| // Ralph Potter Codeplay Software Ltd. |
| // Luke Iwanski Codeplay Software Ltd. |
| // Contact: <eigen@codeplay.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #define EIGEN_TEST_NO_LONGDOUBLE |
| #define EIGEN_TEST_NO_COMPLEX |
| |
| #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int64_t |
| #define EIGEN_USE_SYCL |
| |
| #include <iostream> |
| #include <chrono> |
| #include <ctime> |
| |
| #include "main.h" |
| #include <unsupported/Eigen/CXX11/Tensor> |
| #include <iomanip> |
| |
| using Eigen::array; |
| using Eigen::SyclDevice; |
| using Eigen::Tensor; |
| using Eigen::TensorMap; |
| static const float error_threshold =1e-4f; |
| |
| |
| template <typename DataType, int DataLayout, typename IndexType> |
| static void test_larg_expr1D(const Eigen::SyclDevice& sycl_device) |
| { |
| IndexType indim0 =53; |
| IndexType indim1= 55; |
| IndexType indim2= 51; |
| IndexType outdim0=50; |
| IndexType outdim1=55; |
| IndexType outdim2=51; |
| Eigen::array<IndexType, 3> input_dims = {{indim0, indim1, indim2}}; |
| Eigen::array<IndexType, 1> kernel_dims = {{4}}; |
| Eigen::array<IndexType, 3> result_dims = {{outdim0, outdim1, outdim2}}; |
| |
| Tensor<DataType, 3, DataLayout, IndexType> input(input_dims); |
| Tensor<DataType, 1, DataLayout,IndexType> kernel(kernel_dims); |
| Tensor<DataType, 3, DataLayout,IndexType> result(result_dims); |
| Tensor<DataType, 3, DataLayout,IndexType> result_host(result_dims); |
| |
| Eigen::array<IndexType, 1> dims3{{0}}; |
| |
| input.setRandom(); |
| kernel.setRandom(); |
| result.setZero(); |
| result_host.setZero(); |
| |
| std::size_t input_bytes = input.size() * sizeof(DataType); |
| std::size_t kernel_bytes = kernel.size() * sizeof(DataType); |
| std::size_t result_bytes = result.size() * sizeof(DataType); |
| |
| DataType * d_input = static_cast<DataType*>(sycl_device.allocate(input_bytes)); |
| DataType * d_kernel = static_cast<DataType*>(sycl_device.allocate(kernel_bytes)); |
| DataType * d_result = static_cast<DataType*>(sycl_device.allocate(result_bytes)); |
| |
| Eigen::TensorMap<Eigen::Tensor<DataType, 3, DataLayout, IndexType> > gpu_input(d_input, input_dims); |
| Eigen::TensorMap<Eigen::Tensor<DataType, 1, DataLayout, IndexType> > gpu_kernel(d_kernel, kernel_dims); |
| Eigen::TensorMap<Eigen::Tensor<DataType, 3, DataLayout, IndexType> > gpu_result(d_result, result_dims); |
| sycl_device.memcpyHostToDevice(d_input, input.data(), input_bytes); |
| sycl_device.memcpyHostToDevice(d_kernel, kernel.data(), kernel_bytes); |
| |
| gpu_result.device(sycl_device)=gpu_input.convolve(gpu_kernel, dims3); |
| sycl_device.memcpyDeviceToHost(result.data(), d_result, result_bytes); |
| |
| result_host=input.convolve(kernel, dims3); |
| |
| for(IndexType i=0; i< outdim0; i++ ){ |
| for(IndexType j=0; j< outdim1; j++ ){ |
| for(IndexType k=0; k< outdim2; k++ ){ |
| if (!(Eigen::internal::isApprox(result(i,j,k), result_host(i,j,k), error_threshold))) { |
