| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008-2016 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_NULLARY_FUNCTORS_H |
| #define EIGEN_NULLARY_FUNCTORS_H |
| |
| // IWYU pragma: private |
| #include "../InternalHeaderCheck.h" |
| |
| namespace Eigen { |
| |
| namespace internal { |
| |
| template <typename Scalar> |
| struct scalar_constant_op { |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE scalar_constant_op(const scalar_constant_op& other) : m_other(other.m_other) {} |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE scalar_constant_op(const Scalar& other) : m_other(other) {} |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator()() const { return m_other; } |
| template <typename PacketType> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const PacketType packetOp() const { |
| return internal::pset1<PacketType>(m_other); |
| } |
| const Scalar m_other; |
| }; |
| template <typename Scalar> |
| struct functor_traits<scalar_constant_op<Scalar> > { |
| enum { |
| Cost = 0 /* as the constant value should be loaded in register only once for the whole expression */, |
| PacketAccess = packet_traits<Scalar>::Vectorizable, |
| IsRepeatable = true |
| }; |
| }; |
| |
| template <typename Scalar> |
| struct scalar_identity_op { |
| template <typename IndexType> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator()(IndexType row, IndexType col) const { |
| return row == col ? Scalar(1) : Scalar(0); |
| } |
| }; |
| template <typename Scalar> |
| struct functor_traits<scalar_identity_op<Scalar> > { |
| enum { Cost = NumTraits<Scalar>::AddCost, PacketAccess = false, IsRepeatable = true }; |
| }; |
| |
| template <typename Scalar, bool IsInteger> |
| struct linspaced_op_impl; |
| |
| template <typename Scalar> |
| struct linspaced_op_impl<Scalar, /*IsInteger*/ false> { |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| |
| EIGEN_DEVICE_FUNC linspaced_op_impl(const Scalar& low, const Scalar& high, Index num_steps) |
| : m_low(low), |
| m_high(high), |
| m_size1(num_steps == 1 ? 1 : num_steps - 1), |
| m_step(num_steps == 1 ? Scalar() : Scalar((high - low) / RealScalar(num_steps - 1))), |
| m_flip(numext::abs(high) < numext::abs(low)) {} |
| |
| template <typename IndexType> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator()(IndexType i) const { |
| if (m_flip) |
| return (i == 0) ? m_low : Scalar(m_high - RealScalar(m_size1 - i) * m_step); |
| else |
| return (i == m_size1) ? m_high : Scalar(m_low + RealScalar(i) * m_step); |
| } |
| |
| template <typename Packet, typename IndexType> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(IndexType i) const { |
| // Principle: |
| // [low, ..., low] + ( [step, ..., step] * ( [i, ..., i] + [0, ..., size] ) ) |
| if (m_flip) { |
| Packet pi = plset<Packet>(Scalar(i - m_size1)); |
| Packet res = padd(pset1<Packet>(m_high), pmul(pset1<Packet>(m_step), pi)); |
| if (EIGEN_PREDICT_TRUE(i != 0)) return res; |
| Packet mask = pcmp_lt(pset1<Packet>(0), plset<Packet>(0)); |
| return pselect<Packet>(mask, res, pset1<Packet>(m_low)); |
| } else { |
| Packet pi = plset<Packet>(Scalar(i)); |
| Packet res = padd(pset1<Packet>(m_low), pmul(pset1<Packet>(m_step), pi)); |
| if (EIGEN_PREDICT_TRUE(i != m_size1 - unpacket_traits<Packet>::size + 1)) return res; |
| Packet mask = pcmp_lt(plset<Packet>(0), pset1<Packet>(unpacket_traits<Packet>::size - 1)); |
| return pselect<Packet>(mask, res, pset1<Packet>(m_high)); |
| } |
| } |
| |
| const Scalar m_low; |
| const Scalar m_high; |
| const Index m_size1; |
| const Scalar m_step; |
| const bool m_flip; |
| }; |
| |
| template <typename Scalar> |
| struct linspaced_op_impl<Scalar, /*IsInteger*/ true> { |
| EIGEN_DEVICE_FUNC linspaced_op_impl(const Scalar& low, const Scalar& high, Index num_steps) |
| : m_low(low), |
| m_multiplier((high - low) / convert_index<Scalar>(num_steps <= 1 ? 1 : num_steps - 1)), |
| m_divisor(convert_index<Scalar>((high >= low ? num_steps : -num_steps) + (high - low)) / |
| ((numext::abs(high - low) + 1) == 0 ? 1 : (numext::abs(high - low) + 1))), |
| m_use_divisor(num_steps > 1 && (numext::abs(high - low) + 1) < num_steps) {} |
| |
| template <typename IndexType> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator()(IndexType i) const { |
| if (m_use_divisor) |
| return m_low + convert_index<Scalar>(i) / m_divisor; |
| else |
| return m_low + convert_index<Scalar>(i) * m_multiplier; |
| } |
| |
| const Scalar m_low; |
| const Scalar m_multiplier; |
| const Scalar m_divisor; |
| const bool m_use_divisor; |
| }; |
| |
| // ----- Linspace functor ---------------------------------------------------------------- |
| |
| // Forward declaration (we default to random access which does not really give |
| // us a speed gain when using packet access but it allows to use the functor in |
| // nested expressions). |
| template <typename Scalar> |
| struct linspaced_op; |
| template <typename Scalar> |
| struct functor_traits<linspaced_op<Scalar> > { |
| enum { |
| Cost = 1, |
