blob: fc235d5e1ece4cb2d77ad9be220b96dc9e0f60b1 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include <numeric>
#include "main.h"
#include <Eigen/CXX11/Tensor>
using Eigen::RowMajor;
using Eigen::Tensor;
static void test_1d() {
Tensor<float, 1> vec1(6);
Tensor<float, 1, RowMajor> vec2(6);
vec1(0) = 4.0;
vec2(0) = 0.0;
vec1(1) = 8.0;
vec2(1) = 1.0;
vec1(2) = 15.0;
vec2(2) = 2.0;
vec1(3) = 16.0;
vec2(3) = 3.0;
vec1(4) = 23.0;
vec2(4) = 4.0;
vec1(5) = 42.0;
vec2(5) = 5.0;
float data3[6];
TensorMap<Tensor<float, 1>> vec3(data3, 6);
vec3 = vec1.sqrt();
float data4[6];
TensorMap<Tensor<float, 1, RowMajor>> vec4(data4, 6);
vec4 = vec2.square();
float data5[6];
TensorMap<Tensor<float, 1, RowMajor>> vec5(data5, 6);
vec5 = vec2.cube();
VERIFY_IS_APPROX(vec3(0), sqrtf(4.0));
VERIFY_IS_APPROX(vec3(1), sqrtf(8.0));
VERIFY_IS_APPROX(vec3(2), sqrtf(15.0));
VERIFY_IS_APPROX(vec3(3), sqrtf(16.0));
VERIFY_IS_APPROX(vec3(4), sqrtf(23.0));
VERIFY_IS_APPROX(vec3(5), sqrtf(42.0));
VERIFY_IS_APPROX(vec4(0), 0.0f);
VERIFY_IS_APPROX(vec4(1), 1.0f);
VERIFY_IS_APPROX(vec4(2), 2.0f * 2.0f);
VERIFY_IS_APPROX(vec4(3), 3.0f * 3.0f);
VERIFY_IS_APPROX(vec4(4), 4.0f * 4.0f);
VERIFY_IS_APPROX(vec4(5), 5.0f * 5.0f);
VERIFY_IS_APPROX(vec5(0), 0.0f);
VERIFY_IS_APPROX(vec5(1), 1.0f);
VERIFY_IS_APPROX(vec5(2), 2.0f * 2.0f * 2.0f);
VERIFY_IS_APPROX(vec5(3), 3.0f * 3.0f * 3.0f);
VERIFY_IS_APPROX(vec5(4), 4.0f * 4.0f * 4.0f);
VERIFY_IS_APPROX(vec5(5), 5.0f * 5.0f * 5.0f);
vec3 = vec1 + vec2;
VERIFY_IS_APPROX(vec3(0), 4.0f + 0.0f);
VERIFY_IS_APPROX(vec3(1), 8.0f + 1.0f);
VERIFY_IS_APPROX(vec3(2), 15.0f + 2.0f);
VERIFY_IS_APPROX(vec3(3), 16.0f + 3.0f);
VERIFY_IS_APPROX(vec3(4), 23.0f + 4.0f);
VERIFY_IS_APPROX(vec3(5), 42.0f + 5.0f);
}
static void test_2d() {
float data1[6];
TensorMap<Tensor<float, 2>> mat1(data1, 2, 3);
float data2[6];
TensorMap<Tensor<float, 2, RowMajor>> mat2(data2, 2, 3);
mat1(0, 0) = 0.0;
mat1(0, 1) = 1.0;
mat1(0, 2) = 2.0;
mat1(1, 0) = 3.0;
mat1(1, 1) = 4.0;
mat1(1, 2) = 5.0;
mat2(0, 0) = -0.0;
mat2(0, 1) = -1.0;
mat2(0, 2) = -2.0;
mat2(1, 0) = -3.0;
mat2(1, 1) = -4.0;
mat2(1, 2) = -5.0;
Tensor<float, 2> mat3(2, 3);
Tensor<float, 2, RowMajor> mat4(2, 3);
mat3 = mat1.abs();
mat4 = mat2.abs();
VERIFY_IS_APPROX(mat3(0, 0), 0.0f);
VERIFY_IS_APPROX(mat3(0, 1), 1.0f);
VERIFY_IS_APPROX(mat3(0, 2), 2.0f);
VERIFY_IS_APPROX(mat3(1, 0), 3.0f);
VERIFY_IS_APPROX(mat3(1, 1), 4.0f);
VERIFY_IS_APPROX(mat3(1, 2), 5.0f);