| std::cout <<std::setprecision(16)<< "mismatch detected at index ( "<< i << " , " << j << ", " << k << " ) " << " \t " << result(i,j,k) << " vs "<< result_host(i,j,k) << std::endl; |
| assert(false); |
| } |
| } |
| } |
| } |
| sycl_device.deallocate(d_input); |
| sycl_device.deallocate(d_kernel); |
| sycl_device.deallocate(d_result); |
| |
| } |
| |
| |
| template <typename DataType, int DataLayout, typename IndexType> |
| static void test_larg_expr2D(const Eigen::SyclDevice& sycl_device) |
| { |
| IndexType indim0 =53; |
| IndexType indim1= 55; |
| IndexType indim2= 51; |
| IndexType outdim0=50; |
| IndexType outdim1=51; |
| IndexType outdim2=51; |
| Eigen::array<IndexType, 3> input_dims = {{indim0, indim1, indim2}}; |
| Eigen::array<IndexType, 2> kernel_dims = {{4,5}}; |
| Eigen::array<IndexType, 3> result_dims = {{outdim0, outdim1, outdim2}}; |
| |
| Tensor<DataType, 3, DataLayout, IndexType> input(input_dims); |
| Tensor<DataType, 2, DataLayout,IndexType> kernel(kernel_dims); |
| Tensor<DataType, 3, DataLayout,IndexType> result(result_dims); |
| Tensor<DataType, 3, DataLayout,IndexType> result_host(result_dims); |
| |
| Eigen::array<IndexType, 2> dims3{{0,1}}; |
| |
| input.setRandom(); |
| kernel.setRandom(); |
| result.setZero(); |
| result_host.setZero(); |
| |
| std::size_t input_bytes = input.size() * sizeof(DataType); |
| std::size_t kernel_bytes = kernel.size() * sizeof(DataType); |
| std::size_t result_bytes = result.size() * sizeof(DataType); |
| |
| DataType * d_input = static_cast<DataType*>(sycl_device.allocate(input_bytes)); |
| DataType * d_kernel = static_cast<DataType*>(sycl_device.allocate(kernel_bytes)); |
| DataType * d_result = static_cast<DataType*>(sycl_device.allocate(result_bytes)); |
| |
| Eigen::TensorMap<Eigen::Tensor<DataType, 3, DataLayout, IndexType> > gpu_input(d_input, input_dims); |
| Eigen::TensorMap<Eigen::Tensor<DataType, 2, DataLayout, IndexType> > gpu_kernel(d_kernel, kernel_dims); |
| Eigen::TensorMap<Eigen::Tensor<DataType, 3, DataLayout, IndexType> > gpu_result(d_result, result_dims); |
| sycl_device.memcpyHostToDevice(d_input, input.data(), input_bytes); |
| sycl_device.memcpyHostToDevice(d_kernel, kernel.data(), kernel_bytes); |
| |
| gpu_result.device(sycl_device)=gpu_input.convolve(gpu_kernel, dims3); |
| sycl_device.memcpyDeviceToHost(result.data(), d_result, result_bytes); |
| |
| result_host=input.convolve(kernel, dims3); |
| |
| for(IndexType i=0; i< outdim0; i++ ){ |
| for(IndexType j=0; j< outdim1; j++ ){ |
| for(IndexType k=0; k< outdim2; k++ ){ |
| if (!(Eigen::internal::isApprox(result(i,j,k), result_host(i,j,k), error_threshold))) { |
| std::cout <<std::setprecision(16)<< "mismatch detected at index ( "<< i << " , " << j << ", " << k << " ) " << " \t " << result(i,j,k) << " vs "<< result_host(i,j,k) << std::endl; |
| assert(false); |
| } |
| } |
| } |
| } |
| sycl_device.deallocate(d_input); |
| sycl_device.deallocate(d_kernel); |
