| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> |
| // Copyright (C) 2013 Christian Seiler <christian@iwakd.de> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_CXX11_TENSOR_TENSOR_H |
| #define EIGEN_CXX11_TENSOR_TENSOR_H |
| |
| namespace Eigen { |
| |
| /** \class Tensor |
| * \ingroup CXX11_Tensor_Module |
| * |
| * \brief The tensor class. |
| * |
| * The %Tensor class is the work-horse for all \em dense tensors within Eigen. |
| * |
| * The %Tensor class encompasses only dynamic-size objects so far. |
| * |
| * The first two template parameters are required: |
| * \tparam Scalar_ Numeric type, e.g. float, double, int or `std::complex<float>`. |
| * User defined scalar types are supported as well (see \ref user_defined_scalars "here"). |
| * \tparam NumIndices_ Number of indices (i.e. rank of the tensor) |
| * |
| * The remaining template parameters are optional -- in most cases you don't have to worry about them. |
| * \tparam Options_ A combination of either \b #RowMajor or \b #ColMajor, and of either |
| * \b #AutoAlign or \b #DontAlign. |
| * The former controls \ref TopicStorageOrders "storage order", and defaults to column-major. The latter controls alignment, which is required |
| * for vectorization. It defaults to aligning tensors. Note that tensors currently do not support any operations that profit from vectorization. |
| * Support for such operations (i.e. adding two tensors etc.) is planned. |
| * |
| * You can access elements of tensors using normal subscripting: |
| * |
| * \code |
| * Eigen::Tensor<double, 4> t(10, 10, 10, 10); |
| * t(0, 1, 2, 3) = 42.0; |
| * \endcode |
| * |
| * This class can be extended with the help of the plugin mechanism described on the page |
| * \ref TopicCustomizing_Plugins by defining the preprocessor symbol \c EIGEN_TENSOR_PLUGIN. |
| * |
| * <i><b>Some notes:</b></i> |
| * |
| * <dl> |
| * <dt><b>Relation to other parts of Eigen:</b></dt> |
| * <dd>The midterm development goal for this class is to have a similar hierarchy as Eigen uses for matrices, so that |
| * taking blocks or using tensors in expressions is easily possible, including an interface with the vector/matrix code |
| * by providing .asMatrix() and .asVector() (or similar) methods for rank 2 and 1 tensors. However, currently, the %Tensor |
| * class does not provide any of these features and is only available as a stand-alone class that just allows for |
| * coefficient access. Also, when fixed-size tensors are implemented, the number of template arguments is likely to |
| * change dramatically.</dd> |
| * </dl> |
| * |
| * \ref TopicStorageOrders |
| */ |
| |
| template<typename Scalar_, int NumIndices_, int Options_, typename IndexType_> |
| class Tensor : public TensorBase<Tensor<Scalar_, NumIndices_, Options_, IndexType_> > |
| { |
| public: |
| typedef Tensor<Scalar_, NumIndices_, Options_, IndexType_> Self; |
| typedef TensorBase<Tensor<Scalar_, NumIndices_, Options_, IndexType_> > Base; |
| typedef typename Eigen::internal::nested<Self>::type Nested; |
| typedef typename internal::traits<Self>::StorageKind StorageKind; |
| typedef typename internal::traits<Self>::Index Index; |
| typedef Scalar_ Scalar; |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| typedef typename Base::CoeffReturnType CoeffReturnType; |
| |
| enum { |
| IsAligned = bool(EIGEN_MAX_ALIGN_BYTES>0) & !(Options_&DontAlign), |
| Layout = Options_ & RowMajor ? RowMajor : ColMajor, |
| CoordAccess = true, |
| RawAccess = true |
| }; |
| |
| static const int Options = Options_; |
| static const int NumIndices = NumIndices_; |
| typedef DSizes<Index, NumIndices_> Dimensions; |
| |
| protected: |
| TensorStorage<Scalar, Dimensions, Options> m_storage; |
| |
| #ifdef EIGEN_HAS_SFINAE |
| template<typename CustomIndices> |
| struct isOfNormalIndex{ |
| static const bool is_array = internal::is_base_of<array<Index, NumIndices>, CustomIndices>::value; |
| static const bool is_int = NumTraits<CustomIndices>::IsInteger; |
| static const bool value = is_array | is_int; |
| }; |
| #endif |
| |
| public: |
