| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2009 Ilya Baran <ibaran@mit.edu> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "main.h" |
| #include <Eigen/StdVector> |
| #include <Eigen/Geometry> |
| #include <unsupported/Eigen/BVH> |
| |
| namespace Eigen { |
| |
| template <typename Scalar, int Dim> |
| AlignedBox<Scalar, Dim> bounding_box(const Matrix<Scalar, Dim, 1> &v) { |
| return AlignedBox<Scalar, Dim>(v); |
| } |
| |
| } // namespace Eigen |
| |
| template <int Dim> |
| struct Ball { |
| EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(double, Dim) |
| |
| typedef Matrix<double, Dim, 1> VectorType; |
| |
| Ball() {} |
| Ball(const VectorType &c, double r) : center(c), radius(r) {} |
| |
| VectorType center; |
| double radius; |
| }; |
| template <int Dim> |
| AlignedBox<double, Dim> bounding_box(const Ball<Dim> &b) { |
| return AlignedBox<double, Dim>(b.center.array() - b.radius, b.center.array() + b.radius); |
| } |
| |
| inline double SQR(double x) { return x * x; } |
| |
| template <int Dim> |
| struct BallPointStuff // this class provides functions to be both an intersector and a minimizer, both for a ball and a |
| // point and for two trees |
| { |
| typedef double Scalar; |
| typedef Matrix<double, Dim, 1> VectorType; |
| typedef Ball<Dim> BallType; |
| typedef AlignedBox<double, Dim> BoxType; |
| |
| BallPointStuff() : calls(0), count(0) {} |
| BallPointStuff(const VectorType &inP) : p(inP), calls(0), count(0) {} |
| |
| bool intersectVolume(const BoxType &r) { |
| ++calls; |
| return r.contains(p); |
| } |
| bool intersectObject(const BallType &b) { |
| ++calls; |
| if ((b.center - p).squaredNorm() < SQR(b.radius)) ++count; |
| return false; // continue |
| } |
| |
| bool intersectVolumeVolume(const BoxType &r1, const BoxType &r2) { |
| ++calls; |
| return !(r1.intersection(r2)).isNull(); |
| } |
| bool intersectVolumeObject(const BoxType &r, const BallType &b) { |
| ++calls; |
| return r.squaredExteriorDistance(b.center) < SQR(b.radius); |
| } |
| bool intersectObjectVolume(const BallType &b, const BoxType &r) { |
| ++calls; |
| return r.squaredExteriorDistance(b.center) < SQR(b.radius); |
| } |
| bool intersectObjectObject(const BallType &b1, const BallType &b2) { |
| ++calls; |
| if ((b1.center - b2.center).norm() < b1.radius + b2.radius) ++count; |
| return false; |
| } |
| bool intersectVolumeObject(const BoxType &r, const VectorType &v) { |
| ++calls; |
| return r.contains(v); |
| } |
| bool intersectObjectObject(const BallType &b, const VectorType &v) { |
| ++calls; |
| if ((b.center - v).squaredNorm() < SQR(b.radius)) ++count; |
| return false; |
| } |
| |
| double minimumOnVolume(const BoxType &r) { |
| ++calls; |
| return r.squaredExteriorDistance(p); |
| } |
| double minimumOnObject(const BallType &b) { |
| ++calls; |
| return (std::max)(0., (b.center - p).squaredNorm() - SQR(b.radius)); |
| } |
| double minimumOnVolumeVolume(const BoxType &r1, const BoxType &r2) { |
| ++calls; |
| return r1.squaredExteriorDistance(r2); |
| } |
| double minimumOnVolumeObject(const BoxType &r, const BallType &b) { |
| ++calls; |
| return SQR((std::max)(0., r.exteriorDistance(b.center) - b.radius)); |
| } |
| double minimumOnObjectVolume(const BallType &b, const BoxType &r) { |
| ++calls; |
| return SQR((std::max)(0., r.exteriorDistance(b.center) - b.radius)); |
| } |
| double minimumOnObjectObject(const BallType &b1, const BallType &b2) { |
| ++calls; |
| return SQR((std::max)(0., (b1.center - b2.center).norm() - b1.radius - b2.radius)); |
| } |
| double minimumOnVolumeObject(const BoxType &r, const VectorType &v) { |
| ++calls; |
| return r.squaredExteriorDistance(v); |
| } |