| sycl_device.deallocate(d_result); |
| |
| } |
| |
| |
| template <typename DataType, int DataLayout, typename IndexType> |
| static void test_larg_expr3D(const Eigen::SyclDevice& sycl_device) |
| { |
| IndexType indim0 =53; |
| IndexType indim1= 55; |
| IndexType indim2= 51; |
| IndexType outdim0=50; |
| IndexType outdim1=51; |
| IndexType outdim2=49; |
| Eigen::array<IndexType, 3> input_dims = {{indim0, indim1, indim2}}; |
| Eigen::array<IndexType, 3> kernel_dims = {{4,5,3}}; |
| Eigen::array<IndexType, 3> result_dims = {{outdim0, outdim1, outdim2}}; |
| |
| Tensor<DataType, 3, DataLayout, IndexType> input(input_dims); |
| Tensor<DataType, 3, DataLayout,IndexType> kernel(kernel_dims); |
| Tensor<DataType, 3, DataLayout,IndexType> result(result_dims); |
| Tensor<DataType, 3, DataLayout,IndexType> result_host(result_dims); |
| |
| Eigen::array<IndexType, 3> dims3{{0,1,2}}; |
| |
| input.setRandom(); |
| kernel.setRandom(); |
| result.setZero(); |
| result_host.setZero(); |
| |
| std::size_t input_bytes = input.size() * sizeof(DataType); |
| std::size_t kernel_bytes = kernel.size() * sizeof(DataType); |
| std::size_t result_bytes = result.size() * sizeof(DataType); |
| |
| DataType * d_input = static_cast<DataType*>(sycl_device.allocate(input_bytes)); |
| DataType * d_kernel = static_cast<DataType*>(sycl_device.allocate(kernel_bytes)); |
| DataType * d_result = static_cast<DataType*>(sycl_device.allocate(result_bytes)); |
| |
| Eigen::TensorMap<Eigen::Tensor<DataType, 3, DataLayout, IndexType> > gpu_input(d_input, input_dims); |
| Eigen::TensorMap<Eigen::Tensor<DataType, 3, DataLayout, IndexType> > gpu_kernel(d_kernel, kernel_dims); |
| Eigen::TensorMap<Eigen::Tensor<DataType, 3, DataLayout, IndexType> > gpu_result(d_result, result_dims); |
| sycl_device.memcpyHostToDevice(d_input, input.data(), input_bytes); |
| sycl_device.memcpyHostToDevice(d_kernel, kernel.data(), kernel_bytes); |
| |
| gpu_result.device(sycl_device)=gpu_input.convolve(gpu_kernel, dims3); |
| sycl_device.memcpyDeviceToHost(result.data(), d_result, result_bytes); |
| |
| result_host=input.convolve(kernel, dims3); |
| |
| for(IndexType i=0; i< outdim0; i++ ){ |
| for(IndexType j=0; j< outdim1; j++ ){ |
| for(IndexType k=0; k< outdim2; k++ ){ |
| if (!(Eigen::internal::isApprox(result(i,j,k), result_host(i,j,k), error_threshold))) { |
| std::cout <<std::setprecision(16)<< "mismatch detected at index ( "<< i << " , " << j << ", " << k << " ) " << " \t " << result(i,j,k) << " vs "<< result_host(i,j,k) << std::endl; |
| assert(false); |
| } |
| } |
| } |
| } |
| sycl_device.deallocate(d_input); |
| sycl_device.deallocate(d_kernel); |
| sycl_device.deallocate(d_result); |
| |
| } |
| |
| |
| template <typename DataType, int DataLayout, typename IndexType> |
| static void test_evals(const Eigen::SyclDevice& sycl_device) |
| { |
| Eigen::array<IndexType, 2> input_dims = {{3, 3}}; |