VERIFY_IS_APPROX(mat4(0, 0), 0.0f);
VERIFY_IS_APPROX(mat4(0, 1), 1.0f);
VERIFY_IS_APPROX(mat4(0, 2), 2.0f);
VERIFY_IS_APPROX(mat4(1, 0), 3.0f);
VERIFY_IS_APPROX(mat4(1, 1), 4.0f);
VERIFY_IS_APPROX(mat4(1, 2), 5.0f);
}
static void test_3d() {
Tensor<float, 3> mat1(2, 3, 7);
Tensor<float, 3, RowMajor> mat2(2, 3, 7);
float val = 1.0f;
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 3; ++j) {
for (int k = 0; k < 7; ++k) {
mat1(i, j, k) = val;
mat2(i, j, k) = val;
val += 1.0f;
}
}
}
Tensor<float, 3> mat3(2, 3, 7);
mat3 = mat1 + mat1;
Tensor<float, 3, RowMajor> mat4(2, 3, 7);
mat4 = mat2 * 3.14f;
Tensor<float, 3> mat5(2, 3, 7);
mat5 = (mat1 + mat1.constant(1)).inverse().log();
Tensor<float, 3, RowMajor> mat6(2, 3, 7);
mat6 = mat2.pow(0.5f) * 3.14f;
Tensor<float, 3> mat7(2, 3, 7);
mat7 = mat1.cwiseMax(mat5 * 2.0f).exp();
Tensor<float, 3, RowMajor> mat8(2, 3, 7);
mat8 = (-mat2).exp() * 3.14f;
Tensor<float, 3, RowMajor> mat9(2, 3, 7);
mat9 = mat2 + 3.14f;
Tensor<float, 3, RowMajor> mat10(2, 3, 7);
mat10 = mat2 - 3.14f;
Tensor<float, 3, RowMajor> mat11(2, 3, 7);
mat11 = mat2 / 3.14f;
val = 1.0f;
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 3; ++j) {
for (int k = 0; k < 7; ++k) {
VERIFY_IS_APPROX(mat3(i, j, k), val + val);
VERIFY_IS_APPROX(mat4(i, j, k), val * 3.14f);
VERIFY_IS_APPROX(mat5(i, j, k), logf(1.0f / (val + 1)));
VERIFY_IS_APPROX(mat6(i, j, k), sqrtf(val) * 3.14f);
VERIFY_IS_APPROX(mat7(i, j, k), expf((std::max)(val, mat5(i, j, k) * 2.0f)));
VERIFY_IS_APPROX(mat8(i, j, k), expf(-val) * 3.14f);
VERIFY_IS_APPROX(mat9(i, j, k), val + 3.14f);
VERIFY_IS_APPROX(mat10(i, j, k), val - 3.14f);
VERIFY_IS_APPROX(mat11(i, j, k), val / 3.14f);
val += 1.0f;
}
}
}
}
static void test_constants() {
Tensor<float, 3> mat1(2, 3, 7);
Tensor<float, 3> mat2(2, 3, 7);
Tensor<float, 3> mat3(2, 3, 7);
float val = 1.0f;
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 3; ++j) {
for (int k = 0; k < 7; ++k) {
mat1(i, j, k) = val;
val += 1.0f;
}
}
}
mat2 = mat1.constant(3.14f);
mat3 = mat1.cwiseMax(7.3f).exp();
val = 1.0f;
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 3; ++j) {
for (int k = 0; k < 7; ++k) {
VERIFY_IS_APPROX(mat2(i, j, k), 3.14f);
VERIFY_IS_APPROX(mat3(i, j, k), expf((std::max)(val, 7.3f)));
val += 1.0f;
}
}
}
}
static void test_boolean() {
const int kSize = 31;
Tensor<int, 1> vec(kSize);
std::iota(vec.data(), vec.data() + kSize, 0);
// Test ||.
