blob: a65e5f5017021790ff026a67a2241fff6cfd5e95 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2015 Tal Hadad <tal_hd@hotmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
EIGEN_DISABLE_DEPRECATED_WARNING
#include <unsupported/Eigen/EulerAngles>
using namespace Eigen;
// Unfortunately, we need to specialize it in order to work. (We could add it in main.h test framework)
template <typename Scalar, class System>
bool verifyIsApprox(const Eigen::EulerAngles<Scalar, System>& a, const Eigen::EulerAngles<Scalar, System>& b) {
return verifyIsApprox(a.angles(), b.angles());
}
// Verify that x is in the approxed range [a, b]
#define VERIFY_APPROXED_RANGE(a, x, b) \
do { \
VERIFY_IS_APPROX_OR_LESS_THAN(a, x); \
VERIFY_IS_APPROX_OR_LESS_THAN(x, b); \
} while (0)
const char X = EULER_X;
const char Y = EULER_Y;
const char Z = EULER_Z;
template <typename Scalar, class EulerSystem>
void verify_euler(const EulerAngles<Scalar, EulerSystem>& e) {
typedef EulerAngles<Scalar, EulerSystem> EulerAnglesType;
typedef Matrix<Scalar, 3, 3> Matrix3;
typedef Matrix<Scalar, 3, 1> Vector3;
typedef Quaternion<Scalar> QuaternionType;
typedef AngleAxis<Scalar> AngleAxisType;
const Scalar ONE = Scalar(1);
const Scalar HALF_PI = Scalar(EIGEN_PI / 2);
const Scalar PI = Scalar(EIGEN_PI);
// It's very important calc the acceptable precision depending on the distance from the pole.
const Scalar longitudeRadius = std::abs(EulerSystem::IsTaitBryan ? std::cos(e.beta()) : std::sin(e.beta()));
Scalar precision = test_precision<Scalar>() / longitudeRadius;
Scalar betaRangeStart, betaRangeEnd;
if (EulerSystem::IsTaitBryan) {
betaRangeStart = -HALF_PI;
betaRangeEnd = HALF_PI;
} else {
if (!EulerSystem::IsBetaOpposite) {
betaRangeStart = 0;
betaRangeEnd = PI;
} else {
betaRangeStart = -PI;
betaRangeEnd = 0;
}
}
const Vector3 I_ = EulerAnglesType::AlphaAxisVector();
const Vector3 J_ = EulerAnglesType::BetaAxisVector();
const Vector3 K_ = EulerAnglesType::GammaAxisVector();
// Is approx checks
VERIFY(e.isApprox(e));
VERIFY_IS_APPROX(e, e);
VERIFY_IS_NOT_APPROX(e, EulerAnglesType(e.alpha() + ONE, e.beta() + ONE, e.gamma() + ONE));
const Matrix3 m(e);
VERIFY_IS_APPROX(Scalar(m.determinant()), ONE);
EulerAnglesType ebis(m);
// When no roll(acting like polar representation), we have the best precision.
// One of those cases is when the Euler angles are on the pole, and because it's singular case,
// the computation returns no roll.
if (ebis.beta() == 0) precision = test_precision<Scalar>();
// Check that eabis in range
VERIFY_APPROXED_RANGE(-PI, ebis.alpha(), PI);
VERIFY_APPROXED_RANGE(betaRangeStart, ebis.beta(), betaRangeEnd);
VERIFY_APPROXED_RANGE(-PI, ebis.gamma(), PI);
const Matrix3 mbis(AngleAxisType(ebis.alpha(), I_) * AngleAxisType(ebis.beta(), J_) *
AngleAxisType(ebis.gamma(), K_));
VERIFY_IS_APPROX(Scalar(mbis.determinant()), ONE);
VERIFY_IS_APPROX(mbis, ebis.toRotationMatrix());
/*std::cout << "===================\n" <<
"e: " << e << std::endl <<
"eabis: " << eabis.transpose() << std::endl <<
"m: " << m << std::endl <<
"mbis: " << mbis << std::endl <<
"X: " << (m * Vector3::UnitX()).transpose() << std::endl <<
"X: " << (mbis * Vector3::UnitX()).transpose() << std::endl;*/
VERIFY(m.isApprox(mbis, precision));
// Test if ea and eabis are the same
// Need to check both singular and non-singular cases
// There are two singular cases.
