| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2016 |
| // Mehdi Goli Codeplay Software Ltd. |
| // Ralph Potter Codeplay Software Ltd. |
| // Luke Iwanski Codeplay Software Ltd. |
| // Contact: <eigen@codeplay.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #define EIGEN_TEST_NO_LONGDOUBLE |
| #define EIGEN_TEST_NO_COMPLEX |
| |
| #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int64_t |
| #define EIGEN_USE_SYCL |
| |
| #include "main.h" |
| |
| #include <unsupported/Eigen/CXX11/Tensor> |
| |
| using Eigen::array; |
| using Eigen::SyclDevice; |
| using Eigen::Tensor; |
| using Eigen::TensorMap; |
| |
| template <typename DataType, int Layout, typename DenseIndex> |
| static void test_sycl_simple_argmax(const Eigen::SyclDevice& sycl_device) { |
| Tensor<DataType, 3, Layout, DenseIndex> in(Eigen::array<DenseIndex, 3>{{2, 2, 2}}); |
| Tensor<DenseIndex, 0, Layout, DenseIndex> out_max; |
| Tensor<DenseIndex, 0, Layout, DenseIndex> out_min; |
| in.setRandom(); |
| in *= in.constant(static_cast<DataType>(100.0)); |
| in(0, 0, 0) = static_cast<DataType>(-1000.0); |
| in(1, 1, 1) = static_cast<DataType>(1000.0); |
| |
| std::size_t in_bytes = in.size() * sizeof(DataType); |
| std::size_t out_bytes = out_max.size() * sizeof(DenseIndex); |
| |
| DataType* d_in = static_cast<DataType*>(sycl_device.allocate(in_bytes)); |
| DenseIndex* d_out_max = static_cast<DenseIndex*>(sycl_device.allocate(out_bytes)); |
| DenseIndex* d_out_min = static_cast<DenseIndex*>(sycl_device.allocate(out_bytes)); |
| |
| Eigen::TensorMap<Eigen::Tensor<DataType, 3, Layout, DenseIndex> > gpu_in(d_in, |
| Eigen::array<DenseIndex, 3>{{2, 2, 2}}); |
| Eigen::TensorMap<Eigen::Tensor<DenseIndex, 0, Layout, DenseIndex> > gpu_out_max(d_out_max); |
| Eigen::TensorMap<Eigen::Tensor<DenseIndex, 0, Layout, DenseIndex> > gpu_out_min(d_out_min); |
| sycl_device.memcpyHostToDevice(d_in, in.data(), in_bytes); |
| |
| gpu_out_max.device(sycl_device) = gpu_in.argmax(); |
| gpu_out_min.device(sycl_device) = gpu_in.argmin(); |
| |
| sycl_device.memcpyDeviceToHost(out_max.data(), d_out_max, out_bytes); |
| sycl_device.memcpyDeviceToHost(out_min.data(), d_out_min, out_bytes); |
| |
| VERIFY_IS_EQUAL(out_max(), 2 * 2 * 2 - 1); |
| VERIFY_IS_EQUAL(out_min(), 0); |
| |
| sycl_device.deallocate(d_in); |
| sycl_device.deallocate(d_out_max); |
| sycl_device.deallocate(d_out_min); |
| } |
| |
| template <typename DataType, int DataLayout, typename DenseIndex> |
| static void test_sycl_argmax_dim(const Eigen::SyclDevice& sycl_device) { |
| DenseIndex sizeDim0 = 9; |
| DenseIndex sizeDim1 = 3; |
| DenseIndex sizeDim2 = 5; |
| DenseIndex sizeDim3 = 7; |
| Tensor<DataType, 4, DataLayout, DenseIndex> tensor(sizeDim0, sizeDim1, sizeDim2, sizeDim3); |
| |
| std::vector<DenseIndex> dims; |
| dims.push_back(sizeDim0); |
| dims.push_back(sizeDim1); |
| dims.push_back(sizeDim2); |
| dims.push_back(sizeDim3); |
| for (DenseIndex dim = 0; dim < 4; ++dim) { |
| array<DenseIndex, 3> out_shape; |
| for (DenseIndex d = 0; d < 3; ++d) out_shape[d] = (d < dim) ? dims[d] : dims[d + 1]; |
| |
| Tensor<DenseIndex, 3, DataLayout, DenseIndex> tensor_arg(out_shape); |
| |
| array<DenseIndex, 4> ix; |
| for (DenseIndex i = 0; i < sizeDim0; ++i) { |
| for (DenseIndex j = 0; j < sizeDim1; ++j) { |