| Eigen::array<IndexType, 1> kernel_dims = {{2}}; |
| Eigen::array<IndexType, 2> result_dims = {{2, 3}}; |
| |
| Tensor<DataType, 2, DataLayout, IndexType> input(input_dims); |
| Tensor<DataType, 1, DataLayout,IndexType> kernel(kernel_dims); |
| Tensor<DataType, 2, DataLayout,IndexType> result(result_dims); |
| |
| Eigen::array<IndexType, 1> dims3{{0}}; |
| |
| input.setRandom(); |
| kernel.setRandom(); |
| result.setZero(); |
| |
| std::size_t input_bytes = input.size() * sizeof(DataType); |
| std::size_t kernel_bytes = kernel.size() * sizeof(DataType); |
| std::size_t result_bytes = result.size() * sizeof(DataType); |
| |
| DataType * d_input = static_cast<DataType*>(sycl_device.allocate(input_bytes)); |
| DataType * d_kernel = static_cast<DataType*>(sycl_device.allocate(kernel_bytes)); |
| DataType * d_result = static_cast<DataType*>(sycl_device.allocate(result_bytes)); |
| |
| Eigen::TensorMap<Eigen::Tensor<DataType, 2, DataLayout, IndexType> > gpu_input(d_input, input_dims); |
| Eigen::TensorMap<Eigen::Tensor<DataType, 1, DataLayout, IndexType> > gpu_kernel(d_kernel, kernel_dims); |
| Eigen::TensorMap<Eigen::Tensor<DataType, 2, DataLayout, IndexType> > gpu_result(d_result, result_dims); |
| sycl_device.memcpyHostToDevice(d_input, input.data(), input_bytes); |
| sycl_device.memcpyHostToDevice(d_kernel, kernel.data(), kernel_bytes); |
| |
| gpu_result.device(sycl_device)=gpu_input.convolve(gpu_kernel, dims3); |
| sycl_device.memcpyDeviceToHost(result.data(), d_result, result_bytes); |
| |
| VERIFY_IS_APPROX(result(0,0), input(0,0)*kernel(0) + input(1,0)*kernel(1)); // index 0 |
| VERIFY_IS_APPROX(result(0,1), input(0,1)*kernel(0) + input(1,1)*kernel(1)); // index 2 |
| VERIFY_IS_APPROX(result(0,2), input(0,2)*kernel(0) + input(1,2)*kernel(1)); // index 4 |
| VERIFY_IS_APPROX(result(1,0), input(1,0)*kernel(0) + input(2,0)*kernel(1)); // index 1 |
| VERIFY_IS_APPROX(result(1,1), input(1,1)*kernel(0) + input(2,1)*kernel(1)); // index 3 |
| VERIFY_IS_APPROX(result(1,2), input(1,2)*kernel(0) + input(2,2)*kernel(1)); // index 5 |
| |
| sycl_device.deallocate(d_input); |
| sycl_device.deallocate(d_kernel); |
| sycl_device.deallocate(d_result); |
| } |
| |
| template <typename DataType, int DataLayout, typename IndexType> |
| static void test_expr(const Eigen::SyclDevice& sycl_device) |
| { |
| Eigen::array<IndexType, 2> input_dims = {{3, 3}}; |
| Eigen::array<IndexType, 2> kernel_dims = {{2, 2}}; |
| Eigen::array<IndexType, 2> result_dims = {{2, 2}}; |
| |
| Tensor<DataType, 2, DataLayout, IndexType> input(input_dims); |
| Tensor<DataType, 2, DataLayout, IndexType> kernel(kernel_dims); |
| Tensor<DataType, 2, DataLayout, IndexType> result(result_dims); |
| |
| input.setRandom(); |
| kernel.setRandom(); |
| Eigen::array<IndexType, 2> dims; |
| dims[0] = 0; |
| dims[1] = 1; |
| |
| std::size_t input_bytes = input.size() * sizeof(DataType); |
| std::size_t kernel_bytes = kernel.size() * sizeof(DataType); |
