blob: 12d137d246e3301ae694c9c5e70779caf12f6aaf [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2010 Manuel Yguel <manuel.yguel@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#include <unsupported/Eigen/Polynomials>
#include <iostream>
#include <algorithm>
using namespace std;
namespace Eigen {
namespace internal {
template <int Size>
struct increment_if_fixed_size {
enum { ret = (Size == Dynamic) ? Dynamic : Size + 1 };
};
} // namespace internal
} // namespace Eigen
template <typename PolynomialType>
PolynomialType polyder(const PolynomialType& p) {
typedef typename PolynomialType::Scalar Scalar;
PolynomialType res(p.size());
for (Index i = 1; i < p.size(); ++i) res[i - 1] = p[i] * Scalar(i);
res[p.size() - 1] = 0.;
return res;
}
template <int Deg, typename POLYNOMIAL, typename SOLVER>
bool aux_evalSolver(const POLYNOMIAL& pols, SOLVER& psolve) {
typedef typename POLYNOMIAL::Scalar Scalar;
typedef typename POLYNOMIAL::RealScalar RealScalar;
typedef typename SOLVER::RootsType RootsType;
typedef Matrix<RealScalar, Deg, 1> EvalRootsType;
const Index deg = pols.size() - 1;
// Test template constructor from coefficient vector
SOLVER solve_constr(pols);
psolve.compute(pols);
const RootsType& roots(psolve.roots());
EvalRootsType evr(deg);
POLYNOMIAL pols_der = polyder(pols);
EvalRootsType der(deg);
for (int i = 0; i < roots.size(); ++i) {
evr[i] = std::abs(poly_eval(pols, roots[i]));
der[i] = numext::maxi(RealScalar(1.), std::abs(poly_eval(pols_der, roots[i])));
}
// we need to divide by the magnitude of the derivative because
// with a high derivative is very small error in the value of the root
// yiels a very large error in the polynomial evaluation.
bool evalToZero = (evr.cwiseQuotient(der)).isZero(test_precision<Scalar>());
if (!evalToZero) {
cerr << "WRONG root: " << endl;
cerr << "Polynomial: " << pols.transpose() << endl;
cerr << "Roots found: " << roots.transpose() << endl;
cerr << "Abs value of the polynomial at the roots: " << evr.transpose() << endl;
cerr << endl;
}
std::vector<RealScalar> rootModuli(roots.size());
Map<EvalRootsType> aux(&rootModuli[0], roots.size());
aux = roots.array().abs();
std::sort(rootModuli.begin(), rootModuli.end());
bool distinctModuli = true;
for (size_t i = 1; i < rootModuli.size() && distinctModuli; ++i) {
if (internal::isApprox(rootModuli[i], rootModuli[i - 1])) {
distinctModuli = false;
}
}
VERIFY(evalToZero || !distinctModuli);
return distinctModuli;
}
template <int Deg, typename POLYNOMIAL>
void evalSolver(const POLYNOMIAL& pols) {
typedef typename POLYNOMIAL::Scalar Scalar;
typedef PolynomialSolver<Scalar, Deg> PolynomialSolverType;
PolynomialSolverType psolve;
aux_evalSolver<Deg, POLYNOMIAL, PolynomialSolverType>(pols, psolve);
}
template <int Deg, typename POLYNOMIAL, typename ROOTS, typename REAL_ROOTS>
void evalSolverSugarFunction(const POLYNOMIAL& pols, const ROOTS& roots, const REAL_ROOTS& real_roots) {
using std::sqrt;
typedef typename POLYNOMIAL::Scalar Scalar;
typedef typename POLYNOMIAL::RealScalar RealScalar;
typedef PolynomialSolver<Scalar, Deg> PolynomialSolverType;
PolynomialSolverType psolve;
if (aux_evalSolver<Deg, POLYNOMIAL, PolynomialSolverType>(pols, psolve)) {
// It is supposed that
// 1) the roots found are correct
// 2) the roots have distinct moduli
// Test realRoots