Tensor<bool, 1> bool1 = (vec < vec.constant(1) || vec > vec.constant(4)).cast<bool>();
for (int i = 0; i < kSize; ++i) {
bool expected = i < 1 || i > 4;
VERIFY_IS_EQUAL(bool1[i], expected);
}
// Test &&, including cast of operand vec.
Tensor<bool, 1> bool2 = vec.cast<bool>() && (vec < vec.constant(4)).cast<bool>();
for (int i = 0; i < kSize; ++i) {
bool expected = bool(i) && i < 4;
VERIFY_IS_EQUAL(bool2[i], expected);
}
// Compilation tests:
// Test Tensor<bool> against results of cast or comparison; verifies that
// CoeffReturnType is set to match Op return type of bool for Unary and Binary
// Ops.
Tensor<bool, 1> bool3 = vec.cast<bool>() && bool2;
bool3 = (vec < vec.constant(4)).cast<bool>() && bool2;
}
static void test_functors() {
Tensor<float, 3> mat1(2, 3, 7);
Tensor<float, 3> mat2(2, 3, 7);
Tensor<float, 3> mat3(2, 3, 7);
float val = 1.0f;
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 3; ++j) {
for (int k = 0; k < 7; ++k) {
mat1(i, j, k) = val;
val += 1.0f;
}
}
}
mat2 = mat1.inverse().unaryExpr(&asinf);
mat3 = mat1.unaryExpr(&tanhf);
val = 1.0f;
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 3; ++j) {
for (int k = 0; k < 7; ++k) {
VERIFY_IS_APPROX(mat2(i, j, k), asinf(1.0f / mat1(i, j, k)));
VERIFY_IS_APPROX(mat3(i, j, k), tanhf(mat1(i, j, k)));
val += 1.0f;
}
}
}
}
static void test_type_casting() {
Tensor<bool, 3> mat1(2, 3, 7);
Tensor<float, 3> mat2(2, 3, 7);
Tensor<double, 3> mat3(2, 3, 7);
mat1.setRandom();
mat2.setRandom();
mat3 = mat1.cast<double>();
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 3; ++j) {
for (int k = 0; k < 7; ++k) {
VERIFY_IS_APPROX(mat3(i, j, k), mat1(i, j, k) ? 1.0 : 0.0);
}
}
}
mat3 = mat2.cast<double>();
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 3; ++j) {
for (int k = 0; k < 7; ++k) {
VERIFY_IS_APPROX(mat3(i, j, k), static_cast<double>(mat2(i, j, k)));
}
}
}
}
static void test_select() {
using TypedGTOp = internal::scalar_cmp_op<float, float, internal::cmp_GT, true>;
Tensor<float, 3> selector(2, 3, 7);
Tensor<float, 3> mat1(2, 3, 7);
Tensor<float, 3> mat2(2, 3, 7);
Tensor<float, 3> result(2, 3, 7);
selector.setRandom();
mat1.setRandom();
mat2.setRandom();
// test select with a boolean condition
result = (selector > selector.constant(0.5f)).select(mat1, mat2);
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 3; ++j) {
for (int k = 0; k < 7; ++k) {
VERIFY_IS_APPROX(result(i, j, k), (selector(i, j, k) > 0.5f) ? mat1(i, j, k) : mat2(i, j, k));
}
}
}
// test select with a typed condition
result = selector.binaryExpr(selector.constant(0.5f), TypedGTOp()).select(mat1, mat2);
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 3; ++j) {
for (int k = 0; k < 7; ++k) {
VERIFY_IS_APPROX(result(i, j, k), (selector(i, j, k) > 0.5f) ? mat1(i, j, k) : mat2(i, j, k));
}
}
}
}
template <typename Scalar>
void test_minmax_nan_propagation_templ() {
for (int size = 1; size < 17; ++size) {
const Scalar kNaN = std::numeric_limits<Scalar>::quiet_NaN();
const Scalar kInf = std::numeric_limits<Scalar>::infinity();
const Scalar kZero(0);
Tensor<Scalar, 1> vec_full_nan(size);
Tensor<Scalar, 1> vec_one_nan(size);
Tensor<Scalar, 1> vec_zero(size);
vec_full_nan.setConstant(kNaN);
vec_zero.setZero();
vec_one_nan.setZero();
vec_one_nan(size / 2) = kNaN;
auto verify_all_nan = [&](const Tensor<Scalar, 1>& v) {
for (int i = 0; i < size; ++i) {
VERIFY((numext::isnan)(v(i)));
}
};
auto verify_all_zero = [&](const Tensor<Scalar, 1>& v) {
for (int i = 0; i < size; ++i) {
VERIFY_IS_EQUAL(v(i), Scalar(0));
}
};
// Test NaN propagating max.