| std::size_t result_bytes = result.size() * sizeof(DataType); |
| |
| DataType * d_input = static_cast<DataType*>(sycl_device.allocate(input_bytes)); |
| DataType * d_kernel = static_cast<DataType*>(sycl_device.allocate(kernel_bytes)); |
| DataType * d_result = static_cast<DataType*>(sycl_device.allocate(result_bytes)); |
| |
| Eigen::TensorMap<Eigen::Tensor<DataType, 2, DataLayout,IndexType> > gpu_input(d_input, input_dims); |
| Eigen::TensorMap<Eigen::Tensor<DataType, 2, DataLayout,IndexType> > gpu_kernel(d_kernel, kernel_dims); |
| Eigen::TensorMap<Eigen::Tensor<DataType, 2, DataLayout,IndexType> > gpu_result(d_result, result_dims); |
| sycl_device.memcpyHostToDevice(d_input, input.data(), input_bytes); |
| sycl_device.memcpyHostToDevice(d_kernel, kernel.data(), kernel_bytes); |
| |
| gpu_result.device(sycl_device)=gpu_input.convolve(gpu_kernel, dims); |
| sycl_device.memcpyDeviceToHost(result.data(), d_result, result_bytes); |
| |
| VERIFY_IS_APPROX(result(0,0), input(0,0)*kernel(0,0) + input(0,1)*kernel(0,1) + |
| input(1,0)*kernel(1,0) + input(1,1)*kernel(1,1)); |
| VERIFY_IS_APPROX(result(0,1), input(0,1)*kernel(0,0) + input(0,2)*kernel(0,1) + |
| input(1,1)*kernel(1,0) + input(1,2)*kernel(1,1)); |
| VERIFY_IS_APPROX(result(1,0), input(1,0)*kernel(0,0) + input(1,1)*kernel(0,1) + |
| input(2,0)*kernel(1,0) + input(2,1)*kernel(1,1)); |
| VERIFY_IS_APPROX(result(1,1), input(1,1)*kernel(0,0) + input(1,2)*kernel(0,1) + |
| input(2,1)*kernel(1,0) + input(2,2)*kernel(1,1)); |
| |
| sycl_device.deallocate(d_input); |
| sycl_device.deallocate(d_kernel); |
| sycl_device.deallocate(d_result); |
| } |
| |
| |
| template <typename DataType, int DataLayout, typename IndexType> |
| static void test_modes(const Eigen::SyclDevice& sycl_device){ |
| |
| Eigen::array<IndexType, 1> input_dims = {{3}}; |
| Eigen::array<IndexType, 1> kernel_dims = {{3}}; |
| |
| Tensor<DataType, 1, DataLayout, IndexType> input(input_dims); |
| Tensor<DataType, 1, DataLayout, IndexType> kernel(kernel_dims); |
| |
| input.setRandom(); |
| kernel.setRandom(); |
| Eigen::array<IndexType, 1> dims; |
| dims[0] = 0; |
| |
| input(0) = 1.0f; |
| input(1) = 2.0f; |
| input(2) = 3.0f; |
| kernel(0) = 0.5f; |
| kernel(1) = 1.0f; |
| kernel(2) = 0.0f; |
| |
| Eigen::array<std::pair<IndexType, IndexType>, 1> padding; |
| |
| // Emulate VALID mode (as defined in |
| // http://docs.scipy.org/doc/numpy/reference/generated/numpy.convolve.html). |
| padding[0] = std::make_pair(0, 0); |
| Tensor<DataType, 1, DataLayout, IndexType> valid(1); |
| |
| std::size_t input_bytes = input.size() * sizeof(DataType); |
| std::size_t kernel_bytes = kernel.size() * sizeof(DataType); |
| std::size_t valid_bytes = valid.size() * sizeof(DataType); |
| |
| DataType * d_input = static_cast<DataType*>(sycl_device.allocate(input_bytes)); |
| DataType * d_kernel = static_cast<DataType*>(sycl_device.allocate(kernel_bytes)); |
