| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| /* |
| |
| * NOTE: This file is the modified version of [s,d,c,z]memory.c files in SuperLU |
| |
| * -- SuperLU routine (version 3.1) -- |
| * Univ. of California Berkeley, Xerox Palo Alto Research Center, |
| * and Lawrence Berkeley National Lab. |
| * August 1, 2008 |
| * |
| * Copyright (c) 1994 by Xerox Corporation. All rights reserved. |
| * |
| * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY |
| * EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK. |
| * |
| * Permission is hereby granted to use or copy this program for any |
| * purpose, provided the above notices are retained on all copies. |
| * Permission to modify the code and to distribute modified code is |
| * granted, provided the above notices are retained, and a notice that |
| * the code was modified is included with the above copyright notice. |
| */ |
| |
| #ifndef EIGEN_SPARSELU_MEMORY |
| #define EIGEN_SPARSELU_MEMORY |
| |
| namespace Eigen { |
| namespace internal { |
| |
| enum { LUNoMarker = 3 }; |
| enum {emptyIdxLU = -1}; |
| inline Index LUnumTempV(Index& m, Index& w, Index& t, Index& b) |
| { |
| return (std::max)(m, (t+b)*w); |
| } |
| |
| template< typename Scalar> |
| inline Index LUTempSpace(Index&m, Index& w) |
| { |
| return (2*w + 4 + LUNoMarker) * m * sizeof(Index) + (w + 1) * m * sizeof(Scalar); |
| } |
| |
| |
| |
| |
| /** |
| * Expand the existing storage to accommodate more fill-ins |
| * \param vec Valid pointer to the vector to allocate or expand |
| * \param[in,out] length At input, contain the current length of the vector that is to be increased. At output, length of the newly allocated vector |
| * \param[in] nbElts Current number of elements in the factors |
| * \param keep_prev 1: use length and do not expand the vector; 0: compute new_len and expand |
| * \param[in,out] num_expansions Number of times the memory has been expanded |
| */ |
| template <typename Scalar, typename StorageIndex> |
| template <typename VectorType> |
| Index SparseLUImpl<Scalar,StorageIndex>::expand(VectorType& vec, Index& length, Index nbElts, Index keep_prev, Index& num_expansions) |
| { |
| |
| float alpha = 1.5; // Ratio of the memory increase |
| Index new_len; // New size of the allocated memory |
| |
| if(num_expansions == 0 || keep_prev) |
| new_len = length ; // First time allocate requested |
| else |
| new_len = (std::max)(length+1,Index(alpha * length)); |
| |
| VectorType old_vec; // Temporary vector to hold the previous values |
| if (nbElts > 0 ) |
| old_vec = vec.segment(0,nbElts); |
| |
| //Allocate or expand the current vector |
| #ifdef EIGEN_EXCEPTIONS |
| try |
| #endif |
| { |
| vec.resize(new_len); |
| } |
| #ifdef EIGEN_EXCEPTIONS |
| catch(std::bad_alloc& ) |
| #else |
| if(!vec.size()) |
| #endif |
| { |
| if (!num_expansions) |
| { |
| // First time to allocate from LUMemInit() |
| // Let LUMemInit() deals with it. |
| return -1; |
| } |
| if (keep_prev) |
| { |
| // In this case, the memory length should not not be reduced |
| return new_len; |
| } |
| else |
| { |
| // Reduce the size and increase again |
| Index tries = 0; // Number of attempts |
| do |
| { |
| alpha = (alpha + 1)/2; |
| new_len = (std::max)(length+1,Index(alpha * length)); |
| #ifdef EIGEN_EXCEPTIONS |
| try |
| #endif |
| { |
| vec.resize(new_len); |
| } |
| #ifdef EIGEN_EXCEPTIONS |
| catch(std::bad_alloc& ) |
| #else |
| if (!vec.size()) |
| #endif |
| { |
| tries += 1; |
| if ( tries > 10) return new_len; |
| } |
| } while (!vec.size()); |
| } |
| } |
| //Copy the previous values to the newly allocated space |
| if (nbElts > 0) |
| vec.segment(0, nbElts) = old_vec; |
| |
| |
| length = new_len; |
| if(num_expansions) ++num_expansions; |
| return 0; |
| } |
| |
