blob: 993249d9a54be0975176555c5eb3f43afedb5574 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#include <Eigen/CXX11/Tensor>
using Eigen::RowMajor;
using Eigen::Tensor;
static void test_1d() {
Tensor<int, 1> vec1(6);
Tensor<int, 1, RowMajor> vec2(6);
vec1(0) = 4;
vec2(0) = 0;
vec1(1) = 8;
vec2(1) = 1;
vec1(2) = 15;
vec2(2) = 2;
vec1(3) = 16;
vec2(3) = 3;
vec1(4) = 23;
vec2(4) = 4;
vec1(5) = 42;
vec2(5) = 5;
int col_major[6] = {0};
int row_major[6] = {0};
TensorMap<Tensor<int, 1> > vec3(col_major, 6);
TensorMap<Tensor<int, 1, RowMajor> > vec4(row_major, 6);
vec3 = vec1;
vec4 = vec2;
VERIFY_IS_EQUAL(vec3(0), 4);
VERIFY_IS_EQUAL(vec3(1), 8);
VERIFY_IS_EQUAL(vec3(2), 15);
VERIFY_IS_EQUAL(vec3(3), 16);
VERIFY_IS_EQUAL(vec3(4), 23);
VERIFY_IS_EQUAL(vec3(5), 42);
VERIFY_IS_EQUAL(vec4(0), 0);
VERIFY_IS_EQUAL(vec4(1), 1);
VERIFY_IS_EQUAL(vec4(2), 2);
VERIFY_IS_EQUAL(vec4(3), 3);
VERIFY_IS_EQUAL(vec4(4), 4);
VERIFY_IS_EQUAL(vec4(5), 5);
vec1.setZero();
vec2.setZero();
vec1 = vec3;
vec2 = vec4;
VERIFY_IS_EQUAL(vec1(0), 4);
VERIFY_IS_EQUAL(vec1(1), 8);
VERIFY_IS_EQUAL(vec1(2), 15);
VERIFY_IS_EQUAL(vec1(3), 16);
VERIFY_IS_EQUAL(vec1(4), 23);
VERIFY_IS_EQUAL(vec1(5), 42);
VERIFY_IS_EQUAL(vec2(0), 0);
VERIFY_IS_EQUAL(vec2(1), 1);
VERIFY_IS_EQUAL(vec2(2), 2);
VERIFY_IS_EQUAL(vec2(3), 3);
VERIFY_IS_EQUAL(vec2(4), 4);
VERIFY_IS_EQUAL(vec2(5), 5);
}
static void test_2d() {
Tensor<int, 2> mat1(2, 3);
Tensor<int, 2, RowMajor> mat2(2, 3);
mat1(0, 0) = 0;
mat1(0, 1) = 1;
mat1(0, 2) = 2;
mat1(1, 0) = 3;
mat1(1, 1) = 4;
mat1(1, 2) = 5;
mat2(0, 0) = 0;
mat2(0, 1) = 1;
mat2(0, 2) = 2;
mat2(1, 0) = 3;
mat2(1, 1) = 4;
mat2(1, 2) = 5;
int col_major[6] = {0};
int row_major[6] = {0};
TensorMap<Tensor<int, 2> > mat3(row_major, 2, 3);
TensorMap<Tensor<int, 2, RowMajor> > mat4(col_major, 2, 3);
mat3 = mat1;
mat4 = mat2;
VERIFY_IS_EQUAL(mat3(0, 0), 0);
VERIFY_IS_EQUAL(mat3(0, 1), 1);
VERIFY_IS_EQUAL(mat3(0, 2), 2);
VERIFY_IS_EQUAL(mat3(1, 0), 3);
VERIFY_IS_EQUAL(mat3(1, 1), 4);
VERIFY_IS_EQUAL(mat3(1, 2), 5);
VERIFY_IS_EQUAL(mat4(0, 0), 0);
VERIFY_IS_EQUAL(mat4(0, 1), 1);
VERIFY_IS_EQUAL(mat4(0, 2), 2);
VERIFY_IS_EQUAL(mat4(1, 0), 3);
VERIFY_IS_EQUAL(mat4(1, 1), 4);
VERIFY_IS_EQUAL(mat4(1, 2), 5);
mat1.setZero();
mat2.setZero();
mat1 = mat3;
mat2 = mat4;
VERIFY_IS_EQUAL(mat1(0, 0), 0);
VERIFY_IS_EQUAL(mat1(0, 1), 1);
VERIFY_IS_EQUAL(mat1(0, 2), 2);
VERIFY_IS_EQUAL(mat1(1, 0), 3);
VERIFY_IS_EQUAL(mat1(1, 1), 4);
VERIFY_IS_EQUAL(mat1(1, 2), 5);
VERIFY_IS_EQUAL(mat2(0, 0), 0);
VERIFY_IS_EQUAL(mat2(0, 1), 1);
VERIFY_IS_EQUAL(mat2(0, 2), 2);
VERIFY_IS_EQUAL(mat2(1, 0), 3);
VERIFY_IS_EQUAL(mat2(1, 1), 4);
VERIFY_IS_EQUAL(mat2(1, 2), 5);
}
static void test_3d() {
Tensor<int, 3> mat1(2, 3, 7);
Tensor<int, 3, RowMajor> mat2(2, 3, 7);
int val = 0;
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 3; ++j) {
for (int k = 0; k < 7; ++k) {
mat1(i, j, k) = val;
mat2(i, j, k) = val;
val++;
}
}
}
int col_major[2 * 3 * 7] = {0};
int row_major[2 * 3 * 7] = {0};
TensorMap<Tensor<int, 3> > mat3(col_major, 2, 3, 7);
TensorMap<Tensor<int, 3, RowMajor> > mat4(row_major, 2, 3, 7);
mat3 = mat1;
mat4 = mat2;
val = 0;
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 3; ++j) {
for (int k = 0; k < 7; ++k) {
