blob: 54ecc5c3515db5204761e014c10b9c6fb6d31345 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Ilya Baran <ibaran@mit.edu>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#include <Eigen/StdVector>
#include <Eigen/Geometry>
#include <unsupported/Eigen/BVH>
namespace Eigen {
template <typename Scalar, int Dim>
AlignedBox<Scalar, Dim> bounding_box(const Matrix<Scalar, Dim, 1> &v) {
return AlignedBox<Scalar, Dim>(v);
}
} // namespace Eigen
template <int Dim>
struct Ball {
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(double, Dim)
typedef Matrix<double, Dim, 1> VectorType;
Ball() {}
Ball(const VectorType &c, double r) : center(c), radius(r) {}
VectorType center;
double radius;
};
template <int Dim>
AlignedBox<double, Dim> bounding_box(const Ball<Dim> &b) {
return AlignedBox<double, Dim>(b.center.array() - b.radius, b.center.array() + b.radius);
}
inline double SQR(double x) { return x * x; }
template <int Dim>
struct BallPointStuff // this class provides functions to be both an intersector and a minimizer, both for a ball and a
// point and for two trees
{
typedef double Scalar;
typedef Matrix<double, Dim, 1> VectorType;
typedef Ball<Dim> BallType;
typedef AlignedBox<double, Dim> BoxType;
BallPointStuff() : calls(0), count(0) {}
BallPointStuff(const VectorType &inP) : p(inP), calls(0), count(0) {}
bool intersectVolume(const BoxType &r) {
++calls;
return r.contains(p);
}
bool intersectObject(const BallType &b) {
++calls;
if ((b.center - p).squaredNorm() < SQR(b.radius)) ++count;
return false; // continue
}
bool intersectVolumeVolume(const BoxType &r1, const BoxType &r2) {
++calls;
return !(r1.intersection(r2)).isNull();
}
bool intersectVolumeObject(const BoxType &r, const BallType &b) {
++calls;
return r.squaredExteriorDistance(b.center) < SQR(b.radius);
}
bool intersectObjectVolume(const BallType &b, const BoxType &r) {
++calls;
return r.squaredExteriorDistance(b.center) < SQR(b.radius);
}
bool intersectObjectObject(const BallType &b1, const BallType &b2) {
++calls;
if ((b1.center - b2.center).norm() < b1.radius + b2.radius) ++count;
return false;
}
bool intersectVolumeObject(const BoxType &r, const VectorType &v) {
++calls;
return r.contains(v);
}
bool intersectObjectObject(const BallType &b, const VectorType &v) {
++calls;
if ((b.center - v).squaredNorm() < SQR(b.radius)) ++count;
return false;
}
double minimumOnVolume(const BoxType &r) {
++calls;
return r.squaredExteriorDistance(p);
}
double minimumOnObject(const BallType &b) {
++calls;
return (std::max)(0., (b.center - p).squaredNorm() - SQR(b.radius));
}
double minimumOnVolumeVolume(const BoxType &r1, const BoxType &r2) {
++calls;
return r1.squaredExteriorDistance(r2);
}
double minimumOnVolumeObject(const BoxType &r, const BallType &b) {
++calls;
return SQR((std::max)(0., r.exteriorDistance(b.center) - b.radius));
}
double minimumOnObjectVolume(const BallType &b, const BoxType &r) {
++calls;
return SQR((std::max)(0., r.exteriorDistance(b.center) - b.radius));
}
double minimumOnObjectObject(const BallType &b1, const BallType &b2) {
++calls;
return SQR((std::max)(0., (b1.center - b2.center).norm() - b1.radius - b2.radius));
}
double minimumOnVolumeObject(const BoxType &r, const VectorType &v) {
++calls;
return r.squaredExteriorDistance(v);