| PacketAccess = |
| (!NumTraits<Scalar>::IsInteger) && packet_traits<Scalar>::HasSetLinear && packet_traits<Scalar>::HasBlend, |
| /*&& ((!NumTraits<Scalar>::IsInteger) || packet_traits<Scalar>::HasDiv),*/ // <- vectorization for integer is |
| // currently disabled |
| IsRepeatable = true |
| }; |
| }; |
| template <typename Scalar> |
| struct linspaced_op { |
| EIGEN_DEVICE_FUNC linspaced_op(const Scalar& low, const Scalar& high, Index num_steps) |
| : impl((num_steps == 1 ? high : low), high, num_steps) {} |
| |
| template <typename IndexType> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator()(IndexType i) const { |
| return impl(i); |
| } |
| |
| template <typename Packet, typename IndexType> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(IndexType i) const { |
| return impl.template packetOp<Packet>(i); |
| } |
| |
| // This proxy object handles the actual required temporaries and the different |
| // implementations (integer vs. floating point). |
| const linspaced_op_impl<Scalar, NumTraits<Scalar>::IsInteger> impl; |
| }; |
| |
| template <typename Scalar> |
| struct equalspaced_op { |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| |
| EIGEN_DEVICE_FUNC equalspaced_op(const Scalar& start, const Scalar& step) : m_start(start), m_step(step) {} |
| template <typename IndexType> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator()(IndexType i) const { |
| return m_start + m_step * static_cast<Scalar>(i); |
| } |
| template <typename Packet, typename IndexType> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(IndexType i) const { |
| const Packet cst_start = pset1<Packet>(m_start); |
| const Packet cst_step = pset1<Packet>(m_step); |
| const Packet cst_lin0 = plset<Packet>(Scalar(0)); |
| const Packet cst_offset = pmadd(cst_lin0, cst_step, cst_start); |
| |
| Packet i_packet = pset1<Packet>(static_cast<Scalar>(i)); |
| return pmadd(i_packet, cst_step, cst_offset); |
| } |
| const Scalar m_start; |
| const Scalar m_step; |
| }; |
| |
| template <typename Scalar> |
| struct functor_traits<equalspaced_op<Scalar> > { |
| enum { |
| Cost = NumTraits<Scalar>::AddCost + NumTraits<Scalar>::MulCost, |
| PacketAccess = |
| packet_traits<Scalar>::HasSetLinear && packet_traits<Scalar>::HasMul && packet_traits<Scalar>::HasAdd, |
| IsRepeatable = true |
| }; |
| }; |
| |
| // Linear access is automatically determined from the operator() prototypes available for the given functor. |
| // If it exposes an operator()(i,j), then we assume the i and j coefficients are required independently |
| // and linear access is not possible. In all other cases, linear access is enabled. |
| // Users should not have to deal with this structure. |
| template <typename Functor> |
| struct functor_has_linear_access { |
| enum { ret = !has_binary_operator<Functor>::value }; |
| }; |
| |
| // For unreliable compilers, let's specialize the has_*ary_operator |
| // helpers so that at least built-in nullary functors work fine. |
| #if !(EIGEN_COMP_MSVC || EIGEN_COMP_GNUC || (EIGEN_COMP_ICC >= 1600)) |
| template <typename Scalar, typename IndexType> |
| struct has_nullary_operator<scalar_constant_op<Scalar>, IndexType> { |
| enum { value = 1 }; |
| }; |
| template <typename Scalar, typename IndexType> |
| struct has_unary_operator<scalar_constant_op<Scalar>, IndexType> { |
| enum { value = 0 }; |
| }; |
| template <typename Scalar, typename IndexType> |
| struct has_binary_operator<scalar_constant_op<Scalar>, IndexType> { |
| enum { value = 0 }; |
| }; |
| |
| template <typename Scalar, typename IndexType> |
| struct has_nullary_operator<scalar_identity_op<Scalar>, IndexType> { |
| enum { value = 0 }; |
| }; |
| template <typename Scalar, typename IndexType> |
| struct has_unary_operator<scalar_identity_op<Scalar>, IndexType> { |
| enum { value = 0 }; |
| }; |
| template <typename Scalar, typename IndexType> |
| struct has_binary_operator<scalar_identity_op<Scalar>, IndexType> { |
| enum { value = 1 }; |
| }; |
| |
| template <typename Scalar, typename IndexType> |
| struct has_nullary_operator<linspaced_op<Scalar>, IndexType> { |
| enum { value = 0 }; |
| }; |
| template <typename Scalar, typename IndexType> |
| struct has_unary_operator<linspaced_op<Scalar>, IndexType> { |
| enum { value = 1 }; |
| }; |
| template <typename Scalar, typename IndexType> |
| struct has_binary_operator<linspaced_op<Scalar>, IndexType> { |
| enum { value = 0 }; |
| }; |
| |
| template <typename Scalar, typename IndexType> |
| struct has_nullary_operator<scalar_random_op<Scalar>, IndexType> { |
| enum { value = 1 }; |
| }; |
| template <typename Scalar, typename IndexType> |
| struct has_unary_operator<scalar_random_op<Scalar>, IndexType> { |
| enum { value = 0 }; |
| }; |
| template <typename Scalar, typename IndexType> |
| struct has_binary_operator<scalar_random_op<Scalar>, IndexType> { |
| enum { value = 0 }; |
| }; |
| #endif |
| |
| } // end namespace internal |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_NULLARY_FUNCTORS_H |