| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2016 Benoit Steiner <benoit.steiner.goog@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #define EIGEN_TEST_NO_LONGDOUBLE |
| |
| #define EIGEN_USE_GPU |
| |
| #include "main.h" |
| #include <unsupported/Eigen/CXX11/Tensor> |
| |
| using Eigen::Tensor; |
| |
| void test_cuda_nullary() { |
| Tensor<std::complex<float>, 1, 0, int> in1(2); |
| Tensor<std::complex<float>, 1, 0, int> in2(2); |
| in1.setRandom(); |
| in2.setRandom(); |
| |
| std::size_t float_bytes = in1.size() * sizeof(float); |
| std::size_t complex_bytes = in1.size() * sizeof(std::complex<float>); |
| |
| std::complex<float>* d_in1; |
| std::complex<float>* d_in2; |
| float* d_out2; |
| cudaMalloc((void**)(&d_in1), complex_bytes); |
| cudaMalloc((void**)(&d_in2), complex_bytes); |
| cudaMalloc((void**)(&d_out2), float_bytes); |
| cudaMemcpy(d_in1, in1.data(), complex_bytes, cudaMemcpyHostToDevice); |
| cudaMemcpy(d_in2, in2.data(), complex_bytes, cudaMemcpyHostToDevice); |
| |
| Eigen::GpuStreamDevice stream; |
| Eigen::GpuDevice gpu_device(&stream); |
| |
| Eigen::TensorMap<Eigen::Tensor<std::complex<float>, 1, 0, int>, Eigen::Aligned> gpu_in1(d_in1, 2); |
| Eigen::TensorMap<Eigen::Tensor<std::complex<float>, 1, 0, int>, Eigen::Aligned> gpu_in2(d_in2, 2); |
| Eigen::TensorMap<Eigen::Tensor<float, 1, 0, int>, Eigen::Aligned> gpu_out2(d_out2, 2); |
| |
| gpu_in1.device(gpu_device) = gpu_in1.constant(std::complex<float>(3.14f, 2.7f)); |
| gpu_out2.device(gpu_device) = gpu_in2.abs(); |
| |
| Tensor<std::complex<float>, 1, 0, int> new1(2); |
| Tensor<float, 1, 0, int> new2(2); |
| |
| assert(cudaMemcpyAsync(new1.data(), d_in1, complex_bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == |
| cudaSuccess); |
| assert(cudaMemcpyAsync(new2.data(), d_out2, float_bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess); |
| |
| assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess); |
| |
| for (int i = 0; i < 2; ++i) { |
| VERIFY_IS_APPROX(new1(i), std::complex<float>(3.14f, 2.7f)); |
| VERIFY_IS_APPROX(new2(i), std::abs(in2(i))); |
| } |
| |
| cudaFree(d_in1); |
| cudaFree(d_in2); |
| cudaFree(d_out2); |
| } |
| |
| static void test_cuda_sum_reductions() { |
| Eigen::GpuStreamDevice stream; |
| Eigen::GpuDevice gpu_device(&stream); |
| |
| const int num_rows = internal::random<int>(1024, 5 * 1024); |
| const int num_cols = internal::random<int>(1024, 5 * 1024); |
| |
| Tensor<std::complex<float>, 2> in(num_rows, num_cols); |
| in.setRandom(); |
| |
| Tensor<std::complex<float>, 0> full_redux; |
| full_redux = in.sum(); |
| |
| std::size_t in_bytes = in.size() * sizeof(std::complex<float>); |
| std::size_t out_bytes = full_redux.size() * sizeof(std::complex<float>); |
| std::complex<float>* gpu_in_ptr = static_cast<std::complex<float>*>(gpu_device.allocate(in_bytes)); |
| std::complex<float>* gpu_out_ptr = static_cast<std::complex<float>*>(gpu_device.allocate(out_bytes)); |
| gpu_device.memcpyHostToDevice(gpu_in_ptr, in.data(), in_bytes); |
| |
| TensorMap<Tensor<std::complex<float>, 2> > in_gpu(gpu_in_ptr, num_rows, num_cols); |
| TensorMap<Tensor<std::complex<float>, 0> > out_gpu(gpu_out_ptr); |
| |
| out_gpu.device(gpu_device) = in_gpu.sum(); |
| |
| Tensor<std::complex<float>, 0> full_redux_gpu; |
| gpu_device.memcpyDeviceToHost(full_redux_gpu.data(), gpu_out_ptr, out_bytes); |