| // Metadata |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index rank() const { return NumIndices; } |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index dimension(std::size_t n) const { return m_storage.dimensions()[n]; } |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_storage.dimensions(); } |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index size() const { return m_storage.size(); } |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar *data() { return m_storage.data(); } |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar *data() const { return m_storage.data(); } |
| |
| // This makes EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED |
| // work, because that uses base().coeffRef() - and we don't yet |
| // implement a similar class hierarchy |
| inline Self& base() { return *this; } |
| inline const Self& base() const { return *this; } |
| |
| #if EIGEN_HAS_VARIADIC_TEMPLATES |
| template<typename... IndexTypes> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& coeff(Index firstIndex, Index secondIndex, IndexTypes... otherIndices) const |
| { |
| // The number of indices used to access a tensor coefficient must be equal to the rank of the tensor. |
| EIGEN_STATIC_ASSERT(sizeof...(otherIndices) + 2 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE) |
| return coeff(array<Index, NumIndices>{{firstIndex, secondIndex, otherIndices...}}); |
| } |
| #endif |
| |
| // normal indices |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& coeff(const array<Index, NumIndices>& indices) const |
| { |
| eigen_internal_assert(checkIndexRange(indices)); |
| return m_storage.data()[linearizedIndex(indices)]; |
| } |
| |
| // custom indices |
| #ifdef EIGEN_HAS_SFINAE |
| template<typename CustomIndices, |
| EIGEN_SFINAE_ENABLE_IF( !(isOfNormalIndex<CustomIndices>::value) ) |
| > |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& coeff(CustomIndices& indices) const |
| { |
| return coeff(internal::customIndices2Array<Index,NumIndices>(indices)); |
| } |
| #endif |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& coeff() const |
| { |
| EIGEN_STATIC_ASSERT(NumIndices == 0, YOU_MADE_A_PROGRAMMING_MISTAKE); |
| return m_storage.data()[0]; |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& coeff(Index index) const |
| { |
| eigen_internal_assert(index >= 0 && index < size()); |
| return m_storage.data()[index]; |
| } |
| |
| #if EIGEN_HAS_VARIADIC_TEMPLATES |
| template<typename... IndexTypes> |
| inline Scalar& coeffRef(Index firstIndex, Index secondIndex, IndexTypes... otherIndices) |
| { |
| // The number of indices used to access a tensor coefficient must be equal to the rank of the tensor. |
| EIGEN_STATIC_ASSERT(sizeof...(otherIndices) + 2 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE) |
| return coeffRef(array<Index, NumIndices>{{firstIndex, secondIndex, otherIndices...}}); |
| } |
| #endif |
| |
| // normal indices |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& coeffRef(const array<Index, NumIndices>& indices) |
| { |
| eigen_internal_assert(checkIndexRange(indices)); |
| return m_storage.data()[linearizedIndex(indices)]; |
| } |
| |
| // custom indices |
| #ifdef EIGEN_HAS_SFINAE |
| template<typename CustomIndices, |
| EIGEN_SFINAE_ENABLE_IF( !(isOfNormalIndex<CustomIndices>::value) ) |
| > |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& coeffRef(CustomIndices& indices) |
| { |
| return coeffRef(internal::customIndices2Array<Index,NumIndices>(indices)); |
| } |
| #endif |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& coeffRef() |
| { |
| EIGEN_STATIC_ASSERT(NumIndices == 0, YOU_MADE_A_PROGRAMMING_MISTAKE); |
| return m_storage.data()[0]; |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& coeffRef(Index index) |
| { |
| eigen_internal_assert(index >= 0 && index < size()); |
| return m_storage.data()[index]; |
| } |
| |
| #if EIGEN_HAS_VARIADIC_TEMPLATES |
| template<typename... IndexTypes> |
| inline const Scalar& operator()(Index firstIndex, Index secondIndex, IndexTypes... otherIndices) const |
| { |
| // The number of indices used to access a tensor coefficient must be equal to the rank of the tensor. |
| EIGEN_STATIC_ASSERT(sizeof...(otherIndices) + 2 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE) |
