| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2009-2010 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // Copyright (C) 2013-2014 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_JACOBISVD_H |
| #define EIGEN_JACOBISVD_H |
| |
| // IWYU pragma: private |
| #include "./InternalHeaderCheck.h" |
| |
| namespace Eigen { |
| |
| namespace internal { |
| |
| // forward declaration (needed by ICC) |
| // the empty body is required by MSVC |
| template <typename MatrixType, int Options, bool IsComplex = NumTraits<typename MatrixType::Scalar>::IsComplex> |
| struct svd_precondition_2x2_block_to_be_real {}; |
| |
| /*** QR preconditioners (R-SVD) |
| *** |
| *** Their role is to reduce the problem of computing the SVD to the case of a square matrix. |
| *** This approach, known as R-SVD, is an optimization for rectangular-enough matrices, and is a requirement for |
| *** JacobiSVD which by itself is only able to work on square matrices. |
| ***/ |
| |
| enum { PreconditionIfMoreColsThanRows, PreconditionIfMoreRowsThanCols }; |
| |
| template <typename MatrixType, int QRPreconditioner, int Case> |
| struct qr_preconditioner_should_do_anything { |
| enum { |
| a = MatrixType::RowsAtCompileTime != Dynamic && MatrixType::ColsAtCompileTime != Dynamic && |
| MatrixType::ColsAtCompileTime <= MatrixType::RowsAtCompileTime, |
| b = MatrixType::RowsAtCompileTime != Dynamic && MatrixType::ColsAtCompileTime != Dynamic && |
| MatrixType::RowsAtCompileTime <= MatrixType::ColsAtCompileTime, |
| ret = !((QRPreconditioner == NoQRPreconditioner) || (Case == PreconditionIfMoreColsThanRows && bool(a)) || |
| (Case == PreconditionIfMoreRowsThanCols && bool(b))) |
| }; |
| }; |
| |
| template <typename MatrixType, int Options, int QRPreconditioner, int Case, |
| bool DoAnything = qr_preconditioner_should_do_anything<MatrixType, QRPreconditioner, Case>::ret> |
| struct qr_preconditioner_impl {}; |
| |
| template <typename MatrixType, int Options, int QRPreconditioner, int Case> |
| class qr_preconditioner_impl<MatrixType, Options, QRPreconditioner, Case, false> { |
| public: |
| void allocate(const JacobiSVD<MatrixType, Options>&) {} |
| bool run(JacobiSVD<MatrixType, Options>&, const MatrixType&) { return false; } |
| }; |
| |
| /*** preconditioner using FullPivHouseholderQR ***/ |
| |
| template <typename MatrixType, int Options> |
| class qr_preconditioner_impl<MatrixType, Options, FullPivHouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, |
| true> { |
| public: |
| typedef typename MatrixType::Scalar Scalar; |
| typedef JacobiSVD<MatrixType, Options> SVDType; |
| |
| enum { WorkspaceSize = MatrixType::RowsAtCompileTime, MaxWorkspaceSize = MatrixType::MaxRowsAtCompileTime }; |
| |
| typedef Matrix<Scalar, 1, WorkspaceSize, RowMajor, 1, MaxWorkspaceSize> WorkspaceType; |
| |
| void allocate(const SVDType& svd) { |
| if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols()) { |
| internal::destroy_at(&m_qr); |
| internal::construct_at(&m_qr, svd.rows(), svd.cols()); |
| } |
| if (svd.m_computeFullU) m_workspace.resize(svd.rows()); |
| } |
| |
| bool run(SVDType& svd, const MatrixType& matrix) { |
| if (matrix.rows() > matrix.cols()) { |
| m_qr.compute(matrix); |
| svd.m_workMatrix = m_qr.matrixQR().block(0, 0, matrix.cols(), matrix.cols()).template triangularView<Upper>(); |
| if (svd.m_computeFullU) m_qr.matrixQ().evalTo(svd.m_matrixU, m_workspace); |
| if (svd.computeV()) svd.m_matrixV = m_qr.colsPermutation(); |
| return true; |
| } |
| return false; |
| } |
| |
| private: |
| typedef FullPivHouseholderQR<MatrixType> QRType; |
| QRType m_qr; |
| WorkspaceType m_workspace; |
| }; |
| |
| template <typename MatrixType, int Options> |
| class qr_preconditioner_impl<MatrixType, Options, FullPivHouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, |
| true> { |
| public: |
| typedef typename MatrixType::Scalar Scalar; |
| typedef JacobiSVD<MatrixType, Options> SVDType; |
| |
| enum { |
| RowsAtCompileTime = MatrixType::RowsAtCompileTime, |
| ColsAtCompileTime = MatrixType::ColsAtCompileTime, |
| MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, |
| MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, |
| MatrixOptions = MatrixType::Options |
| }; |
| |
| typedef typename internal::make_proper_matrix_type<Scalar, ColsAtCompileTime, RowsAtCompileTime, MatrixOptions, |
| MaxColsAtCompileTime, MaxRowsAtCompileTime>::type |
| TransposeTypeWithSameStorageOrder; |
| |
| void allocate(const SVDType& svd) { |
| if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols()) { |
| internal::destroy_at(&m_qr); |
| internal::construct_at(&m_qr, svd.cols(), svd.rows()); |
| } |
| m_adjoint.resize(svd.cols(), svd.rows()); |
| if (svd.m_computeFullV) m_workspace.resize(svd.cols()); |
| } |
| |
| bool run(SVDType& svd, const MatrixType& matrix) { |
| if (matrix.cols() > matrix.rows()) { |
| m_adjoint = matrix.adjoint(); |
| m_qr.compute(m_adjoint); |
| svd.m_workMatrix = |
| m_qr.matrixQR().block(0, 0, matrix.rows(), matrix.rows()).template triangularView<Upper>().adjoint(); |
| if (svd.m_computeFullV) m_qr.matrixQ().evalTo(svd.m_matrixV, m_workspace); |
| if (svd.computeU()) svd.m_matrixU = m_qr.colsPermutation(); |
| return true; |
| } else |
| return false; |
| } |
| |
| private: |
| typedef FullPivHouseholderQR<TransposeTypeWithSameStorageOrder> QRType; |
| QRType m_qr; |
| TransposeTypeWithSameStorageOrder m_adjoint; |
| typename plain_row_type<MatrixType>::type m_workspace; |
| }; |
| |
| /*** preconditioner using ColPivHouseholderQR ***/ |
| |
| template <typename MatrixType, int Options> |
| class qr_preconditioner_impl<MatrixType, Options, ColPivHouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, |
| true> { |
| public: |
| typedef typename MatrixType::Scalar Scalar; |
| typedef JacobiSVD<MatrixType, Options> SVDType; |
| |
| enum { |
| WorkspaceSize = internal::traits<SVDType>::MatrixUColsAtCompileTime, |
| MaxWorkspaceSize = internal::traits<SVDType>::MatrixUMaxColsAtCompileTime |
| }; |
| |
| typedef Matrix<Scalar, 1, WorkspaceSize, RowMajor, 1, MaxWorkspaceSize> WorkspaceType; |
| |
| void allocate(const SVDType& svd) { |
| if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols()) { |
| internal::destroy_at(&m_qr); |
| internal::construct_at(&m_qr, svd.rows(), svd.cols()); |
| } |
| if (svd.m_computeFullU) |
| m_workspace.resize(svd.rows()); |
| else if (svd.m_computeThinU) |
| m_workspace.resize(svd.cols()); |
| } |
| |
| bool run(SVDType& svd, const MatrixType& matrix) { |
| if (matrix.rows() > matrix.cols()) { |
| m_qr.compute(matrix); |
| svd.m_workMatrix = m_qr.matrixQR().block(0, 0, matrix.cols(), matrix.cols()).template triangularView<Upper>(); |
| if (svd.m_computeFullU) |
| m_qr.householderQ().evalTo(svd.m_matrixU, m_workspace); |
| else if (svd.m_computeThinU) { |
| svd.m_matrixU.setIdentity(matrix.rows(), matrix.cols()); |
| m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixU, m_workspace); |
| } |
| if (svd.computeV()) svd.m_matrixV = m_qr.colsPermutation(); |
| return true; |
| } |
| return false; |
| } |
| |
| private: |
| typedef ColPivHouseholderQR<MatrixType> QRType; |
| QRType m_qr; |
| WorkspaceType m_workspace; |
| }; |
| |
| template <typename MatrixType, int Options> |
| class qr_preconditioner_impl<MatrixType, Options, ColPivHouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, |
| true> { |
| public: |
| typedef typename MatrixType::Scalar Scalar; |
| typedef JacobiSVD<MatrixType, Options> SVDType; |
| |
| enum { |
| RowsAtCompileTime = MatrixType::RowsAtCompileTime, |
| ColsAtCompileTime = MatrixType::ColsAtCompileTime, |
| MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, |
| MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, |
| MatrixOptions = MatrixType::Options, |
| WorkspaceSize = internal::traits<SVDType>::MatrixVColsAtCompileTime, |
| MaxWorkspaceSize = internal::traits<SVDType>::MatrixVMaxColsAtCompileTime |
| }; |
| |
| typedef Matrix<Scalar, WorkspaceSize, 1, ColMajor, MaxWorkspaceSize, 1> WorkspaceType; |
| |
| typedef typename internal::make_proper_matrix_type<Scalar, ColsAtCompileTime, RowsAtCompileTime, MatrixOptions, |
