blob: 629e5c02b2d7b060237def0f242e9d78e71aa67f [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#define EIGEN_TEST_NO_LONGDOUBLE
#define EIGEN_USE_GPU
#include "main.h"
#include <unsupported/Eigen/CXX11/Tensor>
#include <unsupported/Eigen/CXX11/src/Tensor/TensorGpuHipCudaDefines.h>
using Eigen::Tensor;
template <int Layout>
void test_gpu_simple_argmax() {
Tensor<double, 3, Layout> in(Eigen::array<DenseIndex, 3>{72, 53, 97});
Tensor<DenseIndex, 0, Layout> out_max;
Tensor<DenseIndex, 0, Layout> out_min;
in.setRandom();
in *= in.constant(100.0);
in(0, 0, 0) = -1000.0;
in(71, 52, 96) = 1000.0;
std::size_t in_bytes = in.size() * sizeof(double);
std::size_t out_bytes = out_max.size() * sizeof(DenseIndex);
double* d_in;
DenseIndex* d_out_max;
DenseIndex* d_out_min;
gpuMalloc((void**)(&d_in), in_bytes);
gpuMalloc((void**)(&d_out_max), out_bytes);
gpuMalloc((void**)(&d_out_min), out_bytes);
gpuMemcpy(d_in, in.data(), in_bytes, gpuMemcpyHostToDevice);
Eigen::GpuStreamDevice stream;
Eigen::GpuDevice gpu_device(&stream);
Eigen::TensorMap<Eigen::Tensor<double, 3, Layout>, Aligned> gpu_in(d_in, Eigen::array<DenseIndex, 3>{72, 53, 97});
Eigen::TensorMap<Eigen::Tensor<DenseIndex, 0, Layout>, Aligned> gpu_out_max(d_out_max);
Eigen::TensorMap<Eigen::Tensor<DenseIndex, 0, Layout>, Aligned> gpu_out_min(d_out_min);
gpu_out_max.device(gpu_device) = gpu_in.argmax();
gpu_out_min.device(gpu_device) = gpu_in.argmin();
assert(gpuMemcpyAsync(out_max.data(), d_out_max, out_bytes, gpuMemcpyDeviceToHost, gpu_device.stream()) ==
gpuSuccess);
assert(gpuMemcpyAsync(out_min.data(), d_out_min, out_bytes, gpuMemcpyDeviceToHost, gpu_device.stream()) ==
gpuSuccess);
assert(gpuStreamSynchronize(gpu_device.stream()) == gpuSuccess);
VERIFY_IS_EQUAL(out_max(), 72 * 53 * 97 - 1);
VERIFY_IS_EQUAL(out_min(), 0);
gpuFree(d_in);
gpuFree(d_out_max);
gpuFree(d_out_min);
}
template <int DataLayout>
void test_gpu_argmax_dim() {
Tensor<float, 4, DataLayout> tensor(2, 3, 5, 7);
std::vector<int> dims;
dims.push_back(2);
dims.push_back(3);
dims.push_back(5);
dims.push_back(7);
for (int dim = 0; dim < 4; ++dim) {
tensor.setRandom();
tensor = (tensor + tensor.constant(0.5)).log();
array<DenseIndex, 3> out_shape;
for (int d = 0; d < 3; ++d) out_shape[d] = (d < dim) ? dims[d] : dims[d + 1];
Tensor<DenseIndex, 3, DataLayout> tensor_arg(out_shape);
array<DenseIndex, 4> ix;
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 3; ++j) {
for (int k = 0; k < 5; ++k) {
for (int l = 0; l < 7; ++l) {
ix[0] = i;
ix[1] = j;
ix[2] = k;
ix[3] = l;
if (ix[dim] != 0) continue;
// suppose dim == 1, then for all i, k, l, set tensor(i, 0, k, l) = 10.0
tensor(ix) = 10.0;
}
}
}
}
std::size_t in_bytes = tensor.size() * sizeof(float);
std::size_t out_bytes = tensor_arg.size() * sizeof(DenseIndex);
float* d_in;
DenseIndex* d_out;
gpuMalloc((void**)(&d_in), in_bytes);
gpuMalloc((void**)(&d_out), out_bytes);
gpuMemcpy(d_in, tensor.data(), in_bytes, gpuMemcpyHostToDevice);
Eigen::GpuStreamDevice stream;
Eigen::GpuDevice gpu_device(&stream);
Eigen::TensorMap<Eigen::Tensor<float, 4, DataLayout>, Aligned> gpu_in(d_in,
Eigen::array<DenseIndex, 4>{2, 3, 5, 7});
Eigen::TensorMap<Eigen::Tensor<DenseIndex, 3, DataLayout>, Aligned> gpu_out(d_out, out_shape);
gpu_out.device(gpu_device) = gpu_in.argmax(dim);
assert(gpuMemcpyAsync(tensor_arg.data(), d_out, out_bytes, gpuMemcpyDeviceToHost, gpu_device.stream()) ==
gpuSuccess);
assert(gpuStreamSynchronize(gpu_device.stream()) == gpuSuccess);
VERIFY_IS_EQUAL(tensor_arg.size(), size_t(2 * 3 * 5 * 7 / tensor.dimension(dim)));
for (DenseIndex n = 0; n < tensor_arg.size(); ++n) {
// Expect max to be in the first index of the reduced dimension
VERIFY_IS_EQUAL(tensor_arg.data()[n], 0);
}
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 3; ++j) {