std::vector<RealScalar> calc_realRoots;
psolve.realRoots(calc_realRoots, test_precision<RealScalar>());
VERIFY_IS_EQUAL(calc_realRoots.size(), (size_t)real_roots.size());
const RealScalar psPrec = sqrt(test_precision<RealScalar>());
for (size_t i = 0; i < calc_realRoots.size(); ++i) {
bool found = false;
for (size_t j = 0; j < calc_realRoots.size() && !found; ++j) {
if (internal::isApprox(calc_realRoots[i], real_roots[j], psPrec)) {
found = true;
}
}
VERIFY(found);
}
// Test greatestRoot
VERIFY(internal::isApprox(roots.array().abs().maxCoeff(), abs(psolve.greatestRoot()), psPrec));
// Test smallestRoot
VERIFY(internal::isApprox(roots.array().abs().minCoeff(), abs(psolve.smallestRoot()), psPrec));
bool hasRealRoot;
// Test absGreatestRealRoot
RealScalar r = psolve.absGreatestRealRoot(hasRealRoot);
VERIFY(hasRealRoot == (real_roots.size() > 0));
if (hasRealRoot) {
VERIFY(internal::isApprox(real_roots.array().abs().maxCoeff(), abs(r), psPrec));
}
// Test absSmallestRealRoot
r = psolve.absSmallestRealRoot(hasRealRoot);
VERIFY(hasRealRoot == (real_roots.size() > 0));
if (hasRealRoot) {
VERIFY(internal::isApprox(real_roots.array().abs().minCoeff(), abs(r), psPrec));
}
// Test greatestRealRoot
r = psolve.greatestRealRoot(hasRealRoot);
VERIFY(hasRealRoot == (real_roots.size() > 0));
if (hasRealRoot) {
VERIFY(internal::isApprox(real_roots.array().maxCoeff(), r, psPrec));
}
// Test smallestRealRoot
r = psolve.smallestRealRoot(hasRealRoot);
VERIFY(hasRealRoot == (real_roots.size() > 0));
if (hasRealRoot) {
VERIFY(internal::isApprox(real_roots.array().minCoeff(), r, psPrec));
}
}
}
template <typename Scalar_, int Deg_>
void polynomialsolver(int deg) {
typedef typename NumTraits<Scalar_>::Real RealScalar;
typedef internal::increment_if_fixed_size<Deg_> Dim;
typedef Matrix<Scalar_, Dim::ret, 1> PolynomialType;
typedef Matrix<Scalar_, Deg_, 1> EvalRootsType;
typedef Matrix<RealScalar, Deg_, 1> RealRootsType;
cout << "Standard cases" << endl;
PolynomialType pols = PolynomialType::Random(deg + 1);
evalSolver<Deg_, PolynomialType>(pols);
cout << "Hard cases" << endl;
Scalar_ multipleRoot = internal::random<Scalar_>();
EvalRootsType allRoots = EvalRootsType::Constant(deg, multipleRoot);
roots_to_monicPolynomial(allRoots, pols);
evalSolver<Deg_, PolynomialType>(pols);
cout << "Test sugar" << endl;
RealRootsType realRoots = RealRootsType::Random(deg);
roots_to_monicPolynomial(realRoots, pols);
evalSolverSugarFunction<Deg_>(pols, realRoots.template cast<std::complex<RealScalar> >().eval(), realRoots);
}
EIGEN_DECLARE_TEST(polynomialsolver) {
for (int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1((polynomialsolver<float, 1>(1)));
CALL_SUBTEST_2((polynomialsolver<double, 2>(2)));
CALL_SUBTEST_3((polynomialsolver<double, 3>(3)));
CALL_SUBTEST_4((polynomialsolver<float, 4>(4)));
CALL_SUBTEST_5((polynomialsolver<double, 5>(5)));
CALL_SUBTEST_6((polynomialsolver<float, 6>(6)));
CALL_SUBTEST_7((polynomialsolver<float, 7>(7)));
CALL_SUBTEST_8((polynomialsolver<double, 8>(8)));
CALL_SUBTEST_9((polynomialsolver<float, Dynamic>(internal::random<int>(9, 13))));
CALL_SUBTEST_10((polynomialsolver<double, Dynamic>(internal::random<int>(9, 13))));
CALL_SUBTEST_11((polynomialsolver<float, Dynamic>(1)));
CALL_SUBTEST_12((polynomialsolver<std::complex<double>, Dynamic>(internal::random<int>(2, 13))));
}
}