| MaxColsAtCompileTime, MaxRowsAtCompileTime>::type |
| TransposeTypeWithSameStorageOrder; |
| |
| void allocate(const SVDType& svd) { |
| if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols()) { |
| internal::destroy_at(&m_qr); |
| internal::construct_at(&m_qr, svd.cols(), svd.rows()); |
| } |
| if (svd.m_computeFullV) |
| m_workspace.resize(svd.cols()); |
| else if (svd.m_computeThinV) |
| m_workspace.resize(svd.rows()); |
| m_adjoint.resize(svd.cols(), svd.rows()); |
| } |
| |
| bool run(SVDType& svd, const MatrixType& matrix) { |
| if (matrix.cols() > matrix.rows()) { |
| m_adjoint = matrix.adjoint(); |
| m_qr.compute(m_adjoint); |
| |
| svd.m_workMatrix = |
| m_qr.matrixQR().block(0, 0, matrix.rows(), matrix.rows()).template triangularView<Upper>().adjoint(); |
| if (svd.m_computeFullV) |
| m_qr.householderQ().evalTo(svd.m_matrixV, m_workspace); |
| else if (svd.m_computeThinV) { |
| svd.m_matrixV.setIdentity(matrix.cols(), matrix.rows()); |
| m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixV, m_workspace); |
| } |
| if (svd.computeU()) svd.m_matrixU = m_qr.colsPermutation(); |
| return true; |
| } else |
| return false; |
| } |
| |
| private: |
| typedef ColPivHouseholderQR<TransposeTypeWithSameStorageOrder> QRType; |
| QRType m_qr; |
| TransposeTypeWithSameStorageOrder m_adjoint; |
| WorkspaceType m_workspace; |
| }; |
| |
| /*** preconditioner using HouseholderQR ***/ |
| |
| template <typename MatrixType, int Options> |
| class qr_preconditioner_impl<MatrixType, Options, HouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true> { |
| public: |
| typedef typename MatrixType::Scalar Scalar; |
| typedef JacobiSVD<MatrixType, Options> SVDType; |
| |
| enum { |
| WorkspaceSize = internal::traits<SVDType>::MatrixUColsAtCompileTime, |
| MaxWorkspaceSize = internal::traits<SVDType>::MatrixUMaxColsAtCompileTime |
| }; |
| |
| typedef Matrix<Scalar, 1, WorkspaceSize, RowMajor, 1, MaxWorkspaceSize> WorkspaceType; |
| |
| void allocate(const SVDType& svd) { |
| if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols()) { |
| internal::destroy_at(&m_qr); |
| internal::construct_at(&m_qr, svd.rows(), svd.cols()); |
| } |
| if (svd.m_computeFullU) |
| m_workspace.resize(svd.rows()); |
| else if (svd.m_computeThinU) |
| m_workspace.resize(svd.cols()); |
| } |
| |
| bool run(SVDType& svd, const MatrixType& matrix) { |
| if (matrix.rows() > matrix.cols()) { |
| m_qr.compute(matrix); |
| svd.m_workMatrix = m_qr.matrixQR().block(0, 0, matrix.cols(), matrix.cols()).template triangularView<Upper>(); |
| if (svd.m_computeFullU) |
| m_qr.householderQ().evalTo(svd.m_matrixU, m_workspace); |
| else if (svd.m_computeThinU) { |
| svd.m_matrixU.setIdentity(matrix.rows(), matrix.cols()); |
| m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixU, m_workspace); |
| } |
| if (svd.computeV()) svd.m_matrixV.setIdentity(matrix.cols(), matrix.cols()); |
| return true; |
| } |
| return false; |
| } |
| |
| private: |
| typedef HouseholderQR<MatrixType> QRType; |
| QRType m_qr; |
| WorkspaceType m_workspace; |
| }; |
| |
| template <typename MatrixType, int Options> |
| class qr_preconditioner_impl<MatrixType, Options, HouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true> { |
| public: |
| typedef typename MatrixType::Scalar Scalar; |
| typedef JacobiSVD<MatrixType, Options> SVDType; |
| |
| enum { |
| RowsAtCompileTime = MatrixType::RowsAtCompileTime, |
| ColsAtCompileTime = MatrixType::ColsAtCompileTime, |
| MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, |
| MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, |
| MatrixOptions = MatrixType::Options, |
| WorkspaceSize = internal::traits<SVDType>::MatrixVColsAtCompileTime, |
| MaxWorkspaceSize = internal::traits<SVDType>::MatrixVMaxColsAtCompileTime |
| }; |
| |
| typedef Matrix<Scalar, WorkspaceSize, 1, ColMajor, MaxWorkspaceSize, 1> WorkspaceType; |
| |
| typedef typename internal::make_proper_matrix_type<Scalar, ColsAtCompileTime, RowsAtCompileTime, MatrixOptions, |
| MaxColsAtCompileTime, MaxRowsAtCompileTime>::type |
| TransposeTypeWithSameStorageOrder; |