VERIFY_IS_EQUAL(mat3(i, j, k), val);
VERIFY_IS_EQUAL(mat4(i, j, k), val);
val++;
}
}
}
mat1.setZero();
mat2.setZero();
mat1 = mat3;
mat2 = mat4;
val = 0;
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 3; ++j) {
for (int k = 0; k < 7; ++k) {
VERIFY_IS_EQUAL(mat1(i, j, k), val);
VERIFY_IS_EQUAL(mat2(i, j, k), val);
val++;
}
}
}
}
static void test_same_type() {
Tensor<int, 1> orig_tensor(5);
Tensor<int, 1> dest_tensor(5);
orig_tensor.setRandom();
dest_tensor.setRandom();
int* orig_data = orig_tensor.data();
int* dest_data = dest_tensor.data();
dest_tensor = orig_tensor;
VERIFY_IS_EQUAL(orig_tensor.data(), orig_data);
VERIFY_IS_EQUAL(dest_tensor.data(), dest_data);
for (int i = 0; i < 5; ++i) {
VERIFY_IS_EQUAL(dest_tensor(i), orig_tensor(i));
}
TensorFixedSize<int, Sizes<5> > orig_array;
TensorFixedSize<int, Sizes<5> > dest_array;
orig_array.setRandom();
dest_array.setRandom();
orig_data = orig_array.data();
dest_data = dest_array.data();
dest_array = orig_array;
VERIFY_IS_EQUAL(orig_array.data(), orig_data);
VERIFY_IS_EQUAL(dest_array.data(), dest_data);
for (int i = 0; i < 5; ++i) {
VERIFY_IS_EQUAL(dest_array(i), orig_array(i));
}
int orig[5] = {1, 2, 3, 4, 5};
int dest[5] = {6, 7, 8, 9, 10};
TensorMap<Tensor<int, 1> > orig_map(orig, 5);
TensorMap<Tensor<int, 1> > dest_map(dest, 5);
orig_data = orig_map.data();
dest_data = dest_map.data();
dest_map = orig_map;
VERIFY_IS_EQUAL(orig_map.data(), orig_data);
VERIFY_IS_EQUAL(dest_map.data(), dest_data);
for (int i = 0; i < 5; ++i) {
VERIFY_IS_EQUAL(dest[i], i + 1);
}
}
static void test_auto_resize() {
Tensor<int, 1> tensor1;
Tensor<int, 1> tensor2(3);
Tensor<int, 1> tensor3(5);
Tensor<int, 1> tensor4(7);
Tensor<int, 1> new_tensor(5);
new_tensor.setRandom();
tensor1 = tensor2 = tensor3 = tensor4 = new_tensor;
VERIFY_IS_EQUAL(tensor1.dimension(0), new_tensor.dimension(0));
VERIFY_IS_EQUAL(tensor2.dimension(0), new_tensor.dimension(0));
VERIFY_IS_EQUAL(tensor3.dimension(0), new_tensor.dimension(0));
VERIFY_IS_EQUAL(tensor4.dimension(0), new_tensor.dimension(0));
for (int i = 0; i < new_tensor.dimension(0); ++i) {
VERIFY_IS_EQUAL(tensor1(i), new_tensor(i));
VERIFY_IS_EQUAL(tensor2(i), new_tensor(i));
VERIFY_IS_EQUAL(tensor3(i), new_tensor(i));
VERIFY_IS_EQUAL(tensor4(i), new_tensor(i));
}
}
static void test_compound_assign() {
Tensor<int, 1> start_tensor(10);
Tensor<int, 1> offset_tensor(10);
start_tensor.setRandom();
offset_tensor.setRandom();
Tensor<int, 1> tensor = start_tensor;
tensor += offset_tensor;
for (int i = 0; i < 10; ++i) {
VERIFY_IS_EQUAL(tensor(i), start_tensor(i) + offset_tensor(i));
}
tensor = start_tensor;
tensor -= offset_tensor;
for (int i = 0; i < 10; ++i) {
VERIFY_IS_EQUAL(tensor(i), start_tensor(i) - offset_tensor(i));
}
tensor = start_tensor;
tensor *= offset_tensor;
for (int i = 0; i < 10; ++i) {
VERIFY_IS_EQUAL(tensor(i), start_tensor(i) * offset_tensor(i));
}
tensor = start_tensor;
tensor /= offset_tensor;
for (int i = 0; i < 10; ++i) {
VERIFY_IS_EQUAL(tensor(i), start_tensor(i) / offset_tensor(i));
}
}
static void test_std_initializers_tensor() {
Tensor<int, 1> a(3);
a.setValues({0, 1, 2});
VERIFY_IS_EQUAL(a(0), 0);
VERIFY_IS_EQUAL(a(1), 1);
VERIFY_IS_EQUAL(a(2), 2);
// It fills the top-left slice.
