blob: c5394430ffb419ef5cd7d312cd571e391d9fc416 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Pedro Gonnet (pedro.gonnet@gmail.com)
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_MATH_FUNCTIONS_AVX_H
#define EIGEN_MATH_FUNCTIONS_AVX_H
/* The sin and cos functions of this file are loosely derived from
* Julien Pommier's sse math library: http://gruntthepeon.free.fr/ssemath/
*/
namespace Eigen {
namespace internal {
template <>
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8f
psin<Packet8f>(const Packet8f& _x) {
return psin_float(_x);
}
template <>
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8f
pcos<Packet8f>(const Packet8f& _x) {
return pcos_float(_x);
}
template <>
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8f
plog<Packet8f>(const Packet8f& _x) {
return plog_float(_x);
}
template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
Packet8f plog1p<Packet8f>(const Packet8f& _x) {
return generic_plog1p(_x);
}
template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
Packet8f pexpm1<Packet8f>(const Packet8f& _x) {
return generic_expm1(_x);
}
// Exponential function. Works by writing "x = m*log(2) + r" where
// "m = floor(x/log(2)+1/2)" and "r" is the remainder. The result is then
// "exp(x) = 2^m*exp(r)" where exp(r) is in the range [-1,1).
template <>
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8f
pexp<Packet8f>(const Packet8f& _x) {
return pexp_float(_x);
}
// Hyperbolic Tangent function.
template <>
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8f
ptanh<Packet8f>(const Packet8f& x) {
return internal::generic_fast_tanh_float(x);
}
// Exponential function for doubles.
template <>
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet4d
pexp<Packet4d>(const Packet4d& x) {
return pexp_double(x);
}
// Functions for sqrt.
// The EIGEN_FAST_MATH version uses the _mm_rsqrt_ps approximation and one step
// of Newton's method, at a cost of 1-2 bits of precision as opposed to the
// exact solution. It does not handle +inf, or denormalized numbers correctly.
// The main advantage of this approach is not just speed, but also the fact that
// it can be inlined and pipelined with other computations, further reducing its
// effective latency. This is similar to Quake3's fast inverse square root.
// For detail see here: http://www.beyond3d.com/content/articles/8/
#if EIGEN_FAST_MATH
template <>
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8f
psqrt<Packet8f>(const Packet8f& _x) {
Packet8f half = pmul(_x, pset1<Packet8f>(.5f));
Packet8f denormal_mask = _mm256_and_ps(
_mm256_cmp_ps(_x, pset1<Packet8f>((std::numeric_limits<float>::min)()),
_CMP_LT_OQ),
_mm256_cmp_ps(_x, _mm256_setzero_ps(), _CMP_GE_OQ));
// Compute approximate reciprocal sqrt.
Packet8f x = _mm256_rsqrt_ps(_x);
// Do a single step of Newton's iteration.
x = pmul(x, psub(pset1<Packet8f>(1.5f), pmul(half, pmul(x,x))));
// Flush results for denormals to zero.
return _mm256_andnot_ps(denormal_mask, pmul(_x,x));
}
#else
template <> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
Packet8f psqrt<Packet8f>(const Packet8f& x) {
return _mm256_sqrt_ps(x);
}
#endif
template <> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
Packet4d psqrt<Packet4d>(const Packet4d& x) {
return _mm256_sqrt_pd(x);
}
#if EIGEN_FAST_MATH
template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
Packet8f prsqrt<Packet8f>(const Packet8f& _x) {
_EIGEN_DECLARE_CONST_Packet8f_FROM_INT(inf, 0x7f800000);
_EIGEN_DECLARE_CONST_Packet8f(one_point_five, 1.5f);
_EIGEN_DECLARE_CONST_Packet8f(minus_half, -0.5f);
_EIGEN_DECLARE_CONST_Packet8f_FROM_INT(flt_min, 0x00800000);
Packet8f neg_half = pmul(_x, p8f_minus_half);
// select only the inverse sqrt of positive normal inputs (denormals are
// flushed to zero and cause infs as well).
Packet8f lt_min_mask = _mm256_cmp_ps(_x, p8f_flt_min, _CMP_LT_OQ);
Packet8f inf_mask = _mm256_cmp_ps(_x, p8f_inf, _CMP_EQ_OQ);
Packet8f not_normal_finite_mask = _mm256_or_ps(lt_min_mask, inf_mask);
// Compute an approximate result using the rsqrt intrinsic.
Packet8f y_approx = _mm256_rsqrt_ps(_x);
// Do a single step of Newton-Raphson iteration to improve the approximation.
// This uses the formula y_{n+1} = y_n * (1.5 - y_n * (0.5 * x) * y_n).
// It is essential to evaluate the inner term like this because forming
// y_n^2 may over- or underflow.
Packet8f y_newton = pmul(y_approx, pmadd(y_approx, pmul(neg_half, y_approx), p8f_one_point_five));
// Select the result of the Newton-Raphson step for positive normal arguments.
// For other arguments, choose the output of the intrinsic. This will
// return rsqrt(+inf) = 0, rsqrt(x) = NaN if x < 0, and rsqrt(x) = +inf if
// x is zero or a positive denormalized float (equivalent to flushing positive
// denormalized inputs to zero).
return pselect<Packet8f>(not_normal_finite_mask, y_approx, y_newton);
}
#else
template <> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
Packet8f prsqrt<Packet8f>(const Packet8f& x) {
_EIGEN_DECLARE_CONST_Packet8f(one, 1.0f);
return _mm256_div_ps(p8f_one, _mm256_sqrt_ps(x));
}
#endif
template <> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
Packet4d prsqrt<Packet4d>(const Packet4d& x) {
_EIGEN_DECLARE_CONST_Packet4d(one, 1.0);
return _mm256_div_pd(p4d_one, _mm256_sqrt_pd(x));
}
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_MATH_FUNCTIONS_AVX_H