| for (DenseIndex k = 0; k < sizeDim2; ++k) { |
| for (DenseIndex l = 0; l < sizeDim3; ++l) { |
| ix[0] = i; |
| ix[1] = j; |
| ix[2] = k; |
| ix[3] = l; |
| // suppose dim == 1, then for all i, k, l, set tensor(i, 0, k, l) |
| // = 10.0 |
| tensor(ix) = static_cast<DataType>((ix[dim] != 0) ? -1.0 : 10.0); |
| } |
| } |
| } |
| } |
| |
| std::size_t in_bytes = tensor.size() * sizeof(DataType); |
| std::size_t out_bytes = tensor_arg.size() * sizeof(DenseIndex); |
| |
| DataType* d_in = static_cast<DataType*>(sycl_device.allocate(in_bytes)); |
| DenseIndex* d_out = static_cast<DenseIndex*>(sycl_device.allocate(out_bytes)); |
| |
| Eigen::TensorMap<Eigen::Tensor<DataType, 4, DataLayout, DenseIndex> > gpu_in( |
| d_in, Eigen::array<DenseIndex, 4>{{sizeDim0, sizeDim1, sizeDim2, sizeDim3}}); |
| Eigen::TensorMap<Eigen::Tensor<DenseIndex, 3, DataLayout, DenseIndex> > gpu_out(d_out, out_shape); |
| |
| sycl_device.memcpyHostToDevice(d_in, tensor.data(), in_bytes); |
| gpu_out.device(sycl_device) = gpu_in.argmax(dim); |
| sycl_device.memcpyDeviceToHost(tensor_arg.data(), d_out, out_bytes); |
| |
| VERIFY_IS_EQUAL(static_cast<size_t>(tensor_arg.size()), |
| size_t(sizeDim0 * sizeDim1 * sizeDim2 * sizeDim3 / tensor.dimension(dim))); |
| |
| for (DenseIndex n = 0; n < tensor_arg.size(); ++n) { |
| // Expect max to be in the first index of the reduced dimension |
| VERIFY_IS_EQUAL(tensor_arg.data()[n], 0); |
| } |
| |
| sycl_device.synchronize(); |
| |
| for (DenseIndex i = 0; i < sizeDim0; ++i) { |
| for (DenseIndex j = 0; j < sizeDim1; ++j) { |
| for (DenseIndex k = 0; k < sizeDim2; ++k) { |
| for (DenseIndex l = 0; l < sizeDim3; ++l) { |
| ix[0] = i; |
| ix[1] = j; |
| ix[2] = k; |
| ix[3] = l; |
| // suppose dim == 1, then for all i, k, l, set tensor(i, 2, k, l) = 20.0 |
| tensor(ix) = static_cast<DataType>((ix[dim] != tensor.dimension(dim) - 1) ? -1.0 : 20.0); |
| } |
| } |
| } |
| } |
| |
| sycl_device.memcpyHostToDevice(d_in, tensor.data(), in_bytes); |
| gpu_out.device(sycl_device) = gpu_in.argmax(dim); |
| sycl_device.memcpyDeviceToHost(tensor_arg.data(), d_out, out_bytes); |
| |
| for (DenseIndex n = 0; n < tensor_arg.size(); ++n) { |
| // Expect max to be in the last index of the reduced dimension |
| VERIFY_IS_EQUAL(tensor_arg.data()[n], tensor.dimension(dim) - 1); |
| } |
| sycl_device.deallocate(d_in); |
| sycl_device.deallocate(d_out); |
| } |
| } |
| |
| template <typename DataType, int DataLayout, typename DenseIndex> |
| static void test_sycl_argmin_dim(const Eigen::SyclDevice& sycl_device) { |
| DenseIndex sizeDim0 = 9; |
| DenseIndex sizeDim1 = 3; |
| DenseIndex sizeDim2 = 5; |
| DenseIndex sizeDim3 = 7; |
| Tensor<DataType, 4, DataLayout, DenseIndex> tensor(sizeDim0, sizeDim1, sizeDim2, sizeDim3); |
| |
| std::vector<DenseIndex> dims; |
| dims.push_back(sizeDim0); |
| dims.push_back(sizeDim1); |
| dims.push_back(sizeDim2); |
| dims.push_back(sizeDim3); |
| for (DenseIndex dim = 0; dim < 4; ++dim) { |
| array<DenseIndex, 3> out_shape; |
| for (DenseIndex d = 0; d < 3; ++d) out_shape[d] = (d < dim) ? dims[d] : dims[d + 1]; |
| |
| Tensor<DenseIndex, 3, DataLayout, DenseIndex> tensor_arg(out_shape); |
| |
| array<DenseIndex, 4> ix; |
| for (DenseIndex i = 0; i < sizeDim0; ++i) { |
| for (DenseIndex j = 0; j < sizeDim1; ++j) { |