| DataType * d_valid = static_cast<DataType*>(sycl_device.allocate(valid_bytes)); |
| |
| Eigen::TensorMap<Eigen::Tensor<DataType, 1, DataLayout,IndexType> > gpu_input(d_input, input_dims); |
| Eigen::TensorMap<Eigen::Tensor<DataType, 1, DataLayout,IndexType> > gpu_kernel(d_kernel, kernel_dims); |
| Eigen::TensorMap<Eigen::Tensor<DataType, 1, DataLayout,IndexType> > gpu_valid(d_valid, valid.dimensions()); |
| sycl_device.memcpyHostToDevice(d_input, input.data(), input_bytes); |
| sycl_device.memcpyHostToDevice(d_kernel, kernel.data(), kernel_bytes); |
| |
| gpu_valid.device(sycl_device)=gpu_input.pad(padding).convolve(gpu_kernel, dims); |
| sycl_device.memcpyDeviceToHost(valid.data(), d_valid, valid_bytes); |
| |
| VERIFY_IS_EQUAL(valid.dimension(0), 1); |
| VERIFY_IS_APPROX(valid(0), 2.5f); |
| |
| // Emulate SAME mode (as defined in |
| // http://docs.scipy.org/doc/numpy/reference/generated/numpy.convolve.html). |
| padding[0] = std::make_pair(1, 1); |
| Tensor<DataType, 1, DataLayout, IndexType> same(3); |
| std::size_t same_bytes = same.size() * sizeof(DataType); |
| DataType * d_same = static_cast<DataType*>(sycl_device.allocate(same_bytes)); |
| Eigen::TensorMap<Eigen::Tensor<DataType, 1, DataLayout,IndexType> > gpu_same(d_same, same.dimensions()); |
| gpu_same.device(sycl_device)=gpu_input.pad(padding).convolve(gpu_kernel, dims); |
| sycl_device.memcpyDeviceToHost(same.data(), d_same, same_bytes); |
| |
| VERIFY_IS_EQUAL(same.dimension(0), 3); |
| VERIFY_IS_APPROX(same(0), 1.0f); |
| VERIFY_IS_APPROX(same(1), 2.5f); |
| VERIFY_IS_APPROX(same(2), 4.0f); |
| |
| // Emulate FULL mode (as defined in |
| // http://docs.scipy.org/doc/numpy/reference/generated/numpy.convolve.html). |
| padding[0] = std::make_pair(2, 2); |
| |
| Tensor<DataType, 1, DataLayout, IndexType> full(5); |
| std::size_t full_bytes = full.size() * sizeof(DataType); |
| DataType * d_full = static_cast<DataType*>(sycl_device.allocate(full_bytes)); |
| Eigen::TensorMap<Eigen::Tensor<DataType, 1, DataLayout,IndexType> > gpu_full(d_full, full.dimensions()); |
| gpu_full.device(sycl_device)=gpu_input.pad(padding).convolve(gpu_kernel, dims); |
| sycl_device.memcpyDeviceToHost(full.data(), d_full, full_bytes); |
| |
| VERIFY_IS_EQUAL(full.dimension(0), 5); |
| VERIFY_IS_APPROX(full(0), 0.0f); |
| VERIFY_IS_APPROX(full(1), 1.0f); |
| VERIFY_IS_APPROX(full(2), 2.5f); |
| VERIFY_IS_APPROX(full(3), 4.0f); |
| VERIFY_IS_APPROX(full(4), 1.5f); |
| |
| sycl_device.deallocate(d_input); |
| sycl_device.deallocate(d_kernel); |
| sycl_device.deallocate(d_valid); |
| sycl_device.deallocate(d_same); |
| sycl_device.deallocate(d_full); |
| |
| } |
| |
| template <typename DataType, int DataLayout, typename IndexType> |
| static void test_strides(const Eigen::SyclDevice& sycl_device){ |
| |
| Eigen::array<IndexType, 1> input_dims = {{13}}; |
| Eigen::array<IndexType, 1> kernel_dims = {{3}}; |
| |
| Tensor<DataType, 1, DataLayout, IndexType> input(input_dims); |