| double minimumOnObjectObject(const BallType &b, const VectorType &v) { |
| ++calls; |
| return SQR((std::max)(0., (b.center - v).norm() - b.radius)); |
| } |
| |
| VectorType p; |
| int calls; |
| int count; |
| }; |
| |
| template <int Dim> |
| struct TreeTest { |
| typedef Matrix<double, Dim, 1> VectorType; |
| typedef std::vector<VectorType, aligned_allocator<VectorType> > VectorTypeList; |
| typedef Ball<Dim> BallType; |
| typedef std::vector<BallType, aligned_allocator<BallType> > BallTypeList; |
| typedef AlignedBox<double, Dim> BoxType; |
| |
| void testIntersect1() { |
| BallTypeList b; |
| for (int i = 0; i < 500; ++i) { |
| b.push_back(BallType(VectorType::Random(), 0.5 * internal::random(0., 1.))); |
| } |
| KdBVH<double, Dim, BallType> tree(b.begin(), b.end()); |
| |
| VectorType pt = VectorType::Random(); |
| BallPointStuff<Dim> i1(pt), i2(pt); |
| |
| for (int i = 0; i < (int)b.size(); ++i) i1.intersectObject(b[i]); |
| |
| BVIntersect(tree, i2); |
| |
| VERIFY(i1.count == i2.count); |
| } |
| |
| void testMinimize1() { |
| BallTypeList b; |
| for (int i = 0; i < 500; ++i) { |
| b.push_back(BallType(VectorType::Random(), 0.01 * internal::random(0., 1.))); |
| } |
| KdBVH<double, Dim, BallType> tree(b.begin(), b.end()); |
| |
| VectorType pt = VectorType::Random(); |
| BallPointStuff<Dim> i1(pt), i2(pt); |
| |
| double m1 = (std::numeric_limits<double>::max)(), m2 = m1; |
| |
| for (int i = 0; i < (int)b.size(); ++i) m1 = (std::min)(m1, i1.minimumOnObject(b[i])); |
| |
| m2 = BVMinimize(tree, i2); |
| |
| VERIFY_IS_APPROX(m1, m2); |
| } |
| |
| void testIntersect2() { |
| BallTypeList b; |
| VectorTypeList v; |
| |
| for (int i = 0; i < 50; ++i) { |
| b.push_back(BallType(VectorType::Random(), 0.5 * internal::random(0., 1.))); |
| for (int j = 0; j < 3; ++j) v.push_back(VectorType::Random()); |
| } |
| |
| KdBVH<double, Dim, BallType> tree(b.begin(), b.end()); |
| KdBVH<double, Dim, VectorType> vTree(v.begin(), v.end()); |
| |
| BallPointStuff<Dim> i1, i2; |
| |
| for (int i = 0; i < (int)b.size(); ++i) |
| for (int j = 0; j < (int)v.size(); ++j) i1.intersectObjectObject(b[i], v[j]); |
| |
| BVIntersect(tree, vTree, i2); |
| |
| VERIFY(i1.count == i2.count); |
| } |
| |
| void testMinimize2() { |
| BallTypeList b; |
| VectorTypeList v; |
| |
| for (int i = 0; i < 50; ++i) { |
| b.push_back(BallType(VectorType::Random(), 1e-7 + 1e-6 * internal::random(0., 1.))); |
| for (int j = 0; j < 3; ++j) v.push_back(VectorType::Random()); |
| } |
| |
| KdBVH<double, Dim, BallType> tree(b.begin(), b.end()); |
| KdBVH<double, Dim, VectorType> vTree(v.begin(), v.end()); |
| |
| BallPointStuff<Dim> i1, i2; |
| |
| double m1 = (std::numeric_limits<double>::max)(), m2 = m1; |
| |
| for (int i = 0; i < (int)b.size(); ++i) |
| for (int j = 0; j < (int)v.size(); ++j) m1 = (std::min)(m1, i1.minimumOnObjectObject(b[i], v[j])); |
| |
| m2 = BVMinimize(tree, vTree, i2); |
| |
| VERIFY_IS_APPROX(m1, m2); |
| } |
| }; |
| |
| EIGEN_DECLARE_TEST(BVH) { |
| for (int i = 0; i < g_repeat; i++) { |
| #ifdef EIGEN_TEST_PART_1 |
| TreeTest<2> test2; |
| CALL_SUBTEST(test2.testIntersect1()); |
| CALL_SUBTEST(test2.testMinimize1()); |
| CALL_SUBTEST(test2.testIntersect2()); |
| CALL_SUBTEST(test2.testMinimize2()); |
| #endif |
| |
| #ifdef EIGEN_TEST_PART_2 |
| TreeTest<3> test3; |
| CALL_SUBTEST(test3.testIntersect1()); |
| CALL_SUBTEST(test3.testMinimize1()); |
| CALL_SUBTEST(test3.testIntersect2()); |
| CALL_SUBTEST(test3.testMinimize2()); |
| #endif |
| |
| #ifdef EIGEN_TEST_PART_3 |
| TreeTest<4> test4; |
| CALL_SUBTEST(test4.testIntersect1()); |
| CALL_SUBTEST(test4.testMinimize1()); |
| CALL_SUBTEST(test4.testIntersect2()); |
| CALL_SUBTEST(test4.testMinimize2()); |
| #endif |
| } |
| } |