| /** |
| * \brief Allocate various working space for the numerical factorization phase. |
| * \param m number of rows of the input matrix |
| * \param n number of columns |
| * \param annz number of initial nonzeros in the matrix |
| * \param lwork if lwork=-1, this routine returns an estimated size of the required memory |
| * \param glu persistent data to facilitate multiple factors : will be deleted later ?? |
| * \param fillratio estimated ratio of fill in the factors |
| * \param panel_size Size of a panel |
| * \return an estimated size of the required memory if lwork = -1; otherwise, return the size of actually allocated memory when allocation failed, and 0 on success |
| * \note Unlike SuperLU, this routine does not support successive factorization with the same pattern and the same row permutation |
| */ |
| template <typename Scalar, typename StorageIndex> |
| Index SparseLUImpl<Scalar,StorageIndex>::memInit(Index m, Index n, Index annz, Index lwork, Index fillratio, Index panel_size, GlobalLU_t& glu) |
| { |
| Index& num_expansions = glu.num_expansions; //No memory expansions so far |
| num_expansions = 0; |
| glu.nzumax = glu.nzlumax = (std::min)(fillratio * (annz+1) / n, m) * n; // estimated number of nonzeros in U |
| glu.nzlmax = (std::max)(Index(4), fillratio) * (annz+1) / 4; // estimated nnz in L factor |
| // Return the estimated size to the user if necessary |
| Index tempSpace; |
| tempSpace = (2*panel_size + 4 + LUNoMarker) * m * sizeof(Index) + (panel_size + 1) * m * sizeof(Scalar); |
| if (lwork == emptyIdxLU) |
| { |
| Index estimated_size; |
| estimated_size = (5 * n + 5) * sizeof(Index) + tempSpace |
| + (glu.nzlmax + glu.nzumax) * sizeof(Index) + (glu.nzlumax+glu.nzumax) * sizeof(Scalar) + n; |
| return estimated_size; |
| } |
| |
| // Setup the required space |
| |
| // First allocate Integer pointers for L\U factors |
| glu.xsup.resize(n+1); |
| glu.supno.resize(n+1); |
| glu.xlsub.resize(n+1); |
| glu.xlusup.resize(n+1); |
| glu.xusub.resize(n+1); |
| |
| // Reserve memory for L/U factors |
| do |
| { |
| if( (expand<ScalarVector>(glu.lusup, glu.nzlumax, 0, 0, num_expansions)<0) |
| || (expand<ScalarVector>(glu.ucol, glu.nzumax, 0, 0, num_expansions)<0) |
| || (expand<IndexVector> (glu.lsub, glu.nzlmax, 0, 0, num_expansions)<0) |
| || (expand<IndexVector> (glu.usub, glu.nzumax, 0, 1, num_expansions)<0) ) |
| { |
| //Reduce the estimated size and retry |
| glu.nzlumax /= 2; |
| glu.nzumax /= 2; |
| glu.nzlmax /= 2; |
| if (glu.nzlumax < annz ) return glu.nzlumax; |
| } |
| } while (!glu.lusup.size() || !glu.ucol.size() || !glu.lsub.size() || !glu.usub.size()); |
| |
| ++num_expansions; |
| return 0; |
| |
| } // end LuMemInit |
| |
| /** |
| * \brief Expand the existing storage |
| * \param vec vector to expand |
| * \param[in,out] maxlen On input, previous size of vec (Number of elements to copy ). on output, new size |
| * \param nbElts current number of elements in the vector. |
| * \param memtype Type of the element to expand |
| * \param num_expansions Number of expansions |
| * \return 0 on success, > 0 size of the memory allocated so far |
| */ |
| template <typename Scalar, typename StorageIndex> |
| template <typename VectorType> |
| Index SparseLUImpl<Scalar,StorageIndex>::memXpand(VectorType& vec, Index& maxlen, Index nbElts, MemType memtype, Index& num_expansions) |
| { |
| Index failed_size; |
| if (memtype == USUB) |
| failed_size = this->expand<VectorType>(vec, maxlen, nbElts, 1, num_expansions); |
| else |
| failed_size = this->expand<VectorType>(vec, maxlen, nbElts, 0, num_expansions); |
| |
| if (failed_size) |
| return failed_size; |
| |
| return 0 ; |
| } |
| |
| } // end namespace internal |
| |
| } // end namespace Eigen |
| #endif // EIGEN_SPARSELU_MEMORY |