| |
| void allocate(const SVDType& svd) { |
| if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols()) { |
| internal::destroy_at(&m_qr); |
| internal::construct_at(&m_qr, svd.cols(), svd.rows()); |
| } |
| if (svd.m_computeFullV) |
| m_workspace.resize(svd.cols()); |
| else if (svd.m_computeThinV) |
| m_workspace.resize(svd.rows()); |
| m_adjoint.resize(svd.cols(), svd.rows()); |
| } |
| |
| bool run(SVDType& svd, const MatrixType& matrix) { |
| if (matrix.cols() > matrix.rows()) { |
| m_adjoint = matrix.adjoint(); |
| m_qr.compute(m_adjoint); |
| |
| svd.m_workMatrix = |
| m_qr.matrixQR().block(0, 0, matrix.rows(), matrix.rows()).template triangularView<Upper>().adjoint(); |
| if (svd.m_computeFullV) |
| m_qr.householderQ().evalTo(svd.m_matrixV, m_workspace); |
| else if (svd.m_computeThinV) { |
| svd.m_matrixV.setIdentity(matrix.cols(), matrix.rows()); |
| m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixV, m_workspace); |
| } |
| if (svd.computeU()) svd.m_matrixU.setIdentity(matrix.rows(), matrix.rows()); |
| return true; |
| } else |
| return false; |
| } |
| |
| private: |
| typedef HouseholderQR<TransposeTypeWithSameStorageOrder> QRType; |
| QRType m_qr; |
| TransposeTypeWithSameStorageOrder m_adjoint; |
| WorkspaceType m_workspace; |
| }; |
| |
| /*** 2x2 SVD implementation |
| *** |
| *** JacobiSVD consists in performing a series of 2x2 SVD subproblems |
| ***/ |
| |
| template <typename MatrixType, int Options> |
| struct svd_precondition_2x2_block_to_be_real<MatrixType, Options, false> { |
| typedef JacobiSVD<MatrixType, Options> SVD; |
| typedef typename MatrixType::RealScalar RealScalar; |
| static bool run(typename SVD::WorkMatrixType&, SVD&, Index, Index, RealScalar&) { return true; } |
| }; |
| |
| template <typename MatrixType, int Options> |
| struct svd_precondition_2x2_block_to_be_real<MatrixType, Options, true> { |
| typedef JacobiSVD<MatrixType, Options> SVD; |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename MatrixType::RealScalar RealScalar; |
| static bool run(typename SVD::WorkMatrixType& work_matrix, SVD& svd, Index p, Index q, RealScalar& maxDiagEntry) { |
| using std::abs; |
| using std::sqrt; |
| Scalar z; |
| JacobiRotation<Scalar> rot; |
| RealScalar n = sqrt(numext::abs2(work_matrix.coeff(p, p)) + numext::abs2(work_matrix.coeff(q, p))); |
| |
| const RealScalar considerAsZero = (std::numeric_limits<RealScalar>::min)(); |
| const RealScalar precision = NumTraits<Scalar>::epsilon(); |
| |
| if (numext::is_exactly_zero(n)) { |
| // make sure first column is zero |
| work_matrix.coeffRef(p, p) = work_matrix.coeffRef(q, p) = Scalar(0); |
| |
| if (abs(numext::imag(work_matrix.coeff(p, q))) > considerAsZero) { |
| // work_matrix.coeff(p,q) can be zero if work_matrix.coeff(q,p) is not zero but small enough to underflow when |
| // computing n |
| z = abs(work_matrix.coeff(p, q)) / work_matrix.coeff(p, q); |
| work_matrix.row(p) *= z; |
| if (svd.computeU()) svd.m_matrixU.col(p) *= conj(z); |
| } |
| if (abs(numext::imag(work_matrix.coeff(q, q))) > considerAsZero) { |
| z = abs(work_matrix.coeff(q, q)) / work_matrix.coeff(q, q); |
| work_matrix.row(q) *= z; |
| if (svd.computeU()) svd.m_matrixU.col(q) *= conj(z); |
| } |
| // otherwise the second row is already zero, so we have nothing to do. |
| } else { |
| rot.c() = conj(work_matrix.coeff(p, p)) / n; |
| rot.s() = work_matrix.coeff(q, p) / n; |
| work_matrix.applyOnTheLeft(p, q, rot); |
| if (svd.computeU()) svd.m_matrixU.applyOnTheRight(p, q, rot.adjoint()); |
| if (abs(numext::imag(work_matrix.coeff(p, q))) > considerAsZero) { |
| z = abs(work_matrix.coeff(p, q)) / work_matrix.coeff(p, q); |
| work_matrix.col(q) *= z; |
| if (svd.computeV()) svd.m_matrixV.col(q) *= z; |
| } |
| if (abs(numext::imag(work_matrix.coeff(q, q))) > considerAsZero) { |
| z = abs(work_matrix.coeff(q, q)) / work_matrix.coeff(q, q); |
| work_matrix.row(q) *= z; |
| if (svd.computeU()) svd.m_matrixU.col(q) *= conj(z); |
| } |
| } |
| |
| // update largest diagonal entry |
| maxDiagEntry = numext::maxi<RealScalar>( |
