| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| // clang-format off |
| #include "main.h" |
| #include <Eigen/CXX11/Tensor> |
| // clang-format on |
| |
| // -------------------------------------------------------------------------- // |
| // A set of tests for TensorBlockIO: copying data between tensor blocks. |
| |
| template <int NumDims> |
| static DSizes<Index, NumDims> RandomDims(Index min, Index max) { |
| DSizes<Index, NumDims> dims; |
| for (int i = 0; i < NumDims; ++i) { |
| dims[i] = internal::random<Index>(min, max); |
| } |
| return DSizes<Index, NumDims>(dims); |
| } |
| |
| static internal::TensorBlockShapeType RandomBlockShape() { |
| return internal::random<bool>() ? internal::TensorBlockShapeType::kUniformAllDims |
| : internal::TensorBlockShapeType::kSkewedInnerDims; |
| } |
| |
| template <int NumDims> |
| static size_t RandomTargetBlockSize(const DSizes<Index, NumDims>& dims) { |
| return internal::random<size_t>(1, dims.TotalSize()); |
| } |
| |
| template <int Layout, int NumDims> |
| static Index GetInputIndex(Index output_index, const array<Index, NumDims>& output_to_input_dim_map, |
| const array<Index, NumDims>& input_strides, const array<Index, NumDims>& output_strides) { |
| int input_index = 0; |
| if (Layout == ColMajor) { |
| for (int i = NumDims - 1; i > 0; --i) { |
| const Index idx = output_index / output_strides[i]; |
| input_index += idx * input_strides[output_to_input_dim_map[i]]; |
| output_index -= idx * output_strides[i]; |
| } |
| return input_index + output_index * input_strides[output_to_input_dim_map[0]]; |
| } else { |
| for (int i = 0; i < NumDims - 1; ++i) { |
| const Index idx = output_index / output_strides[i]; |
| input_index += idx * input_strides[output_to_input_dim_map[i]]; |
| output_index -= idx * output_strides[i]; |
| } |
| return input_index + output_index * input_strides[output_to_input_dim_map[NumDims - 1]]; |
| } |
| } |
| |
| template <typename T, int NumDims, int Layout> |
| static void test_block_io_copy_data_from_source_to_target() { |
| using TensorBlockIO = internal::TensorBlockIO<T, Index, NumDims, Layout>; |
| using IODst = typename TensorBlockIO::Dst; |
| using IOSrc = typename TensorBlockIO::Src; |
| |
| // Generate a random input Tensor. |
| DSizes<Index, NumDims> dims = RandomDims<NumDims>(1, 30); |
| Tensor<T, NumDims, Layout> input(dims); |
| input.setRandom(); |
| |
| // Write data to an output Tensor. |
| Tensor<T, NumDims, Layout> output(dims); |
| |
| // Construct a tensor block mapper. |
| using TensorBlockMapper = internal::TensorBlockMapper<NumDims, Layout, Index>; |
| TensorBlockMapper block_mapper(dims, {RandomBlockShape(), RandomTargetBlockSize(dims), {0, 0, 0}}); |
| |
| // We will copy data from input to output through this buffer. |
| Tensor<T, NumDims, Layout> block(block_mapper.blockDimensions()); |
| |
| // Precompute strides for TensorBlockIO::Copy. |
| auto input_strides = internal::strides<Layout>(dims); |
| auto output_strides = internal::strides<Layout>(dims); |
| |
| const T* input_data = input.data(); |
| T* output_data = output.data(); |
| T* block_data = block.data(); |
| |
| for (int i = 0; i < block_mapper.blockCount(); ++i) { |