| return this->operator()(array<Index, NumIndices>{{firstIndex, secondIndex, otherIndices...}}); |
| } |
| #else |
| EIGEN_DEVICE_FUNC |
| EIGEN_STRONG_INLINE const Scalar& operator()(Index i0, Index i1) const |
| { |
| return coeff(array<Index, 2>(i0, i1)); |
| } |
| EIGEN_DEVICE_FUNC |
| EIGEN_STRONG_INLINE const Scalar& operator()(Index i0, Index i1, Index i2) const |
| { |
| return coeff(array<Index, 3>(i0, i1, i2)); |
| } |
| EIGEN_DEVICE_FUNC |
| EIGEN_STRONG_INLINE const Scalar& operator()(Index i0, Index i1, Index i2, Index i3) const |
| { |
| return coeff(array<Index, 4>(i0, i1, i2, i3)); |
| } |
| EIGEN_DEVICE_FUNC |
| EIGEN_STRONG_INLINE const Scalar& operator()(Index i0, Index i1, Index i2, Index i3, Index i4) const |
| { |
| return coeff(array<Index, 5>(i0, i1, i2, i3, i4)); |
| } |
| #endif |
| |
| // custom indices |
| #ifdef EIGEN_HAS_SFINAE |
| template<typename CustomIndices, |
| EIGEN_SFINAE_ENABLE_IF( !(isOfNormalIndex<CustomIndices>::value) ) |
| > |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& operator()(CustomIndices& indices) const |
| { |
| return coeff(internal::customIndices2Array<Index,NumIndices>(indices)); |
| } |
| #endif |
| |
| // normal indices |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& operator()(const array<Index, NumIndices>& indices) const |
| { |
| return coeff(indices); |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& operator()(Index index) const |
| { |
| eigen_internal_assert(index >= 0 && index < size()); |
| return coeff(index); |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& operator()() const |
| { |
| EIGEN_STATIC_ASSERT(NumIndices == 0, YOU_MADE_A_PROGRAMMING_MISTAKE); |
| return coeff(); |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& operator[](Index index) const |
| { |
| // The bracket operator is only for vectors, use the parenthesis operator instead. |
| EIGEN_STATIC_ASSERT(NumIndices == 1, YOU_MADE_A_PROGRAMMING_MISTAKE); |
| return coeff(index); |
| } |
| |
| #if EIGEN_HAS_VARIADIC_TEMPLATES |
| template<typename... IndexTypes> |
| inline Scalar& operator()(Index firstIndex, Index secondIndex, IndexTypes... otherIndices) |
| { |
| // The number of indices used to access a tensor coefficient must be equal to the rank of the tensor. |
| EIGEN_STATIC_ASSERT(sizeof...(otherIndices) + 2 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE) |
| return operator()(array<Index, NumIndices>{{firstIndex, secondIndex, otherIndices...}}); |
| } |
| #else |
| EIGEN_DEVICE_FUNC |
| EIGEN_STRONG_INLINE Scalar& operator()(Index i0, Index i1) |
| { |
| return coeffRef(array<Index, 2>(i0, i1)); |
| } |
| EIGEN_DEVICE_FUNC |
| EIGEN_STRONG_INLINE Scalar& operator()(Index i0, Index i1, Index i2) |
| { |
| return coeffRef(array<Index, 3>(i0, i1, i2)); |
| } |
| EIGEN_DEVICE_FUNC |
| EIGEN_STRONG_INLINE Scalar& operator()(Index i0, Index i1, Index i2, Index i3) |
| { |
| return coeffRef(array<Index, 4>(i0, i1, i2, i3)); |
| } |
| EIGEN_DEVICE_FUNC |
| EIGEN_STRONG_INLINE Scalar& operator()(Index i0, Index i1, Index i2, Index i3, Index i4) |
| { |
| return coeffRef(array<Index, 5>(i0, i1, i2, i3, i4)); |
| } |
| #endif |
| |
| // normal indices |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& operator()(const array<Index, NumIndices>& indices) |
| { |
| return coeffRef(indices); |
| } |
| |
| // custom indices |
| #ifdef EIGEN_HAS_SFINAE |
| template<typename CustomIndices, |
| EIGEN_SFINAE_ENABLE_IF( !(isOfNormalIndex<CustomIndices>::value) ) |
| > |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& operator()(CustomIndices& indices) |
| { |
| return coeffRef(internal::customIndices2Array<Index,NumIndices>(indices)); |
| } |
| #endif |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& operator()(Index index) |
| { |
| eigen_assert(index >= 0 && index < size()); |
| return coeffRef(index); |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& operator()() |
| { |
| EIGEN_STATIC_ASSERT(NumIndices == 0, YOU_MADE_A_PROGRAMMING_MISTAKE); |
| return coeffRef(); |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& operator[](Index index) |
| { |
