blob: 12f11e099d93a16f490192e9a3e952b94fc4a5ce [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2016 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#define EIGEN_TEST_NO_LONGDOUBLE
#define EIGEN_USE_GPU
#include "main.h"
#include <unsupported/Eigen/CXX11/Tensor>
using Eigen::Tensor;
void test_cuda_nullary() {
Tensor<std::complex<float>, 1, 0, int> in1(2);
Tensor<std::complex<float>, 1, 0, int> in2(2);
in1.setRandom();
in2.setRandom();
std::size_t float_bytes = in1.size() * sizeof(float);
std::size_t complex_bytes = in1.size() * sizeof(std::complex<float>);
std::complex<float>* d_in1;
std::complex<float>* d_in2;
float* d_out2;
cudaMalloc((void**)(&d_in1), complex_bytes);
cudaMalloc((void**)(&d_in2), complex_bytes);
cudaMalloc((void**)(&d_out2), float_bytes);
cudaMemcpy(d_in1, in1.data(), complex_bytes, cudaMemcpyHostToDevice);
cudaMemcpy(d_in2, in2.data(), complex_bytes, cudaMemcpyHostToDevice);
Eigen::GpuStreamDevice stream;
Eigen::GpuDevice gpu_device(&stream);
Eigen::TensorMap<Eigen::Tensor<std::complex<float>, 1, 0, int>, Eigen::Aligned> gpu_in1(d_in1, 2);
Eigen::TensorMap<Eigen::Tensor<std::complex<float>, 1, 0, int>, Eigen::Aligned> gpu_in2(d_in2, 2);
Eigen::TensorMap<Eigen::Tensor<float, 1, 0, int>, Eigen::Aligned> gpu_out2(d_out2, 2);
gpu_in1.device(gpu_device) = gpu_in1.constant(std::complex<float>(3.14f, 2.7f));
gpu_out2.device(gpu_device) = gpu_in2.abs();
Tensor<std::complex<float>, 1, 0, int> new1(2);
Tensor<float, 1, 0, int> new2(2);
assert(cudaMemcpyAsync(new1.data(), d_in1, complex_bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) ==
cudaSuccess);
assert(cudaMemcpyAsync(new2.data(), d_out2, float_bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess);
assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess);
for (int i = 0; i < 2; ++i) {
VERIFY_IS_APPROX(new1(i), std::complex<float>(3.14f, 2.7f));
VERIFY_IS_APPROX(new2(i), std::abs(in2(i)));
}
cudaFree(d_in1);
cudaFree(d_in2);
cudaFree(d_out2);
}
static void test_cuda_sum_reductions() {
Eigen::GpuStreamDevice stream;
Eigen::GpuDevice gpu_device(&stream);
const int num_rows = internal::random<int>(1024, 5 * 1024);
const int num_cols = internal::random<int>(1024, 5 * 1024);
Tensor<std::complex<float>, 2> in(num_rows, num_cols);
in.setRandom();
Tensor<std::complex<float>, 0> full_redux;
full_redux = in.sum();
std::size_t in_bytes = in.size() * sizeof(std::complex<float>);
std::size_t out_bytes = full_redux.size() * sizeof(std::complex<float>);
std::complex<float>* gpu_in_ptr = static_cast<std::complex<float>*>(gpu_device.allocate(in_bytes));
std::complex<float>* gpu_out_ptr = static_cast<std::complex<float>*>(gpu_device.allocate(out_bytes));
gpu_device.memcpyHostToDevice(gpu_in_ptr, in.data(), in_bytes);
TensorMap<Tensor<std::complex<float>, 2> > in_gpu(gpu_in_ptr, num_rows, num_cols);
TensorMap<Tensor<std::complex<float>, 0> > out_gpu(gpu_out_ptr);
out_gpu.device(gpu_device) = in_gpu.sum();
Tensor<std::complex<float>, 0> full_redux_gpu;
gpu_device.memcpyDeviceToHost(full_redux_gpu.data(), gpu_out_ptr, out_bytes);
gpu_device.synchronize();
// Check that the CPU and GPU reductions return the same result.