| auto desc = block_mapper.blockDescriptor(i); |
| |
| auto blk_dims = desc.dimensions(); |
| auto blk_strides = internal::strides<Layout>(blk_dims); |
| |
| { |
| // Read from input into a block buffer. |
| IODst dst(blk_dims, blk_strides, block_data, 0); |
| IOSrc src(input_strides, input_data, desc.offset()); |
| |
| TensorBlockIO::Copy(dst, src); |
| } |
| |
| { |
| // Write from block buffer to output. |
| IODst dst(blk_dims, output_strides, output_data, desc.offset()); |
| IOSrc src(blk_strides, block_data, 0); |
| |
| TensorBlockIO::Copy(dst, src); |
| } |
| } |
| |
| for (int i = 0; i < dims.TotalSize(); ++i) { |
| VERIFY_IS_EQUAL(input_data[i], output_data[i]); |
| } |
| } |
| |
| template <typename T, int NumDims, int Layout> |
| static void test_block_io_copy_using_reordered_dimensions() { |
| // Generate a random input Tensor. |
| DSizes<Index, NumDims> dims = RandomDims<NumDims>(1, 30); |
| Tensor<T, NumDims, Layout> input(dims); |
| input.setRandom(); |
| |
| // Create a random dimension re-ordering/shuffle. |
| std::vector<int> shuffle; |
| |
| for (int i = 0; i < NumDims; ++i) shuffle.push_back(i); |
| std::shuffle(shuffle.begin(), shuffle.end(), std::mt19937(g_seed)); |
| |
| DSizes<Index, NumDims> output_tensor_dims; |
| DSizes<Index, NumDims> input_to_output_dim_map; |
| DSizes<Index, NumDims> output_to_input_dim_map; |
| for (Index i = 0; i < NumDims; ++i) { |
| output_tensor_dims[shuffle[i]] = dims[i]; |
| input_to_output_dim_map[i] = shuffle[i]; |
| output_to_input_dim_map[shuffle[i]] = i; |
| } |
| |
| // Write data to an output Tensor. |
| Tensor<T, NumDims, Layout> output(output_tensor_dims); |
| |
| // Construct a tensor block mapper. |
| // NOTE: Tensor block mapper works with shuffled dimensions. |
| using TensorBlockMapper = internal::TensorBlockMapper<NumDims, Layout, Index>; |
| TensorBlockMapper block_mapper(output_tensor_dims, |
| {RandomBlockShape(), RandomTargetBlockSize(output_tensor_dims), {0, 0, 0}}); |
| |
| // We will copy data from input to output through this buffer. |
| Tensor<T, NumDims, Layout> block(block_mapper.blockDimensions()); |
| |
| // Precompute strides for TensorBlockIO::Copy. |
| auto input_strides = internal::strides<Layout>(dims); |
| auto output_strides = internal::strides<Layout>(output_tensor_dims); |
| |
| const T* input_data = input.data(); |
| T* output_data = output.data(); |
| T* block_data = block.data(); |
| |
| for (Index i = 0; i < block_mapper.blockCount(); ++i) { |
| auto desc = block_mapper.blockDescriptor(i); |
| |
| const Index first_coeff_index = |
| GetInputIndex<Layout, NumDims>(desc.offset(), output_to_input_dim_map, input_strides, output_strides); |
| |
| // NOTE: Block dimensions are in the same order as output dimensions. |
| |
| using TensorBlockIO = internal::TensorBlockIO<T, Index, NumDims, Layout>; |
| using IODst = typename TensorBlockIO::Dst; |
| using IOSrc = typename TensorBlockIO::Src; |
| |
| auto blk_dims = desc.dimensions(); |
| auto blk_strides = internal::strides<Layout>(blk_dims); |
| |
| { |
| // Read from input into a block buffer. |
| IODst dst(blk_dims, blk_strides, block_data, 0); |
| IOSrc src(input_strides, input_data, first_coeff_index); |