| // The bracket operator is only for vectors, use the parenthesis operator instead |
| EIGEN_STATIC_ASSERT(NumIndices == 1, YOU_MADE_A_PROGRAMMING_MISTAKE) |
| return coeffRef(index); |
| } |
| |
| EIGEN_DEVICE_FUNC |
| EIGEN_STRONG_INLINE Tensor() |
| : m_storage() |
| { |
| } |
| |
| EIGEN_DEVICE_FUNC |
| EIGEN_STRONG_INLINE Tensor(const Self& other) |
| : m_storage(other.m_storage) |
| { |
| } |
| |
| #if EIGEN_HAS_VARIADIC_TEMPLATES |
| template<typename... IndexTypes> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Tensor(Index firstDimension, IndexTypes... otherDimensions) |
| : m_storage(firstDimension, otherDimensions...) |
| { |
| // The number of dimensions used to construct a tensor must be equal to the rank of the tensor. |
| EIGEN_STATIC_ASSERT(sizeof...(otherDimensions) + 1 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE) |
| } |
| #else |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit Tensor(Index dim1) |
| : m_storage(dim1, array<Index, 1>(dim1)) |
| { |
| EIGEN_STATIC_ASSERT(1 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE) |
| } |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Tensor(Index dim1, Index dim2) |
| : m_storage(dim1*dim2, array<Index, 2>(dim1, dim2)) |
| { |
| EIGEN_STATIC_ASSERT(2 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE) |
| } |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Tensor(Index dim1, Index dim2, Index dim3) |
| : m_storage(dim1*dim2*dim3, array<Index, 3>(dim1, dim2, dim3)) |
| { |
| EIGEN_STATIC_ASSERT(3 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE) |
| } |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Tensor(Index dim1, Index dim2, Index dim3, Index dim4) |
| : m_storage(dim1*dim2*dim3*dim4, array<Index, 4>(dim1, dim2, dim3, dim4)) |
| { |
| EIGEN_STATIC_ASSERT(4 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE) |
| } |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Tensor(Index dim1, Index dim2, Index dim3, Index dim4, Index dim5) |
| : m_storage(dim1*dim2*dim3*dim4*dim5, array<Index, 5>(dim1, dim2, dim3, dim4, dim5)) |
| { |
| EIGEN_STATIC_ASSERT(5 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE) |
| } |
| #endif |
| |
| /** Normal Dimension */ |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit Tensor(const array<Index, NumIndices>& dimensions) |
| : m_storage(internal::array_prod(dimensions), dimensions) |
| { |
| EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED |
| } |
| |
| template<typename OtherDerived> |
| EIGEN_DEVICE_FUNC |
| EIGEN_STRONG_INLINE Tensor(const TensorBase<OtherDerived, ReadOnlyAccessors>& other) |
| { |
| typedef TensorAssignOp<Tensor, const OtherDerived> Assign; |
| Assign assign(*this, other.derived()); |
| resize(TensorEvaluator<const Assign, DefaultDevice>(assign, DefaultDevice()).dimensions()); |
| internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice()); |
| } |
| |
| template<typename OtherDerived> |
| EIGEN_DEVICE_FUNC |
| EIGEN_STRONG_INLINE Tensor(const TensorBase<OtherDerived, WriteAccessors>& other) |
| { |
| typedef TensorAssignOp<Tensor, const OtherDerived> Assign; |
| Assign assign(*this, other.derived()); |
| resize(TensorEvaluator<const Assign, DefaultDevice>(assign, DefaultDevice()).dimensions()); |
| internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice()); |
| } |
| |
| #if EIGEN_HAS_RVALUE_REFERENCES |
| EIGEN_DEVICE_FUNC |
| EIGEN_STRONG_INLINE Tensor(Self&& other) |
| : Tensor() |
| { |
| m_storage.swap(other.m_storage); |
| } |
| EIGEN_DEVICE_FUNC |
| EIGEN_STRONG_INLINE Tensor& operator=(Self&& other) |
| { |
| m_storage.swap(other.m_storage); |
| return *this; |
| } |
| #endif |
| |
| EIGEN_DEVICE_FUNC |
| EIGEN_STRONG_INLINE Tensor& operator=(const Tensor& other) |
| { |
| typedef TensorAssignOp<Tensor, const Tensor> Assign; |
| Assign assign(*this, other); |
| resize(TensorEvaluator<const Assign, DefaultDevice>(assign, DefaultDevice()).dimensions()); |
| internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice()); |
| return *this; |
| } |
| template<typename OtherDerived> |
| EIGEN_DEVICE_FUNC |
| EIGEN_STRONG_INLINE Tensor& operator=(const OtherDerived& other) |
| { |
