blob: ba5a1f961b31a9c0221714722161efd843d87c8c [file] [log] [blame]
/* zlarfg.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "blaswrap.h"
#include "lapack_datatypes.h"
static inline doublereal d_sign(doublereal *a, doublereal *b) {
doublereal x;
x = (*a >= 0 ? *a : -*a);
return (*b >= 0 ? x : -x);
}
/* Table of constant values */
static doublecomplex c_b5 = {1., 0.};
/* Subroutine */ void zlarfg_(integer *n, doublecomplex *alpha, doublecomplex *x, integer *incx, doublecomplex *tau) {
/* System generated locals */
integer i__1;
doublereal d__1, d__2;
doublecomplex z__1, z__2;
/* Local variables */
integer j, knt;
doublereal beta, alphi, alphr;
extern /* Subroutine */ void zscal_(integer *, doublecomplex *, doublecomplex *, integer *);
doublereal xnorm;
extern doublereal dlapy3_(doublereal *, doublereal *, doublereal *), dznrm2_(integer *, doublecomplex *, integer *),
dlamch_(char *);
doublereal safmin;
extern /* Subroutine */ void zdscal_(integer *, doublereal *, doublecomplex *, integer *);
doublereal rsafmn;
extern /* Double Complex */ void zladiv_(doublecomplex *, doublecomplex *, doublecomplex *);
/* -- LAPACK auxiliary routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* ZLARFG generates a complex elementary reflector H of order n, such */
/* that */
/* H' * ( alpha ) = ( beta ), H' * H = I. */
/* ( x ) ( 0 ) */
/* where alpha and beta are scalars, with beta real, and x is an */
/* (n-1)-element complex vector. H is represented in the form */
/* H = I - tau * ( 1 ) * ( 1 v' ) , */
/* ( v ) */
/* where tau is a complex scalar and v is a complex (n-1)-element */
/* vector. Note that H is not hermitian. */
/* If the elements of x are all zero and alpha is real, then tau = 0 */
/* and H is taken to be the unit matrix. */
/* Otherwise 1 <= real(tau) <= 2 and abs(tau-1) <= 1 . */
/* Arguments */
/* ========= */
/* N (input) INTEGER */
/* The order of the elementary reflector. */
/* ALPHA (input/output) COMPLEX*16 */
/* On entry, the value alpha. */
/* On exit, it is overwritten with the value beta. */
/* X (input/output) COMPLEX*16 array, dimension */
/* (1+(N-2)*abs(INCX)) */
/* On entry, the vector x. */
/* On exit, it is overwritten with the vector v. */
/* INCX (input) INTEGER */
/* The increment between elements of X. INCX > 0. */
/* TAU (output) COMPLEX*16 */
/* The value tau. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Executable Statements .. */
/* Parameter adjustments */
--x;
/* Function Body */
if (*n <= 0) {
tau->r = 0., tau->i = 0.;
return;
}
i__1 = *n - 1;
xnorm = dznrm2_(&i__1, &x[1], incx);
alphr = alpha->r;
alphi = alpha->i;
if (xnorm == 0. && alphi == 0.) {
/* H = I */
tau->r = 0., tau->i = 0.;
} else {
/* general case */
d__1 = dlapy3_(&alphr, &alphi, &xnorm);
beta = -d_sign(&d__1, &alphr);
safmin = dlamch_("S") / dlamch_("E");
rsafmn = 1. / safmin;
knt = 0;
if (abs(beta) < safmin) {
/* XNORM, BETA may be inaccurate; scale X and recompute them */
L10:
++knt;
i__1 = *n - 1;
zdscal_(&i__1, &rsafmn, &x[1], incx);
beta *= rsafmn;
alphi *= rsafmn;
alphr *= rsafmn;
if (abs(beta) < safmin) {
goto L10;
}
/* New BETA is at most 1, at least SAFMIN */
i__1 = *n - 1;
xnorm = dznrm2_(&i__1, &x[1], incx);
z__1.r = alphr, z__1.i = alphi;
alpha->r = z__1.r, alpha->i = z__1.i;
d__1 = dlapy3_(&alphr, &alphi, &xnorm);
beta = -d_sign(&d__1, &alphr);
}
d__1 = (beta - alphr) / beta;
d__2 = -alphi / beta;
z__1.r = d__1, z__1.i = d__2;
tau->r = z__1.r, tau->i = z__1.i;
z__2.r = alpha->r - beta, z__2.i = alpha->i;
zladiv_(&z__1, &c_b5, &z__2);
alpha->r = z__1.r, alpha->i = z__1.i;
i__1 = *n - 1;
zscal_(&i__1, alpha, &x[1], incx);
/* If ALPHA is subnormal, it may lose relative accuracy */
i__1 = knt;
for (j = 1; j <= i__1; ++j) {
beta *= safmin;
/* L20: */
}
alpha->r = beta, alpha->i = 0.;
}
/* End of ZLARFG */
} /* zlarfg_ */