| Tensor<DataType, 1, DataLayout, IndexType> kernel(kernel_dims); |
| Tensor<DataType, 1, DataLayout, IndexType> result(2); |
| |
| input.setRandom(); |
| kernel.setRandom(); |
| Eigen::array<IndexType, 1> dims; |
| dims[0] = 0; |
| |
| Eigen::array<IndexType, 1> stride_of_3; |
| stride_of_3[0] = 3; |
| Eigen::array<IndexType, 1> stride_of_2; |
| stride_of_2[0] = 2; |
| |
| std::size_t input_bytes = input.size() * sizeof(DataType); |
| std::size_t kernel_bytes = kernel.size() * sizeof(DataType); |
| std::size_t result_bytes = result.size() * sizeof(DataType); |
| |
| DataType * d_input = static_cast<DataType*>(sycl_device.allocate(input_bytes)); |
| DataType * d_kernel = static_cast<DataType*>(sycl_device.allocate(kernel_bytes)); |
| DataType * d_result = static_cast<DataType*>(sycl_device.allocate(result_bytes)); |
| |
| Eigen::TensorMap<Eigen::Tensor<DataType, 1, DataLayout,IndexType> > gpu_input(d_input, input_dims); |
| Eigen::TensorMap<Eigen::Tensor<DataType, 1, DataLayout,IndexType> > gpu_kernel(d_kernel, kernel_dims); |
| Eigen::TensorMap<Eigen::Tensor<DataType, 1, DataLayout,IndexType> > gpu_result(d_result, result.dimensions()); |
| sycl_device.memcpyHostToDevice(d_input, input.data(), input_bytes); |
| sycl_device.memcpyHostToDevice(d_kernel, kernel.data(), kernel_bytes); |
| |
| gpu_result.device(sycl_device)=gpu_input.stride(stride_of_3).convolve(gpu_kernel, dims).stride(stride_of_2); |
| sycl_device.memcpyDeviceToHost(result.data(), d_result, result_bytes); |
| |
| VERIFY_IS_EQUAL(result.dimension(0), 2); |
| VERIFY_IS_APPROX(result(0), (input(0)*kernel(0) + input(3)*kernel(1) + |
| input(6)*kernel(2))); |
| VERIFY_IS_APPROX(result(1), (input(6)*kernel(0) + input(9)*kernel(1) + |
| input(12)*kernel(2))); |
| } |
| |
| template <typename Dev_selector> void tensorConvolutionPerDevice(Dev_selector& s){ |
| QueueInterface queueInterface(s); |
| auto sycl_device=Eigen::SyclDevice(&queueInterface); |
| test_larg_expr1D<float, RowMajor, int64_t>(sycl_device); |
| test_larg_expr1D<float, ColMajor, int64_t>(sycl_device); |
| test_larg_expr2D<float, RowMajor, int64_t>(sycl_device); |
| test_larg_expr2D<float, ColMajor, int64_t>(sycl_device); |
| test_larg_expr3D<float, RowMajor, int64_t>(sycl_device); |
| test_larg_expr3D<float, ColMajor, int64_t>(sycl_device); |
| test_evals<float, ColMajor, int64_t>(sycl_device); |
| test_evals<float, RowMajor, int64_t>(sycl_device); |
| test_expr<float, ColMajor, int64_t>(sycl_device); |
| test_expr<float, RowMajor, int64_t>(sycl_device); |
| test_modes<float, ColMajor, int64_t>(sycl_device); |
| test_modes<float, RowMajor, int64_t>(sycl_device); |
| test_strides<float, ColMajor, int64_t>(sycl_device); |
| test_strides<float, RowMajor, int64_t>(sycl_device); |
| } |
| |
| EIGEN_DECLARE_TEST(cxx11_tensor_convolution_sycl) { |
| for (const auto& device :Eigen::get_sycl_supported_devices()) { |
| CALL_SUBTEST(tensorConvolutionPerDevice(device)); |
| } |
| } |