}
double minimumOnObjectObject(const BallType &b, const VectorType &v) {
++calls;
return SQR((std::max)(0., (b.center - v).norm() - b.radius));
}
VectorType p;
int calls;
int count;
};
template <int Dim>
struct TreeTest {
typedef Matrix<double, Dim, 1> VectorType;
typedef std::vector<VectorType, aligned_allocator<VectorType> > VectorTypeList;
typedef Ball<Dim> BallType;
typedef std::vector<BallType, aligned_allocator<BallType> > BallTypeList;
typedef AlignedBox<double, Dim> BoxType;
void testIntersect1() {
BallTypeList b;
for (int i = 0; i < 500; ++i) {
b.push_back(BallType(VectorType::Random(), 0.5 * internal::random(0., 1.)));
}
KdBVH<double, Dim, BallType> tree(b.begin(), b.end());
VectorType pt = VectorType::Random();
BallPointStuff<Dim> i1(pt), i2(pt);
for (int i = 0; i < (int)b.size(); ++i) i1.intersectObject(b[i]);
BVIntersect(tree, i2);
VERIFY(i1.count == i2.count);
}
void testMinimize1() {
BallTypeList b;
for (int i = 0; i < 500; ++i) {
b.push_back(BallType(VectorType::Random(), 0.01 * internal::random(0., 1.)));
}
KdBVH<double, Dim, BallType> tree(b.begin(), b.end());
VectorType pt = VectorType::Random();
BallPointStuff<Dim> i1(pt), i2(pt);
double m1 = (std::numeric_limits<double>::max)(), m2 = m1;
for (int i = 0; i < (int)b.size(); ++i) m1 = (std::min)(m1, i1.minimumOnObject(b[i]));
m2 = BVMinimize(tree, i2);
VERIFY_IS_APPROX(m1, m2);
}
void testIntersect2() {
BallTypeList b;
VectorTypeList v;
for (int i = 0; i < 50; ++i) {
b.push_back(BallType(VectorType::Random(), 0.5 * internal::random(0., 1.)));
for (int j = 0; j < 3; ++j) v.push_back(VectorType::Random());
}
KdBVH<double, Dim, BallType> tree(b.begin(), b.end());
KdBVH<double, Dim, VectorType> vTree(v.begin(), v.end());
BallPointStuff<Dim> i1, i2;
for (int i = 0; i < (int)b.size(); ++i)
for (int j = 0; j < (int)v.size(); ++j) i1.intersectObjectObject(b[i], v[j]);
BVIntersect(tree, vTree, i2);
VERIFY(i1.count == i2.count);
}
void testMinimize2() {
BallTypeList b;
VectorTypeList v;
for (int i = 0; i < 50; ++i) {
b.push_back(BallType(VectorType::Random(), 1e-7 + 1e-6 * internal::random(0., 1.)));
for (int j = 0; j < 3; ++j) v.push_back(VectorType::Random());
}
KdBVH<double, Dim, BallType> tree(b.begin(), b.end());
KdBVH<double, Dim, VectorType> vTree(v.begin(), v.end());
BallPointStuff<Dim> i1, i2;
double m1 = (std::numeric_limits<double>::max)(), m2 = m1;
for (int i = 0; i < (int)b.size(); ++i)
for (int j = 0; j < (int)v.size(); ++j) m1 = (std::min)(m1, i1.minimumOnObjectObject(b[i], v[j]));
m2 = BVMinimize(tree, vTree, i2);
VERIFY_IS_APPROX(m1, m2);
}
};
EIGEN_DECLARE_TEST(BVH) {
for (int i = 0; i < g_repeat; i++) {
#ifdef EIGEN_TEST_PART_1
TreeTest<2> test2;
CALL_SUBTEST(test2.testIntersect1());
CALL_SUBTEST(test2.testMinimize1());
CALL_SUBTEST(test2.testIntersect2());
CALL_SUBTEST(test2.testMinimize2());
#endif
#ifdef EIGEN_TEST_PART_2
TreeTest<3> test3;
CALL_SUBTEST(test3.testIntersect1());
CALL_SUBTEST(test3.testMinimize1());
CALL_SUBTEST(test3.testIntersect2());
CALL_SUBTEST(test3.testMinimize2());
#endif
#ifdef EIGEN_TEST_PART_3
TreeTest<4> test4;
CALL_SUBTEST(test4.testIntersect1());
CALL_SUBTEST(test4.testMinimize1());
CALL_SUBTEST(test4.testIntersect2());
CALL_SUBTEST(test4.testMinimize2());
#endif
}
}