// max(nan, nan) = nan
// max(nan, 0) = nan
// max(0, nan) = nan
// max(0, 0) = 0
verify_all_nan(vec_full_nan.template cwiseMax<PropagateNaN>(kNaN));
verify_all_nan(vec_full_nan.template cwiseMax<PropagateNaN>(vec_full_nan));
verify_all_nan(vec_full_nan.template cwiseMax<PropagateNaN>(kZero));
verify_all_nan(vec_full_nan.template cwiseMax<PropagateNaN>(vec_zero));
verify_all_nan(vec_zero.template cwiseMax<PropagateNaN>(kNaN));
verify_all_nan(vec_zero.template cwiseMax<PropagateNaN>(vec_full_nan));
verify_all_zero(vec_zero.template cwiseMax<PropagateNaN>(kZero));
verify_all_zero(vec_zero.template cwiseMax<PropagateNaN>(vec_zero));
// Test number propagating max.
// max(nan, nan) = nan
// max(nan, 0) = 0
// max(0, nan) = 0
// max(0, 0) = 0
verify_all_nan(vec_full_nan.template cwiseMax<PropagateNumbers>(kNaN));
verify_all_nan(vec_full_nan.template cwiseMax<PropagateNumbers>(vec_full_nan));
verify_all_zero(vec_full_nan.template cwiseMax<PropagateNumbers>(kZero));
verify_all_zero(vec_full_nan.template cwiseMax<PropagateNumbers>(vec_zero));
verify_all_zero(vec_zero.template cwiseMax<PropagateNumbers>(kNaN));
verify_all_zero(vec_zero.template cwiseMax<PropagateNumbers>(vec_full_nan));
verify_all_zero(vec_zero.template cwiseMax<PropagateNumbers>(kZero));
verify_all_zero(vec_zero.template cwiseMax<PropagateNumbers>(vec_zero));
// Test NaN propagating min.
// min(nan, nan) = nan
// min(nan, 0) = nan
// min(0, nan) = nan
// min(0, 0) = 0
verify_all_nan(vec_full_nan.template cwiseMin<PropagateNaN>(kNaN));
verify_all_nan(vec_full_nan.template cwiseMin<PropagateNaN>(vec_full_nan));
verify_all_nan(vec_full_nan.template cwiseMin<PropagateNaN>(kZero));
verify_all_nan(vec_full_nan.template cwiseMin<PropagateNaN>(vec_zero));
verify_all_nan(vec_zero.template cwiseMin<PropagateNaN>(kNaN));
verify_all_nan(vec_zero.template cwiseMin<PropagateNaN>(vec_full_nan));
verify_all_zero(vec_zero.template cwiseMin<PropagateNaN>(kZero));
verify_all_zero(vec_zero.template cwiseMin<PropagateNaN>(vec_zero));
// Test number propagating min.