| for (DenseIndex k = 0; k < sizeDim2; ++k) { |
| for (DenseIndex l = 0; l < sizeDim3; ++l) { |
| ix[0] = i; |
| ix[1] = j; |
| ix[2] = k; |
| ix[3] = l; |
| // suppose dim == 1, then for all i, k, l, set tensor(i, 0, k, l) = -10.0 |
| tensor(ix) = static_cast<DataType>((ix[dim] != 0) ? 1.0 : -10.0); |
| } |
| } |
| } |
| } |
| |
| std::size_t in_bytes = tensor.size() * sizeof(DataType); |
| std::size_t out_bytes = tensor_arg.size() * sizeof(DenseIndex); |
| |
| DataType* d_in = static_cast<DataType*>(sycl_device.allocate(in_bytes)); |
| DenseIndex* d_out = static_cast<DenseIndex*>(sycl_device.allocate(out_bytes)); |
| |
| Eigen::TensorMap<Eigen::Tensor<DataType, 4, DataLayout, DenseIndex> > gpu_in( |
| d_in, Eigen::array<DenseIndex, 4>{{sizeDim0, sizeDim1, sizeDim2, sizeDim3}}); |
| Eigen::TensorMap<Eigen::Tensor<DenseIndex, 3, DataLayout, DenseIndex> > gpu_out(d_out, out_shape); |
| |
| sycl_device.memcpyHostToDevice(d_in, tensor.data(), in_bytes); |
| gpu_out.device(sycl_device) = gpu_in.argmin(dim); |
| sycl_device.memcpyDeviceToHost(tensor_arg.data(), d_out, out_bytes); |
| |
| VERIFY_IS_EQUAL(static_cast<size_t>(tensor_arg.size()), |
| size_t(sizeDim0 * sizeDim1 * sizeDim2 * sizeDim3 / tensor.dimension(dim))); |
| |
| for (DenseIndex n = 0; n < tensor_arg.size(); ++n) { |
| // Expect max to be in the first index of the reduced dimension |
| VERIFY_IS_EQUAL(tensor_arg.data()[n], 0); |
| } |
| |
| sycl_device.synchronize(); |
| |
| for (DenseIndex i = 0; i < sizeDim0; ++i) { |
| for (DenseIndex j = 0; j < sizeDim1; ++j) { |
| for (DenseIndex k = 0; k < sizeDim2; ++k) { |
| for (DenseIndex l = 0; l < sizeDim3; ++l) { |
| ix[0] = i; |
| ix[1] = j; |
| ix[2] = k; |
| ix[3] = l; |
| // suppose dim == 1, then for all i, k, l, set tensor(i, 2, k, l) = -20.0 |
| tensor(ix) = static_cast<DataType>((ix[dim] != tensor.dimension(dim) - 1) ? 1.0 : -20.0); |
| } |
| } |
| } |
| } |
| |
| sycl_device.memcpyHostToDevice(d_in, tensor.data(), in_bytes); |
| gpu_out.device(sycl_device) = gpu_in.argmin(dim); |
| sycl_device.memcpyDeviceToHost(tensor_arg.data(), d_out, out_bytes); |
| |
| for (DenseIndex n = 0; n < tensor_arg.size(); ++n) { |
| // Expect max to be in the last index of the reduced dimension |
| VERIFY_IS_EQUAL(tensor_arg.data()[n], tensor.dimension(dim) - 1); |
| } |
| sycl_device.deallocate(d_in); |
| sycl_device.deallocate(d_out); |
| } |
| } |
| |
| template <typename DataType, typename Device_Selector> |
| void sycl_argmax_test_per_device(const Device_Selector& d) { |
| QueueInterface queueInterface(d); |
| auto sycl_device = Eigen::SyclDevice(&queueInterface); |
| test_sycl_simple_argmax<DataType, RowMajor, int64_t>(sycl_device); |
| test_sycl_simple_argmax<DataType, ColMajor, int64_t>(sycl_device); |
| test_sycl_argmax_dim<DataType, ColMajor, int64_t>(sycl_device); |
| test_sycl_argmax_dim<DataType, RowMajor, int64_t>(sycl_device); |
| test_sycl_argmin_dim<DataType, ColMajor, int64_t>(sycl_device); |
| test_sycl_argmin_dim<DataType, RowMajor, int64_t>(sycl_device); |
| } |
| |
| EIGEN_DECLARE_TEST(cxx11_tensor_argmax_sycl) { |
| for (const auto& device : Eigen::get_sycl_supported_devices()) { |
| CALL_SUBTEST(sycl_argmax_test_per_device<half>(device)); |
| CALL_SUBTEST(sycl_argmax_test_per_device<float>(device)); |
| } |
| } |