| |
| // TODO(ezhulenev): Remove when fully switched to TensorBlock. |
| DSizes<int, NumDims> dim_map; |
| for (int j = 0; j < NumDims; ++j) dim_map[j] = static_cast<int>(output_to_input_dim_map[j]); |
| TensorBlockIO::Copy(dst, src, /*dst_to_src_dim_map=*/dim_map); |
| } |
| |
| { |
| // We need to convert block dimensions from output to input order. |
| auto dst_dims = blk_dims; |
| for (int out_dim = 0; out_dim < NumDims; ++out_dim) { |
| dst_dims[output_to_input_dim_map[out_dim]] = blk_dims[out_dim]; |
| } |
| |
| // Write from block buffer to output. |
| IODst dst(dst_dims, input_strides, output_data, first_coeff_index); |
| IOSrc src(blk_strides, block_data, 0); |
| |
| // TODO(ezhulenev): Remove when fully switched to TensorBlock. |
| DSizes<int, NumDims> dim_map; |
| for (int j = 0; j < NumDims; ++j) dim_map[j] = static_cast<int>(input_to_output_dim_map[j]); |
| TensorBlockIO::Copy(dst, src, /*dst_to_src_dim_map=*/dim_map); |
| } |
| } |
| |
| for (Index i = 0; i < dims.TotalSize(); ++i) { |
| VERIFY_IS_EQUAL(input_data[i], output_data[i]); |
| } |
| } |
| |
| // This is the special case for reading data with reordering, when dimensions |
| // before/after reordering are the same. Squeezing reads along inner dimensions |
| // in this case is illegal, because we reorder innermost dimension. |
| template <int Layout> |
| static void test_block_io_copy_using_reordered_dimensions_do_not_squeeze() { |
| DSizes<Index, 3> tensor_dims(7, 9, 7); |
| DSizes<Index, 3> block_dims = tensor_dims; |
| |
| DSizes<int, 3> block_to_tensor_dim; |
| block_to_tensor_dim[0] = 2; |
| block_to_tensor_dim[1] = 1; |
| block_to_tensor_dim[2] = 0; |
| |
| auto tensor_strides = internal::strides<Layout>(tensor_dims); |
| auto block_strides = internal::strides<Layout>(block_dims); |
| |
| Tensor<float, 3, Layout> block(block_dims); |
| Tensor<float, 3, Layout> tensor(tensor_dims); |
| tensor.setRandom(); |
| |
| float* tensor_data = tensor.data(); |
| float* block_data = block.data(); |
| |
| using TensorBlockIO = internal::TensorBlockIO<float, Index, 3, Layout>; |
| using IODst = typename TensorBlockIO::Dst; |
| using IOSrc = typename TensorBlockIO::Src; |
| |
| // Read from a tensor into a block. |
| IODst dst(block_dims, block_strides, block_data, 0); |
| IOSrc src(tensor_strides, tensor_data, 0); |
| |
| TensorBlockIO::Copy(dst, src, /*dst_to_src_dim_map=*/block_to_tensor_dim); |
| |
| TensorMap<Tensor<float, 3, Layout> > block_tensor(block_data, block_dims); |
| TensorMap<Tensor<float, 3, Layout> > tensor_tensor(tensor_data, tensor_dims); |
| |
| for (Index d0 = 0; d0 < tensor_dims[0]; ++d0) { |
| for (Index d1 = 0; d1 < tensor_dims[1]; ++d1) { |
| for (Index d2 = 0; d2 < tensor_dims[2]; ++d2) { |
| float block_value = block_tensor(d2, d1, d0); |
| float tensor_value = tensor_tensor(d0, d1, d2); |
| VERIFY_IS_EQUAL(block_value, tensor_value); |
| } |
| } |
| } |
| } |
| |
| // This is the special case for reading data with reordering, when dimensions |
| // before/after reordering are the same. Squeezing reads in this case is allowed |
| // because we reorder outer dimensions. |
| template <int Layout> |
| static void test_block_io_copy_using_reordered_dimensions_squeeze() { |