for (int k = 0; k < 5; ++k) {
for (int l = 0; l < 7; ++l) {
ix[0] = i;
ix[1] = j;
ix[2] = k;
ix[3] = l;
if (ix[dim] != tensor.dimension(dim) - 1) continue;
// suppose dim == 1, then for all i, k, l, set tensor(i, 2, k, l) = 20.0
tensor(ix) = 20.0;
}
}
}
}
gpuMemcpy(d_in, tensor.data(), in_bytes, gpuMemcpyHostToDevice);
gpu_out.device(gpu_device) = gpu_in.argmax(dim);
assert(gpuMemcpyAsync(tensor_arg.data(), d_out, out_bytes, gpuMemcpyDeviceToHost, gpu_device.stream()) ==
gpuSuccess);
assert(gpuStreamSynchronize(gpu_device.stream()) == gpuSuccess);
for (DenseIndex n = 0; n < tensor_arg.size(); ++n) {
// Expect max to be in the last index of the reduced dimension
VERIFY_IS_EQUAL(tensor_arg.data()[n], tensor.dimension(dim) - 1);
}
gpuFree(d_in);
gpuFree(d_out);
}
}
template <int DataLayout>
void test_gpu_argmin_dim() {
Tensor<float, 4, DataLayout> tensor(2, 3, 5, 7);
std::vector<int> dims;
dims.push_back(2);
dims.push_back(3);
dims.push_back(5);
dims.push_back(7);
for (int dim = 0; dim < 4; ++dim) {
tensor.setRandom();
tensor = (tensor + tensor.constant(0.5)).log();
array<DenseIndex, 3> out_shape;
for (int d = 0; d < 3; ++d) out_shape[d] = (d < dim) ? dims[d] : dims[d + 1];
Tensor<DenseIndex, 3, DataLayout> tensor_arg(out_shape);
array<DenseIndex, 4> ix;
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 3; ++j) {
for (int k = 0; k < 5; ++k) {
for (int l = 0; l < 7; ++l) {
ix[0] = i;
ix[1] = j;
ix[2] = k;
ix[3] = l;
if (ix[dim] != 0) continue;
// suppose dim == 1, then for all i, k, l, set tensor(i, 0, k, l) = 10.0
tensor(ix) = -10.0;
}
}
}
}
std::size_t in_bytes = tensor.size() * sizeof(float);
std::size_t out_bytes = tensor_arg.size() * sizeof(DenseIndex);
float* d_in;
DenseIndex* d_out;
gpuMalloc((void**)(&d_in), in_bytes);
gpuMalloc((void**)(&d_out), out_bytes);
gpuMemcpy(d_in, tensor.data(), in_bytes, gpuMemcpyHostToDevice);
Eigen::GpuStreamDevice stream;
Eigen::GpuDevice gpu_device(&stream);
Eigen::TensorMap<Eigen::Tensor<float, 4, DataLayout>, Aligned> gpu_in(d_in,
Eigen::array<DenseIndex, 4>{2, 3, 5, 7});
Eigen::TensorMap<Eigen::Tensor<DenseIndex, 3, DataLayout>, Aligned> gpu_out(d_out, out_shape);
gpu_out.device(gpu_device) = gpu_in.argmin(dim);
assert(gpuMemcpyAsync(tensor_arg.data(), d_out, out_bytes, gpuMemcpyDeviceToHost, gpu_device.stream()) ==
gpuSuccess);
assert(gpuStreamSynchronize(gpu_device.stream()) == gpuSuccess);
VERIFY_IS_EQUAL(tensor_arg.size(), 2 * 3 * 5 * 7 / tensor.dimension(dim));
for (DenseIndex n = 0; n < tensor_arg.size(); ++n) {
// Expect min to be in the first index of the reduced dimension
VERIFY_IS_EQUAL(tensor_arg.data()[n], 0);
}
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 3; ++j) {
for (int k = 0; k < 5; ++k) {
for (int l = 0; l < 7; ++l) {
ix[0] = i;
ix[1] = j;
ix[2] = k;
ix[3] = l;
if (ix[dim] != tensor.dimension(dim) - 1) continue;
// suppose dim == 1, then for all i, k, l, set tensor(i, 2, k, l) = 20.0
tensor(ix) = -20.0;
}
}
}
}
gpuMemcpy(d_in, tensor.data(), in_bytes, gpuMemcpyHostToDevice);
gpu_out.device(gpu_device) = gpu_in.argmin(dim);
assert(gpuMemcpyAsync(tensor_arg.data(), d_out, out_bytes, gpuMemcpyDeviceToHost, gpu_device.stream()) ==
gpuSuccess);
assert(gpuStreamSynchronize(gpu_device.stream()) == gpuSuccess);
for (DenseIndex n = 0; n < tensor_arg.size(); ++n) {
// Expect max to be in the last index of the reduced dimension
VERIFY_IS_EQUAL(tensor_arg.data()[n], tensor.dimension(dim) - 1);
}
gpuFree(d_in);
gpuFree(d_out);
}
}
EIGEN_DECLARE_TEST(cxx11_tensor_argmax_gpu) {
CALL_SUBTEST_1(test_gpu_simple_argmax<RowMajor>());
CALL_SUBTEST_1(test_gpu_simple_argmax<ColMajor>());
CALL_SUBTEST_2(test_gpu_argmax_dim<RowMajor>());
CALL_SUBTEST_2(test_gpu_argmax_dim<ColMajor>());
CALL_SUBTEST_3(test_gpu_argmin_dim<RowMajor>());
CALL_SUBTEST_3(test_gpu_argmin_dim<ColMajor>());
}