// 1. When I==K and sin(ea(1)) == 0
// 2. When I!=K and cos(ea(1)) == 0
// TODO: Make this test work well, and use range saturation function.
/*// If I==K, and ea[1]==0, then there no unique solution.
// The remark apply in the case where I!=K, and |ea[1]| is close to +-pi/2.
if( (i!=k || ea[1]!=0) && (i==k || !internal::isApprox(abs(ea[1]),Scalar(EIGEN_PI/2),test_precision<Scalar>())) )
VERIFY_IS_APPROX(ea, eabis);*/
// Quaternions
const QuaternionType q(e);
ebis = q;
const QuaternionType qbis(ebis);
VERIFY(internal::isApprox<Scalar>(std::abs(q.dot(qbis)), ONE, precision));
// VERIFY_IS_APPROX(eabis, eabis2);// Verify that the euler angles are still the same
// A suggestion for simple product test when will be supported.
/*EulerAnglesType e2(PI/2, PI/2, PI/2);
Matrix3 m2(e2);
VERIFY_IS_APPROX(e*e2, m*m2);*/
}
template <signed char A, signed char B, signed char C, typename Scalar>
void verify_euler_vec(const Matrix<Scalar, 3, 1>& ea) {
verify_euler(EulerAngles<Scalar, EulerSystem<A, B, C> >(ea[0], ea[1], ea[2]));
}
template <signed char A, signed char B, signed char C, typename Scalar>
void verify_euler_all_neg(const Matrix<Scalar, 3, 1>& ea) {
verify_euler_vec<+A, +B, +C>(ea);
verify_euler_vec<+A, +B, -C>(ea);
verify_euler_vec<+A, -B, +C>(ea);
verify_euler_vec<+A, -B, -C>(ea);
verify_euler_vec<-A, +B, +C>(ea);
verify_euler_vec<-A, +B, -C>(ea);
verify_euler_vec<-A, -B, +C>(ea);
verify_euler_vec<-A, -B, -C>(ea);
}
template <typename Scalar>
void check_all_var(const Matrix<Scalar, 3, 1>& ea) {
verify_euler_all_neg<X, Y, Z>(ea);
verify_euler_all_neg<X, Y, X>(ea);
verify_euler_all_neg<X, Z, Y>(ea);
verify_euler_all_neg<X, Z, X>(ea);
verify_euler_all_neg<Y, Z, X>(ea);
verify_euler_all_neg<Y, Z, Y>(ea);
verify_euler_all_neg<Y, X, Z>(ea);
verify_euler_all_neg<Y, X, Y>(ea);
verify_euler_all_neg<Z, X, Y>(ea);
verify_euler_all_neg<Z, X, Z>(ea);
verify_euler_all_neg<Z, Y, X>(ea);
verify_euler_all_neg<Z, Y, Z>(ea);
}
template <typename Scalar>
void check_singular_cases(const Scalar& singularBeta) {
typedef Matrix<Scalar, 3, 1> Vector3;
const Scalar PI = Scalar(EIGEN_PI);
for (Scalar epsilon = NumTraits<Scalar>::epsilon(); epsilon < 1; epsilon *= Scalar(1.2)) {
check_all_var(Vector3(PI / 4, singularBeta, PI / 3));
check_all_var(Vector3(PI / 4, singularBeta - epsilon, PI / 3));
check_all_var(Vector3(PI / 4, singularBeta - Scalar(1.5) * epsilon, PI / 3));
check_all_var(Vector3(PI / 4, singularBeta - 2 * epsilon, PI / 3));
check_all_var(Vector3(PI * Scalar(0.8), singularBeta - epsilon, Scalar(0.9) * PI));
check_all_var(Vector3(PI * Scalar(-0.9), singularBeta + epsilon, PI * Scalar(0.3)));
check_all_var(Vector3(PI * Scalar(-0.6), singularBeta + Scalar(1.5) * epsilon, PI * Scalar(0.3)));
check_all_var(Vector3(PI * Scalar(-0.5), singularBeta + 2 * epsilon, PI * Scalar(0.4)));
check_all_var(Vector3(PI * Scalar(0.9), singularBeta + epsilon, Scalar(0.8) * PI));
}
// This one for sanity, it had a problem with near pole cases in float scalar.