| DSizes<Index, 4> tensor_dims(7, 5, 9, 9); |
| DSizes<Index, 4> block_dims = tensor_dims; |
| |
| DSizes<int, 4> block_to_tensor_dim; |
| block_to_tensor_dim[0] = 0; |
| block_to_tensor_dim[1] = 1; |
| block_to_tensor_dim[2] = 3; |
| block_to_tensor_dim[3] = 2; |
| |
| auto tensor_strides = internal::strides<Layout>(tensor_dims); |
| auto block_strides = internal::strides<Layout>(block_dims); |
| |
| Tensor<float, 4, Layout> block(block_dims); |
| Tensor<float, 4, Layout> tensor(tensor_dims); |
| tensor.setRandom(); |
| |
| float* tensor_data = tensor.data(); |
| float* block_data = block.data(); |
| |
| using TensorBlockIO = internal::TensorBlockIO<float, Index, 4, Layout>; |
| using IODst = typename TensorBlockIO::Dst; |
| using IOSrc = typename TensorBlockIO::Src; |
| |
| // Read from a tensor into a block. |
| IODst dst(block_dims, block_strides, block_data, 0); |
| IOSrc src(tensor_strides, tensor_data, 0); |
| |
| TensorBlockIO::Copy(dst, src, /*dst_to_src_dim_map=*/block_to_tensor_dim); |
| |
| TensorMap<Tensor<float, 4, Layout> > block_tensor(block_data, block_dims); |
| TensorMap<Tensor<float, 4, Layout> > tensor_tensor(tensor_data, tensor_dims); |
| |
| for (Index d0 = 0; d0 < tensor_dims[0]; ++d0) { |
| for (Index d1 = 0; d1 < tensor_dims[1]; ++d1) { |
| for (Index d2 = 0; d2 < tensor_dims[2]; ++d2) { |
| for (Index d3 = 0; d3 < tensor_dims[3]; ++d3) { |
| float block_value = block_tensor(d0, d1, d3, d2); |
| float tensor_value = tensor_tensor(d0, d1, d2, d3); |
| VERIFY_IS_EQUAL(block_value, tensor_value); |
| } |
| } |
| } |
| } |
| } |
| |
| template <int Layout> |
| static void test_block_io_zero_stride() { |
| DSizes<Index, 5> rnd_dims = RandomDims<5>(1, 30); |
| |
| DSizes<Index, 5> input_tensor_dims = rnd_dims; |
| input_tensor_dims[0] = 1; |
| input_tensor_dims[2] = 1; |
| input_tensor_dims[4] = 1; |
| |
| Tensor<float, 5, Layout> input(input_tensor_dims); |
| input.setRandom(); |
| |
| DSizes<Index, 5> output_tensor_dims = rnd_dims; |
| |
| auto input_tensor_strides = internal::strides<Layout>(input_tensor_dims); |
| auto output_tensor_strides = internal::strides<Layout>(output_tensor_dims); |
| |
| auto input_tensor_strides_with_zeros = input_tensor_strides; |
| input_tensor_strides_with_zeros[0] = 0; |
| input_tensor_strides_with_zeros[2] = 0; |
| input_tensor_strides_with_zeros[4] = 0; |
| |
| Tensor<float, 5, Layout> output(output_tensor_dims); |
| output.setRandom(); |
| |
| using TensorBlockIO = internal::TensorBlockIO<float, Index, 5, Layout>; |
| using IODst = typename TensorBlockIO::Dst; |
| using IOSrc = typename TensorBlockIO::Src; |
| |
| // Write data from input to output with broadcasting in dims [0, 2, 4]. |
| IODst dst(output_tensor_dims, output_tensor_strides, output.data(), 0); |
| IOSrc src(input_tensor_strides_with_zeros, input.data(), 0); |
| TensorBlockIO::Copy(dst, src); |
| |
| for (int i = 0; i < output_tensor_dims[0]; ++i) { |
| for (int j = 0; j < output_tensor_dims[1]; ++j) { |
| for (int k = 0; k < output_tensor_dims[2]; ++k) { |
| for (int l = 0; l < output_tensor_dims[3]; ++l) { |
| for (int m = 0; m < output_tensor_dims[4]; ++m) { |