| maxDiagEntry, numext::maxi<RealScalar>(abs(work_matrix.coeff(p, p)), abs(work_matrix.coeff(q, q)))); |
| // and check whether the 2x2 block is already diagonal |
| RealScalar threshold = numext::maxi<RealScalar>(considerAsZero, precision * maxDiagEntry); |
| return abs(work_matrix.coeff(p, q)) > threshold || abs(work_matrix.coeff(q, p)) > threshold; |
| } |
| }; |
| |
| template <typename MatrixType_, int Options> |
| struct traits<JacobiSVD<MatrixType_, Options> > : svd_traits<MatrixType_, Options> { |
| typedef MatrixType_ MatrixType; |
| }; |
| |
| } // end namespace internal |
| |
| /** \ingroup SVD_Module |
| * |
| * |
| * \class JacobiSVD |
| * |
| * \brief Two-sided Jacobi SVD decomposition of a rectangular matrix |
| * |
| * \tparam MatrixType_ the type of the matrix of which we are computing the SVD decomposition |
| * \tparam Options this optional parameter allows one to specify the type of QR decomposition that will be used |
| * internally for the R-SVD step for non-square matrices. Additionally, it allows one to specify whether to compute thin |
| * or full unitaries \a U and \a V. See discussion of possible values below. |
| * |
| * SVD decomposition consists in decomposing any n-by-p matrix \a A as a product |
| * \f[ A = U S V^* \f] |
| * where \a U is a n-by-n unitary, \a V is a p-by-p unitary, and \a S is a n-by-p real positive matrix which is zero |
| * outside of its main diagonal; the diagonal entries of S are known as the \em singular \em values of \a A and the |
| * columns of \a U and \a V are known as the left and right \em singular \em vectors of \a A respectively. |
| * |
| * Singular values are always sorted in decreasing order. |
| * |
| * This JacobiSVD decomposition computes only the singular values by default. If you want \a U or \a V, you need to ask |
| * for them explicitly. |
| * |
| * You can ask for only \em thin \a U or \a V to be computed, meaning the following. In case of a rectangular n-by-p |
| * matrix, letting \a m be the smaller value among \a n and \a p, there are only \a m singular vectors; the remaining |
| * columns of \a U and \a V do not correspond to actual singular vectors. Asking for \em thin \a U or \a V means asking |
| * for only their \a m first columns to be formed. So \a U is then a n-by-m matrix, and \a V is then a p-by-m matrix. |
| * Notice that thin \a U and \a V are all you need for (least squares) solving. |
| * |
| * Here's an example demonstrating basic usage: |
| * \include JacobiSVD_basic.cpp |
| * Output: \verbinclude JacobiSVD_basic.out |
| * |
| * This JacobiSVD class is a two-sided Jacobi R-SVD decomposition, ensuring optimal reliability and accuracy. The |
| * downside is that it's slower than bidiagonalizing SVD algorithms for large square matrices; however its complexity is |
| * still \f$ O(n^2p) \f$ where \a n is the smaller dimension and \a p is the greater dimension, meaning that it is still |
| * of the same order of complexity as the faster bidiagonalizing R-SVD algorithms. In particular, like any R-SVD, it |
| * takes advantage of non-squareness in that its complexity is only linear in the greater dimension. |
| * |
| * If the input matrix has inf or nan coefficients, the result of the computation is undefined, but the computation is |
| * guaranteed to terminate in finite (and reasonable) time. |
| * |
| * The possible QR preconditioners that can be set with Options template parameter are: |
| * \li ColPivHouseholderQRPreconditioner is the default. In practice it's very safe. It uses column-pivoting QR. |
| * \li FullPivHouseholderQRPreconditioner, is the safest and slowest. It uses full-pivoting QR. |
| * Contrary to other QRs, it doesn't allow computing thin unitaries. |
| * \li HouseholderQRPreconditioner is the fastest, and less safe and accurate than the pivoting variants. It uses |
| * non-pivoting QR. This is very similar in safety and accuracy to the bidiagonalization process used by bidiagonalizing |
| * SVD algorithms (since bidiagonalization is inherently non-pivoting). However the resulting SVD is still more reliable |