| gpu_device.synchronize(); |
| |
| // Check that the CPU and GPU reductions return the same result. |
| VERIFY_IS_APPROX(full_redux(), full_redux_gpu()); |
| |
| gpu_device.deallocate(gpu_in_ptr); |
| gpu_device.deallocate(gpu_out_ptr); |
| } |
| |
| static void test_cuda_mean_reductions() { |
| Eigen::GpuStreamDevice stream; |
| Eigen::GpuDevice gpu_device(&stream); |
| |
| const int num_rows = internal::random<int>(1024, 5 * 1024); |
| const int num_cols = internal::random<int>(1024, 5 * 1024); |
| |
| Tensor<std::complex<float>, 2> in(num_rows, num_cols); |
| in.setRandom(); |
| |
| Tensor<std::complex<float>, 0> full_redux; |
| full_redux = in.mean(); |
| |
| std::size_t in_bytes = in.size() * sizeof(std::complex<float>); |
| std::size_t out_bytes = full_redux.size() * sizeof(std::complex<float>); |
| std::complex<float>* gpu_in_ptr = static_cast<std::complex<float>*>(gpu_device.allocate(in_bytes)); |
| std::complex<float>* gpu_out_ptr = static_cast<std::complex<float>*>(gpu_device.allocate(out_bytes)); |
| gpu_device.memcpyHostToDevice(gpu_in_ptr, in.data(), in_bytes); |
| |
| TensorMap<Tensor<std::complex<float>, 2> > in_gpu(gpu_in_ptr, num_rows, num_cols); |
| TensorMap<Tensor<std::complex<float>, 0> > out_gpu(gpu_out_ptr); |
| |
| out_gpu.device(gpu_device) = in_gpu.mean(); |
| |
| Tensor<std::complex<float>, 0> full_redux_gpu; |
| gpu_device.memcpyDeviceToHost(full_redux_gpu.data(), gpu_out_ptr, out_bytes); |
| gpu_device.synchronize(); |
| |
| // Check that the CPU and GPU reductions return the same result. |
| VERIFY_IS_APPROX(full_redux(), full_redux_gpu()); |
| |
| gpu_device.deallocate(gpu_in_ptr); |
| gpu_device.deallocate(gpu_out_ptr); |
| } |
| |
| static void test_cuda_product_reductions() { |
| Eigen::GpuStreamDevice stream; |
| Eigen::GpuDevice gpu_device(&stream); |
| |
| const int num_rows = internal::random<int>(1024, 5 * 1024); |
| const int num_cols = internal::random<int>(1024, 5 * 1024); |
| |
| Tensor<std::complex<float>, 2> in(num_rows, num_cols); |
| in.setRandom(); |
| |
| Tensor<std::complex<float>, 0> full_redux; |
| full_redux = in.prod(); |
| |
| std::size_t in_bytes = in.size() * sizeof(std::complex<float>); |
| std::size_t out_bytes = full_redux.size() * sizeof(std::complex<float>); |
| std::complex<float>* gpu_in_ptr = static_cast<std::complex<float>*>(gpu_device.allocate(in_bytes)); |
| std::complex<float>* gpu_out_ptr = static_cast<std::complex<float>*>(gpu_device.allocate(out_bytes)); |
| gpu_device.memcpyHostToDevice(gpu_in_ptr, in.data(), in_bytes); |
| |
| TensorMap<Tensor<std::complex<float>, 2> > in_gpu(gpu_in_ptr, num_rows, num_cols); |
| TensorMap<Tensor<std::complex<float>, 0> > out_gpu(gpu_out_ptr); |
| |
| out_gpu.device(gpu_device) = in_gpu.prod(); |
| |
| Tensor<std::complex<float>, 0> full_redux_gpu; |
| gpu_device.memcpyDeviceToHost(full_redux_gpu.data(), gpu_out_ptr, out_bytes); |
| gpu_device.synchronize(); |
| |
| // Check that the CPU and GPU reductions return the same result. |
| VERIFY_IS_APPROX(full_redux(), full_redux_gpu()); |
| |
| gpu_device.deallocate(gpu_in_ptr); |
| gpu_device.deallocate(gpu_out_ptr); |
| } |
| |
| EIGEN_DECLARE_TEST(test_cxx11_tensor_complex) { |
| CALL_SUBTEST(test_cuda_nullary()); |
| CALL_SUBTEST(test_cuda_sum_reductions()); |
| CALL_SUBTEST(test_cuda_mean_reductions()); |
| CALL_SUBTEST(test_cuda_product_reductions()); |
| } |