| float input_value = input(0, j, 0, l, 0); |
| float output_value = output(i, j, k, l, m); |
| VERIFY_IS_EQUAL(input_value, output_value); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| template <int Layout> |
| static void test_block_io_squeeze_ones() { |
| using TensorBlockIO = internal::TensorBlockIO<float, Index, 5, Layout>; |
| using IODst = typename TensorBlockIO::Dst; |
| using IOSrc = typename TensorBlockIO::Src; |
| |
| // Total size > 1. |
| { |
| DSizes<Index, 5> block_sizes(1, 2, 1, 2, 1); |
| auto strides = internal::strides<Layout>(block_sizes); |
| |
| // Create a random input tensor. |
| Tensor<float, 5> input(block_sizes); |
| input.setRandom(); |
| |
| Tensor<float, 5> output(block_sizes); |
| |
| IODst dst(block_sizes, strides, output.data(), 0); |
| IOSrc src(strides, input.data()); |
| TensorBlockIO::Copy(dst, src); |
| |
| for (Index i = 0; i < block_sizes.TotalSize(); ++i) { |
| VERIFY_IS_EQUAL(output.data()[i], input.data()[i]); |
| } |
| } |
| |
| // Total size == 1. |
| { |
| DSizes<Index, 5> block_sizes(1, 1, 1, 1, 1); |
| auto strides = internal::strides<Layout>(block_sizes); |
| |
| // Create a random input tensor. |
| Tensor<float, 5> input(block_sizes); |
| input.setRandom(); |
| |
| Tensor<float, 5> output(block_sizes); |
| |
| IODst dst(block_sizes, strides, output.data(), 0); |
| IOSrc src(strides, input.data()); |
| TensorBlockIO::Copy(dst, src); |
| |
| for (Index i = 0; i < block_sizes.TotalSize(); ++i) { |
| VERIFY_IS_EQUAL(output.data()[i], input.data()[i]); |
| } |
| } |
| } |
| |
| #define CALL_SUBTESTS(NAME) \ |
| CALL_SUBTEST((NAME<float, 1, RowMajor>())); \ |
| CALL_SUBTEST((NAME<float, 2, RowMajor>())); \ |
| CALL_SUBTEST((NAME<float, 4, RowMajor>())); \ |
| CALL_SUBTEST((NAME<float, 5, RowMajor>())); \ |
| CALL_SUBTEST((NAME<float, 1, ColMajor>())); \ |
| CALL_SUBTEST((NAME<float, 2, ColMajor>())); \ |
| CALL_SUBTEST((NAME<float, 4, ColMajor>())); \ |
| CALL_SUBTEST((NAME<float, 5, ColMajor>())); \ |
| CALL_SUBTEST((NAME<bool, 1, RowMajor>())); \ |
| CALL_SUBTEST((NAME<bool, 2, RowMajor>())); \ |
| CALL_SUBTEST((NAME<bool, 4, RowMajor>())); \ |
| CALL_SUBTEST((NAME<bool, 5, RowMajor>())); \ |
| CALL_SUBTEST((NAME<bool, 1, ColMajor>())); \ |
| CALL_SUBTEST((NAME<bool, 2, ColMajor>())); \ |
| CALL_SUBTEST((NAME<bool, 4, ColMajor>())); \ |
| CALL_SUBTEST((NAME<bool, 5, ColMajor>())) |
| |
| EIGEN_DECLARE_TEST(cxx11_tensor_block_io) { |
| // clang-format off |
| CALL_SUBTESTS(test_block_io_copy_data_from_source_to_target); |
| CALL_SUBTESTS(test_block_io_copy_using_reordered_dimensions); |
| |
| CALL_SUBTEST(test_block_io_copy_using_reordered_dimensions_do_not_squeeze<RowMajor>()); |
| CALL_SUBTEST(test_block_io_copy_using_reordered_dimensions_do_not_squeeze<ColMajor>()); |
| |
| CALL_SUBTEST(test_block_io_copy_using_reordered_dimensions_squeeze<RowMajor>()); |
| CALL_SUBTEST(test_block_io_copy_using_reordered_dimensions_squeeze<ColMajor>()); |
| |
| CALL_SUBTEST(test_block_io_zero_stride<RowMajor>()); |
| CALL_SUBTEST(test_block_io_zero_stride<ColMajor>()); |
| |
| CALL_SUBTEST(test_block_io_squeeze_ones<RowMajor>()); |
| CALL_SUBTEST(test_block_io_squeeze_ones<ColMajor>()); |
| // clang-format on |
| } |