| * than bidiagonalizing SVDs because the Jacobi-based iterarive process is more reliable than the optimized bidiagonal |
| * SVD iterations. \li NoQRPreconditioner allows not to use a QR preconditioner at all. This is useful if you know that |
| * you will only be computing JacobiSVD decompositions of square matrices. Non-square matrices require a QR |
| * preconditioner. Using this option will result in faster compilation and smaller executable code. It won't |
| * significantly speed up computation, since JacobiSVD is always checking if QR preconditioning is needed before |
| * applying it anyway. |
| * |
| * One may also use the Options template parameter to specify how the unitaries should be computed. The options are |
| * #ComputeThinU, #ComputeThinV, #ComputeFullU, #ComputeFullV. It is not possible to request both the thin and full |
| * versions of a unitary. By default, unitaries will not be computed. |
| * |
| * You can set the QRPreconditioner and unitary options together: JacobiSVD<MatrixType, |
| * ColPivHouseholderQRPreconditioner | ComputeThinU | ComputeFullV> |
| * |
| * \sa MatrixBase::jacobiSvd() |
| */ |
| template <typename MatrixType_, int Options_> |
| class JacobiSVD : public SVDBase<JacobiSVD<MatrixType_, Options_> > { |
| typedef SVDBase<JacobiSVD> Base; |
| |
| public: |
| typedef MatrixType_ MatrixType; |
| typedef typename Base::Scalar Scalar; |
| typedef typename Base::RealScalar RealScalar; |
| typedef typename Base::Index Index; |
| enum : int { |
| Options = Options_, |
| QRPreconditioner = internal::get_qr_preconditioner(Options), |
| RowsAtCompileTime = Base::RowsAtCompileTime, |
| ColsAtCompileTime = Base::ColsAtCompileTime, |
| DiagSizeAtCompileTime = Base::DiagSizeAtCompileTime, |
| MaxRowsAtCompileTime = Base::MaxRowsAtCompileTime, |
| MaxColsAtCompileTime = Base::MaxColsAtCompileTime, |
| MaxDiagSizeAtCompileTime = Base::MaxDiagSizeAtCompileTime, |
| MatrixOptions = Base::MatrixOptions |
| }; |
| |
| typedef typename Base::MatrixUType MatrixUType; |
| typedef typename Base::MatrixVType MatrixVType; |
| typedef typename Base::SingularValuesType SingularValuesType; |
| typedef Matrix<Scalar, DiagSizeAtCompileTime, DiagSizeAtCompileTime, MatrixOptions, MaxDiagSizeAtCompileTime, |
| MaxDiagSizeAtCompileTime> |
| WorkMatrixType; |
| |
| /** \brief Default Constructor. |
| * |
| * The default constructor is useful in cases in which the user intends to |
| * perform decompositions via JacobiSVD::compute(const MatrixType&). |
| */ |
| JacobiSVD() {} |
| |
| /** \brief Default Constructor with memory preallocation |
| * |
| * Like the default constructor but with preallocation of the internal data |
| * according to the specified problem size and \a Options template parameter. |
| * |
| * \sa JacobiSVD() |
| */ |
| JacobiSVD(Index rows, Index cols) { allocate(rows, cols, internal::get_computation_options(Options)); } |
| |
| /** \brief Default Constructor with memory preallocation |
| * |
| * Like the default constructor but with preallocation of the internal data |
| * according to the specified problem size. |
| * |
| * One \b cannot request unitaries using both the \a Options template parameter |
| * and the constructor. If possible, prefer using the \a Options template parameter. |
| * |
| * \param computationOptions specify whether to compute Thin/Full unitaries U/V |
| * \sa JacobiSVD() |
| * |
| * \deprecated Will be removed in the next major Eigen version. Options should |
| * be specified in the \a Options template parameter. |
| */ |
| EIGEN_DEPRECATED JacobiSVD(Index rows, Index cols, unsigned int computationOptions) { |
| internal::check_svd_options_assertions<MatrixType, Options>(computationOptions, rows, cols); |
| allocate(rows, cols, computationOptions); |
| } |
| |
| /** \brief Constructor performing the decomposition of given matrix, using the custom options specified |
| * with the \a Options template paramter. |
| * |
| * \param matrix the matrix to decompose |
| */ |
| explicit JacobiSVD(const MatrixType& matrix) { compute_impl(matrix, internal::get_computation_options(Options)); } |