VERIFY_IS_APPROX(full_redux(), full_redux_gpu());
gpu_device.deallocate(gpu_in_ptr);
gpu_device.deallocate(gpu_out_ptr);
}
static void test_cuda_mean_reductions() {
Eigen::GpuStreamDevice stream;
Eigen::GpuDevice gpu_device(&stream);
const int num_rows = internal::random<int>(1024, 5 * 1024);
const int num_cols = internal::random<int>(1024, 5 * 1024);
Tensor<std::complex<float>, 2> in(num_rows, num_cols);
in.setRandom();
Tensor<std::complex<float>, 0> full_redux;
full_redux = in.mean();
std::size_t in_bytes = in.size() * sizeof(std::complex<float>);
std::size_t out_bytes = full_redux.size() * sizeof(std::complex<float>);
std::complex<float>* gpu_in_ptr = static_cast<std::complex<float>*>(gpu_device.allocate(in_bytes));
std::complex<float>* gpu_out_ptr = static_cast<std::complex<float>*>(gpu_device.allocate(out_bytes));
gpu_device.memcpyHostToDevice(gpu_in_ptr, in.data(), in_bytes);
TensorMap<Tensor<std::complex<float>, 2> > in_gpu(gpu_in_ptr, num_rows, num_cols);
TensorMap<Tensor<std::complex<float>, 0> > out_gpu(gpu_out_ptr);
out_gpu.device(gpu_device) = in_gpu.mean();
Tensor<std::complex<float>, 0> full_redux_gpu;
gpu_device.memcpyDeviceToHost(full_redux_gpu.data(), gpu_out_ptr, out_bytes);
gpu_device.synchronize();
// Check that the CPU and GPU reductions return the same result.
VERIFY_IS_APPROX(full_redux(), full_redux_gpu());
gpu_device.deallocate(gpu_in_ptr);
gpu_device.deallocate(gpu_out_ptr);
}
static void test_cuda_product_reductions() {
Eigen::GpuStreamDevice stream;
Eigen::GpuDevice gpu_device(&stream);
const int num_rows = internal::random<int>(1024, 5 * 1024);
const int num_cols = internal::random<int>(1024, 5 * 1024);
Tensor<std::complex<float>, 2> in(num_rows, num_cols);
in.setRandom();
Tensor<std::complex<float>, 0> full_redux;
full_redux = in.prod();
std::size_t in_bytes = in.size() * sizeof(std::complex<float>);
std::size_t out_bytes = full_redux.size() * sizeof(std::complex<float>);
std::complex<float>* gpu_in_ptr = static_cast<std::complex<float>*>(gpu_device.allocate(in_bytes));
std::complex<float>* gpu_out_ptr = static_cast<std::complex<float>*>(gpu_device.allocate(out_bytes));
gpu_device.memcpyHostToDevice(gpu_in_ptr, in.data(), in_bytes);
TensorMap<Tensor<std::complex<float>, 2> > in_gpu(gpu_in_ptr, num_rows, num_cols);
TensorMap<Tensor<std::complex<float>, 0> > out_gpu(gpu_out_ptr);
out_gpu.device(gpu_device) = in_gpu.prod();
Tensor<std::complex<float>, 0> full_redux_gpu;
gpu_device.memcpyDeviceToHost(full_redux_gpu.data(), gpu_out_ptr, out_bytes);
gpu_device.synchronize();
// Check that the CPU and GPU reductions return the same result.
VERIFY_IS_APPROX(full_redux(), full_redux_gpu());
gpu_device.deallocate(gpu_in_ptr);
gpu_device.deallocate(gpu_out_ptr);
}
EIGEN_DECLARE_TEST(test_cxx11_tensor_complex) {
CALL_SUBTEST(test_cuda_nullary());
CALL_SUBTEST(test_cuda_sum_reductions());
CALL_SUBTEST(test_cuda_mean_reductions());
CALL_SUBTEST(test_cuda_product_reductions());
}