// min(nan, nan) = nan
// min(nan, 0) = 0
// min(0, nan) = 0
// min(0, 0) = 0
verify_all_nan(vec_full_nan.template cwiseMin<PropagateNumbers>(kNaN));
verify_all_nan(vec_full_nan.template cwiseMin<PropagateNumbers>(vec_full_nan));
verify_all_zero(vec_full_nan.template cwiseMin<PropagateNumbers>(kZero));
verify_all_zero(vec_full_nan.template cwiseMin<PropagateNumbers>(vec_zero));
verify_all_zero(vec_zero.template cwiseMin<PropagateNumbers>(kNaN));
verify_all_zero(vec_zero.template cwiseMin<PropagateNumbers>(vec_full_nan));
verify_all_zero(vec_zero.template cwiseMin<PropagateNumbers>(kZero));
verify_all_zero(vec_zero.template cwiseMin<PropagateNumbers>(vec_zero));
// Test min and max reduction
Tensor<Scalar, 0> val;
val = vec_zero.minimum();
VERIFY_IS_EQUAL(val(), kZero);
val = vec_zero.template minimum<PropagateNaN>();
VERIFY_IS_EQUAL(val(), kZero);
val = vec_zero.template minimum<PropagateNumbers>();
VERIFY_IS_EQUAL(val(), kZero);
val = vec_zero.maximum();
VERIFY_IS_EQUAL(val(), kZero);
val = vec_zero.template maximum<PropagateNaN>();
VERIFY_IS_EQUAL(val(), kZero);
val = vec_zero.template maximum<PropagateNumbers>();
VERIFY_IS_EQUAL(val(), kZero);
// Test NaN propagation for tensor of all NaNs.
val = vec_full_nan.template minimum<PropagateNaN>();
VERIFY((numext::isnan)(val()));
val = vec_full_nan.template minimum<PropagateNumbers>();
VERIFY_IS_EQUAL(val(), kInf);
val = vec_full_nan.template maximum<PropagateNaN>();
VERIFY((numext::isnan)(val()));
val = vec_full_nan.template maximum<PropagateNumbers>();
VERIFY_IS_EQUAL(val(), -kInf);
// Test NaN propagation for tensor with a single NaN.
val = vec_one_nan.template minimum<PropagateNaN>();
VERIFY((numext::isnan)(val()));
val = vec_one_nan.template minimum<PropagateNumbers>();
VERIFY_IS_EQUAL(val(), (size == 1 ? kInf : kZero));
val = vec_one_nan.template maximum<PropagateNaN>();
VERIFY((numext::isnan)(val()));
val = vec_one_nan.template maximum<PropagateNumbers>();
VERIFY_IS_EQUAL(val(), (size == 1 ? -kInf : kZero));
}
}
static void test_clip() {
Tensor<float, 1> vec(6);
vec(0) = 4.0;
vec(1) = 8.0;
vec(2) = 15.0;
vec(3) = 16.0;
vec(4) = 23.0;
vec(5) = 42.0;
float kMin = 20;
float kMax = 30;
Tensor<float, 1> vec_clipped(6);
vec_clipped = vec.clip(kMin, kMax);
for (int i = 0; i < 6; ++i) {
VERIFY_IS_EQUAL(vec_clipped(i), numext::mini(numext::maxi(vec(i), kMin), kMax));
}
}
static void test_minmax_nan_propagation() {
test_minmax_nan_propagation_templ<float>();
test_minmax_nan_propagation_templ<double>();
}
EIGEN_DECLARE_TEST(cxx11_tensor_expr) {
CALL_SUBTEST(test_1d());
CALL_SUBTEST(test_2d());
CALL_SUBTEST(test_3d());
CALL_SUBTEST(test_constants());
CALL_SUBTEST(test_boolean());
CALL_SUBTEST(test_functors());
CALL_SUBTEST(test_type_casting());
CALL_SUBTEST(test_select());
CALL_SUBTEST(test_clip());
// Nan propagation does currently not work like one would expect from std::max/std::min,
// so we disable it for now
#if !EIGEN_ARCH_ARM_OR_ARM64
CALL_SUBTEST(test_minmax_nan_propagation());
#endif
}