| |
| /** \brief Constructor performing the decomposition of given matrix using specified options |
| * for computing unitaries. |
| * |
| * One \b cannot request unitiaries using both the \a Options template parameter |
| * and the constructor. If possible, prefer using the \a Options template parameter. |
| * |
| * \param matrix the matrix to decompose |
| * \param computationOptions specify whether to compute Thin/Full unitaries U/V |
| * |
| * \deprecated Will be removed in the next major Eigen version. Options should |
| * be specified in the \a Options template parameter. |
| */ |
| // EIGEN_DEPRECATED // TODO(cantonios): re-enable after fixing a few 3p libraries that error on deprecation warnings. |
| JacobiSVD(const MatrixType& matrix, unsigned int computationOptions) { |
| internal::check_svd_options_assertions<MatrixType, Options>(computationOptions, matrix.rows(), matrix.cols()); |
| compute_impl(matrix, computationOptions); |
| } |
| |
| /** \brief Method performing the decomposition of given matrix. Computes Thin/Full unitaries U/V if specified |
| * using the \a Options template parameter or the class constructor. |
| * |
| * \param matrix the matrix to decompose |
| */ |
| JacobiSVD& compute(const MatrixType& matrix) { return compute_impl(matrix, m_computationOptions); } |
| |
| /** \brief Method performing the decomposition of given matrix, as specified by |
| * the `computationOptions` parameter. |
| * |
| * \param matrix the matrix to decompose |
| * \param computationOptions specify whether to compute Thin/Full unitaries U/V |
| * |
| * \deprecated Will be removed in the next major Eigen version. Options should |
| * be specified in the \a Options template parameter. |
| */ |
| EIGEN_DEPRECATED JacobiSVD& compute(const MatrixType& matrix, unsigned int computationOptions) { |
| internal::check_svd_options_assertions<MatrixType, Options>(m_computationOptions, matrix.rows(), matrix.cols()); |
| return compute_impl(matrix, computationOptions); |
| } |
| |
| using Base::cols; |
| using Base::computeU; |
| using Base::computeV; |
| using Base::diagSize; |
| using Base::rank; |
| using Base::rows; |
| |
| private: |
| void allocate(Index rows, Index cols, unsigned int computationOptions); |
| JacobiSVD& compute_impl(const MatrixType& matrix, unsigned int computationOptions); |
| |
| protected: |
| using Base::m_computationOptions; |
| using Base::m_computeFullU; |
| using Base::m_computeFullV; |
| using Base::m_computeThinU; |
| using Base::m_computeThinV; |
| using Base::m_info; |
| using Base::m_isAllocated; |
| using Base::m_isInitialized; |
| using Base::m_matrixU; |
| using Base::m_matrixV; |
| using Base::m_nonzeroSingularValues; |
| using Base::m_prescribedThreshold; |
| using Base::m_singularValues; |
| using Base::m_usePrescribedThreshold; |
| using Base::ShouldComputeThinU; |
| using Base::ShouldComputeThinV; |
| |
| EIGEN_STATIC_ASSERT(!(ShouldComputeThinU && int(QRPreconditioner) == int(FullPivHouseholderQRPreconditioner)) && |
| !(ShouldComputeThinU && int(QRPreconditioner) == int(FullPivHouseholderQRPreconditioner)), |
| "JacobiSVD: can't compute thin U or thin V with the FullPivHouseholderQR preconditioner. " |
| "Use the ColPivHouseholderQR preconditioner instead.") |
| |
| template <typename MatrixType__, int Options__, bool IsComplex_> |
| friend struct internal::svd_precondition_2x2_block_to_be_real; |
| template <typename MatrixType__, int Options__, int QRPreconditioner_, int Case_, bool DoAnything_> |
| friend struct internal::qr_preconditioner_impl; |
| |
| internal::qr_preconditioner_impl<MatrixType, Options, QRPreconditioner, internal::PreconditionIfMoreColsThanRows> |
| m_qr_precond_morecols; |
| internal::qr_preconditioner_impl<MatrixType, Options, QRPreconditioner, internal::PreconditionIfMoreRowsThanCols> |
| m_qr_precond_morerows; |
| WorkMatrixType m_workMatrix; |
| MatrixType m_scaledMatrix; |
| }; |
| |
| template <typename MatrixType, int Options> |
| void JacobiSVD<MatrixType, Options>::allocate(Index rows_, Index cols_, unsigned int computationOptions_) { |
