| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2016 |
| // Mehdi Goli Codeplay Software Ltd. |
| // Ralph Potter Codeplay Software Ltd. |
| // Luke Iwanski Codeplay Software Ltd. |
| // Contact: <eigen@codeplay.com> |
| // Benoit Steiner <benoit.steiner.goog@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #define EIGEN_TEST_NO_LONGDOUBLE |
| #define EIGEN_TEST_NO_COMPLEX |
| #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int64_t |
| #define EIGEN_USE_SYCL |
| |
| #include "main.h" |
| #include <unsupported/Eigen/CXX11/Tensor> |
| |
| using Eigen::array; |
| using Eigen::SyclDevice; |
| using Eigen::Tensor; |
| using Eigen::TensorMap; |
| |
| using Eigen::RowMajor; |
| using Eigen::Tensor; |
| template <typename DataType, int DataLayout, typename IndexType> |
| static void test_tanh_sycl(const Eigen::SyclDevice& sycl_device) { |
| IndexType sizeDim1 = 4; |
| IndexType sizeDim2 = 4; |
| IndexType sizeDim3 = 1; |
| array<IndexType, 3> tensorRange = {{sizeDim1, sizeDim2, sizeDim3}}; |
| Tensor<DataType, 3, DataLayout, IndexType> in(tensorRange); |
| Tensor<DataType, 3, DataLayout, IndexType> out(tensorRange); |
| Tensor<DataType, 3, DataLayout, IndexType> out_cpu(tensorRange); |
| |
| in = in.random(); |
| |
| DataType* gpu_data1 = static_cast<DataType*>(sycl_device.allocate(in.size() * sizeof(DataType))); |
| DataType* gpu_data2 = static_cast<DataType*>(sycl_device.allocate(out.size() * sizeof(DataType))); |
| |
| TensorMap<Tensor<DataType, 3, DataLayout, IndexType>> gpu1(gpu_data1, tensorRange); |
| TensorMap<Tensor<DataType, 3, DataLayout, IndexType>> gpu2(gpu_data2, tensorRange); |
| |
| sycl_device.memcpyHostToDevice(gpu_data1, in.data(), (in.size()) * sizeof(DataType)); |
| gpu2.device(sycl_device) = gpu1.tanh(); |
| sycl_device.memcpyDeviceToHost(out.data(), gpu_data2, (out.size()) * sizeof(DataType)); |
| |
| out_cpu = in.tanh(); |
| |
| for (int i = 0; i < in.size(); ++i) { |
| VERIFY_IS_APPROX(out(i), out_cpu(i)); |
| } |
| } |
| template <typename DataType, int DataLayout, typename IndexType> |
| static void test_sigmoid_sycl(const Eigen::SyclDevice& sycl_device) { |
| IndexType sizeDim1 = 4; |
| IndexType sizeDim2 = 4; |
| IndexType sizeDim3 = 1; |
| array<IndexType, 3> tensorRange = {{sizeDim1, sizeDim2, sizeDim3}}; |
| Tensor<DataType, 3, DataLayout, IndexType> in(tensorRange); |
| Tensor<DataType, 3, DataLayout, IndexType> out(tensorRange); |
| Tensor<DataType, 3, DataLayout, IndexType> out_cpu(tensorRange); |
| |
| in = in.random(); |
| |
| DataType* gpu_data1 = static_cast<DataType*>(sycl_device.allocate(in.size() * sizeof(DataType))); |
| DataType* gpu_data2 = static_cast<DataType*>(sycl_device.allocate(out.size() * sizeof(DataType))); |
| |
| TensorMap<Tensor<DataType, 3, DataLayout, IndexType>> gpu1(gpu_data1, tensorRange); |
| TensorMap<Tensor<DataType, 3, DataLayout, IndexType>> gpu2(gpu_data2, tensorRange); |
| |
| sycl_device.memcpyHostToDevice(gpu_data1, in.data(), (in.size()) * sizeof(DataType)); |
| gpu2.device(sycl_device) = gpu1.sigmoid(); |
| sycl_device.memcpyDeviceToHost(out.data(), gpu_data2, (out.size()) * sizeof(DataType)); |
| |
| out_cpu = in.sigmoid(); |
| |
| for (int i = 0; i < in.size(); ++i) { |
| VERIFY_IS_APPROX(out(i), out_cpu(i)); |
| } |
| } |
| |
| template <typename DataType, typename dev_Selector> |
| void sycl_computing_test_per_device(dev_Selector s) { |
| QueueInterface queueInterface(s); |
| auto sycl_device = Eigen::SyclDevice(&queueInterface); |
| test_tanh_sycl<DataType, RowMajor, int64_t>(sycl_device); |
| test_tanh_sycl<DataType, ColMajor, int64_t>(sycl_device); |
| test_sigmoid_sycl<DataType, RowMajor, int64_t>(sycl_device); |
| test_sigmoid_sycl<DataType, ColMajor, int64_t>(sycl_device); |
| } |
| |
| EIGEN_DECLARE_TEST(cxx11_tensor_math_sycl) { |
| for (const auto& device : Eigen::get_sycl_supported_devices()) { |
| CALL_SUBTEST(sycl_computing_test_per_device<half>(device)); |
| CALL_SUBTEST(sycl_computing_test_per_device<float>(device)); |
| } |
| } |