a.setValues({10, 20});
VERIFY_IS_EQUAL(a(0), 10);
VERIFY_IS_EQUAL(a(1), 20);
VERIFY_IS_EQUAL(a(2), 2);
// Chaining.
Tensor<int, 1> a2(3);
a2 = a.setValues({100, 200, 300});
VERIFY_IS_EQUAL(a(0), 100);
VERIFY_IS_EQUAL(a(1), 200);
VERIFY_IS_EQUAL(a(2), 300);
VERIFY_IS_EQUAL(a2(0), 100);
VERIFY_IS_EQUAL(a2(1), 200);
VERIFY_IS_EQUAL(a2(2), 300);
Tensor<int, 2> b(2, 3);
b.setValues({{0, 1, 2}, {3, 4, 5}});
VERIFY_IS_EQUAL(b(0, 0), 0);
VERIFY_IS_EQUAL(b(0, 1), 1);
VERIFY_IS_EQUAL(b(0, 2), 2);
VERIFY_IS_EQUAL(b(1, 0), 3);
VERIFY_IS_EQUAL(b(1, 1), 4);
VERIFY_IS_EQUAL(b(1, 2), 5);
// It fills the top-left slice.
b.setValues({{10, 20}, {30}});
VERIFY_IS_EQUAL(b(0, 0), 10);
VERIFY_IS_EQUAL(b(0, 1), 20);
VERIFY_IS_EQUAL(b(0, 2), 2);
VERIFY_IS_EQUAL(b(1, 0), 30);
VERIFY_IS_EQUAL(b(1, 1), 4);
VERIFY_IS_EQUAL(b(1, 2), 5);
Eigen::Tensor<int, 3> c(3, 2, 4);
c.setValues(
{{{0, 1, 2, 3}, {4, 5, 6, 7}}, {{10, 11, 12, 13}, {14, 15, 16, 17}}, {{20, 21, 22, 23}, {24, 25, 26, 27}}});
VERIFY_IS_EQUAL(c(0, 0, 0), 0);
VERIFY_IS_EQUAL(c(0, 0, 1), 1);
VERIFY_IS_EQUAL(c(0, 0, 2), 2);
VERIFY_IS_EQUAL(c(0, 0, 3), 3);
VERIFY_IS_EQUAL(c(0, 1, 0), 4);
VERIFY_IS_EQUAL(c(0, 1, 1), 5);
VERIFY_IS_EQUAL(c(0, 1, 2), 6);
VERIFY_IS_EQUAL(c(0, 1, 3), 7);
VERIFY_IS_EQUAL(c(1, 0, 0), 10);
VERIFY_IS_EQUAL(c(1, 0, 1), 11);
VERIFY_IS_EQUAL(c(1, 0, 2), 12);
VERIFY_IS_EQUAL(c(1, 0, 3), 13);
VERIFY_IS_EQUAL(c(1, 1, 0), 14);
VERIFY_IS_EQUAL(c(1, 1, 1), 15);
VERIFY_IS_EQUAL(c(1, 1, 2), 16);
VERIFY_IS_EQUAL(c(1, 1, 3), 17);
VERIFY_IS_EQUAL(c(2, 0, 0), 20);
VERIFY_IS_EQUAL(c(2, 0, 1), 21);
VERIFY_IS_EQUAL(c(2, 0, 2), 22);
VERIFY_IS_EQUAL(c(2, 0, 3), 23);
VERIFY_IS_EQUAL(c(2, 1, 0), 24);
VERIFY_IS_EQUAL(c(2, 1, 1), 25);
VERIFY_IS_EQUAL(c(2, 1, 2), 26);
VERIFY_IS_EQUAL(c(2, 1, 3), 27);
}
EIGEN_DECLARE_TEST(cxx11_tensor_assign) {
CALL_SUBTEST(test_1d());
CALL_SUBTEST(test_2d());
CALL_SUBTEST(test_3d());
CALL_SUBTEST(test_same_type());
CALL_SUBTEST(test_auto_resize());
CALL_SUBTEST(test_compound_assign());
CALL_SUBTEST(test_std_initializers_tensor());
}