check_all_var(Vector3(PI * Scalar(0.8), singularBeta - Scalar(1E-6), Scalar(0.9) * PI));
}
template <typename Scalar>
void eulerangles_manual() {
typedef Matrix<Scalar, 3, 1> Vector3;
typedef Matrix<Scalar, Dynamic, 1> VectorX;
const Vector3 Zero = Vector3::Zero();
const Scalar PI = Scalar(EIGEN_PI);
check_all_var(Zero);
// singular cases
check_singular_cases(PI / 2);
check_singular_cases(-PI / 2);
check_singular_cases(Scalar(0));
check_singular_cases(Scalar(-0));
check_singular_cases(PI);
check_singular_cases(-PI);
// non-singular cases
VectorX alpha = VectorX::LinSpaced(20, Scalar(-0.99) * PI, PI);
VectorX beta = VectorX::LinSpaced(20, Scalar(-0.49) * PI, Scalar(0.49) * PI);
VectorX gamma = VectorX::LinSpaced(20, Scalar(-0.99) * PI, PI);
for (int i = 0; i < alpha.size(); ++i) {
for (int j = 0; j < beta.size(); ++j) {
for (int k = 0; k < gamma.size(); ++k) {
check_all_var(Vector3(alpha(i), beta(j), gamma(k)));
}
}
}
}
template <typename Scalar>
void eulerangles_rand() {
typedef Matrix<Scalar, 3, 3> Matrix3;
typedef Matrix<Scalar, 3, 1> Vector3;
typedef Array<Scalar, 3, 1> Array3;
typedef Quaternion<Scalar> Quaternionx;
typedef AngleAxis<Scalar> AngleAxisType;
Scalar a = internal::random<Scalar>(-Scalar(EIGEN_PI), Scalar(EIGEN_PI));
Quaternionx q1;
q1 = AngleAxisType(a, Vector3::Random().normalized());
Matrix3 m;
m = q1;
Vector3 ea = m.eulerAngles(0, 1, 2);
check_all_var(ea);
ea = m.eulerAngles(0, 1, 0);
check_all_var(ea);
// Check with purely random Quaternion:
q1.coeffs() = Quaternionx::Coefficients::Random().normalized();
m = q1;
ea = m.eulerAngles(0, 1, 2);
check_all_var(ea);
ea = m.eulerAngles(0, 1, 0);
check_all_var(ea);
// Check with random angles in range [0:pi]x[-pi:pi]x[-pi:pi].
ea = (Array3::Random() + Array3(1, 0, 0)) * Scalar(EIGEN_PI) * Array3(0.5, 1, 1);
check_all_var(ea);
ea[2] = ea[0] = internal::random<Scalar>(0, Scalar(EIGEN_PI));
check_all_var(ea);
ea[0] = ea[1] = internal::random<Scalar>(0, Scalar(EIGEN_PI));
check_all_var(ea);
ea[1] = 0;
check_all_var(ea);
ea.head(2).setZero();
check_all_var(ea);
ea.setZero();
check_all_var(ea);
}
EIGEN_DECLARE_TEST(EulerAngles) {
// Simple cast test
EulerAnglesXYZd onesEd(1, 1, 1);
EulerAnglesXYZf onesEf = onesEd.cast<float>();
VERIFY_IS_APPROX(onesEd, onesEf.cast<double>());
// Simple Construction from Vector3 test
VERIFY_IS_APPROX(onesEd, EulerAnglesXYZd(Vector3d::Ones()));
CALL_SUBTEST_1(eulerangles_manual<float>());
CALL_SUBTEST_2(eulerangles_manual<double>());
for (int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_3(eulerangles_rand<float>());
CALL_SUBTEST_4(eulerangles_rand<double>());
}
// TODO: Add tests for auto diff
// TODO: Add tests for complex numbers
}