| typedef TensorAssignOp<Tensor, const OtherDerived> Assign; |
| Assign assign(*this, other); |
| resize(TensorEvaluator<const Assign, DefaultDevice>(assign, DefaultDevice()).dimensions()); |
| internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice()); |
| return *this; |
| } |
| |
| #if EIGEN_HAS_VARIADIC_TEMPLATES |
| template<typename... IndexTypes> EIGEN_DEVICE_FUNC |
| void resize(Index firstDimension, IndexTypes... otherDimensions) |
| { |
| // The number of dimensions used to resize a tensor must be equal to the rank of the tensor. |
| EIGEN_STATIC_ASSERT(sizeof...(otherDimensions) + 1 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE) |
| resize(array<Index, NumIndices>{{firstDimension, otherDimensions...}}); |
| } |
| #endif |
| |
| /** Normal Dimension */ |
| EIGEN_DEVICE_FUNC void resize(const array<Index, NumIndices>& dimensions) |
| { |
| int i; |
| Index size = Index(1); |
| for (i = 0; i < NumIndices; i++) { |
| internal::check_rows_cols_for_overflow<Dynamic>::run(size, dimensions[i]); |
| size *= dimensions[i]; |
| } |
| #ifdef EIGEN_INITIALIZE_COEFFS |
| bool size_changed = size != this->size(); |
| m_storage.resize(size, dimensions); |
| if(size_changed) EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED |
| #else |
| m_storage.resize(size, dimensions); |
| #endif |
| } |
| |
| // Why this overload, DSizes is derived from array ??? // |
| EIGEN_DEVICE_FUNC void resize(const DSizes<Index, NumIndices>& dimensions) { |
| array<Index, NumIndices> dims; |
| for (int i = 0; i < NumIndices; ++i) { |
| dims[i] = dimensions[i]; |
| } |
| resize(dims); |
| } |
| |
| EIGEN_DEVICE_FUNC |
| void resize() |
| { |
| EIGEN_STATIC_ASSERT(NumIndices == 0, YOU_MADE_A_PROGRAMMING_MISTAKE); |
| // Nothing to do: rank 0 tensors have fixed size |
| } |
| |
| #ifdef EIGEN_HAS_INDEX_LIST |
| template <typename FirstType, typename... OtherTypes> |
| EIGEN_DEVICE_FUNC |
| void resize(const Eigen::IndexList<FirstType, OtherTypes...>& dimensions) { |
| array<Index, NumIndices> dims; |
| for (int i = 0; i < NumIndices; ++i) { |
| dims[i] = static_cast<Index>(dimensions[i]); |
| } |
| resize(dims); |
| } |
| #endif |
| |
| /** Custom Dimension */ |
| #ifdef EIGEN_HAS_SFINAE |
| template<typename CustomDimension, |
| EIGEN_SFINAE_ENABLE_IF( !(isOfNormalIndex<CustomDimension>::value) ) |
| > |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void resize(CustomDimension& dimensions) |
| { |
| resize(internal::customIndices2Array<Index,NumIndices>(dimensions)); |
| } |
| #endif |
| |
| #ifndef EIGEN_EMULATE_CXX11_META_H |
| template <typename std::ptrdiff_t... Indices> |
| EIGEN_DEVICE_FUNC |
| void resize(const Sizes<Indices...>& dimensions) { |
| array<Index, NumIndices> dims; |
| for (int i = 0; i < NumIndices; ++i) { |
| dims[i] = static_cast<Index>(dimensions[i]); |
| } |
| resize(dims); |
| } |
| #else |
| template <std::size_t V1, std::size_t V2, std::size_t V3, std::size_t V4, std::size_t V5> |
| EIGEN_DEVICE_FUNC |
| void resize(const Sizes<V1, V2, V3, V4, V5>& dimensions) { |
| array<Index, NumIndices> dims; |
| for (int i = 0; i < NumIndices; ++i) { |
| dims[i] = static_cast<Index>(dimensions[i]); |
| } |
| resize(dims); |
| } |
| #endif |
| |
| protected: |
| |
| bool checkIndexRange(const array<Index, NumIndices>& indices) const |
| { |
| using internal::array_apply_and_reduce; |
| using internal::array_zip_and_reduce; |
| using internal::greater_equal_zero_op; |
| using internal::logical_and_op; |
| using internal::lesser_op; |
| |
| return |
| // check whether the indices are all >= 0 |
| array_apply_and_reduce<logical_and_op, greater_equal_zero_op>(indices) && |
| // check whether the indices fit in the dimensions |
| array_zip_and_reduce<logical_and_op, lesser_op>(indices, m_storage.dimensions()); |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index linearizedIndex(const array<Index, NumIndices>& indices) const |
| { |
| if (Options&RowMajor) { |
| return m_storage.dimensions().IndexOfRowMajor(indices); |
| } else { |
| return m_storage.dimensions().IndexOfColMajor(indices); |
| } |
| } |
| }; |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_CXX11_TENSOR_TENSOR_H |