| if (Base::allocate(rows_, cols_, computationOptions_)) return; |
| |
| eigen_assert(!(ShouldComputeThinU && int(QRPreconditioner) == int(FullPivHouseholderQRPreconditioner)) && |
| !(ShouldComputeThinU && int(QRPreconditioner) == int(FullPivHouseholderQRPreconditioner)) && |
| "JacobiSVD: can't compute thin U or thin V with the FullPivHouseholderQR preconditioner. " |
| "Use the ColPivHouseholderQR preconditioner instead."); |
| |
| m_workMatrix.resize(diagSize(), diagSize()); |
| if (cols() > rows()) m_qr_precond_morecols.allocate(*this); |
| if (rows() > cols()) m_qr_precond_morerows.allocate(*this); |
| if (rows() != cols()) m_scaledMatrix.resize(rows(), cols()); |
| } |
| |
| template <typename MatrixType, int Options> |
| JacobiSVD<MatrixType, Options>& JacobiSVD<MatrixType, Options>::compute_impl(const MatrixType& matrix, |
| unsigned int computationOptions) { |
| using std::abs; |
| |
| allocate(matrix.rows(), matrix.cols(), computationOptions); |
| |
| // currently we stop when we reach precision 2*epsilon as the last bit of precision can require an unreasonable number |
| // of iterations, only worsening the precision of U and V as we accumulate more rotations |
| const RealScalar precision = RealScalar(2) * NumTraits<Scalar>::epsilon(); |
| |
| // limit for denormal numbers to be considered zero in order to avoid infinite loops (see bug 286) |
| const RealScalar considerAsZero = (std::numeric_limits<RealScalar>::min)(); |
| |
| // Scaling factor to reduce over/under-flows |
| RealScalar scale = matrix.cwiseAbs().template maxCoeff<PropagateNaN>(); |
| if (!(numext::isfinite)(scale)) { |
| m_isInitialized = true; |
| m_info = InvalidInput; |
| m_nonzeroSingularValues = 0; |
| return *this; |
| } |
| if (numext::is_exactly_zero(scale)) scale = RealScalar(1); |
| |
| /*** step 1. The R-SVD step: we use a QR decomposition to reduce to the case of a square matrix */ |
| |
| if (rows() != cols()) { |
| m_scaledMatrix = matrix / scale; |
| m_qr_precond_morecols.run(*this, m_scaledMatrix); |
| m_qr_precond_morerows.run(*this, m_scaledMatrix); |
| } else { |
| m_workMatrix = |
| matrix.template topLeftCorner<DiagSizeAtCompileTime, DiagSizeAtCompileTime>(diagSize(), diagSize()) / scale; |
| if (m_computeFullU) m_matrixU.setIdentity(rows(), rows()); |
| if (m_computeThinU) m_matrixU.setIdentity(rows(), diagSize()); |
| if (m_computeFullV) m_matrixV.setIdentity(cols(), cols()); |
| if (m_computeThinV) m_matrixV.setIdentity(cols(), diagSize()); |
| } |
| |
| /*** step 2. The main Jacobi SVD iteration. ***/ |
| RealScalar maxDiagEntry = m_workMatrix.cwiseAbs().diagonal().maxCoeff(); |
| |
| bool finished = false; |
| while (!finished) { |
| finished = true; |
| |
| // do a sweep: for all index pairs (p,q), perform SVD of the corresponding 2x2 sub-matrix |
| |
| for (Index p = 1; p < diagSize(); ++p) { |
| for (Index q = 0; q < p; ++q) { |
| // if this 2x2 sub-matrix is not diagonal already... |
| // notice that this comparison will evaluate to false if any NaN is involved, ensuring that NaN's don't |
| // keep us iterating forever. Similarly, small denormal numbers are considered zero. |
| RealScalar threshold = numext::maxi<RealScalar>(considerAsZero, precision * maxDiagEntry); |
| if (abs(m_workMatrix.coeff(p, q)) > threshold || abs(m_workMatrix.coeff(q, p)) > threshold) { |
| finished = false; |
| // perform SVD decomposition of 2x2 sub-matrix corresponding to indices p,q to make it diagonal |
| // the complex to real operation returns true if the updated 2x2 block is not already diagonal |
| if (internal::svd_precondition_2x2_block_to_be_real<MatrixType, Options>::run(m_workMatrix, *this, p, q, |
| maxDiagEntry)) { |
| JacobiRotation<RealScalar> j_left, j_right; |
| internal::real_2x2_jacobi_svd(m_workMatrix, p, q, &j_left, &j_right); |
| |
| // accumulate resulting Jacobi rotations |
| m_workMatrix.applyOnTheLeft(p, q, j_left); |
| if (computeU()) m_matrixU.applyOnTheRight(p, q, j_left.transpose()); |
| |
| m_workMatrix.applyOnTheRight(p, q, j_right); |
| if (computeV()) m_matrixV.applyOnTheRight(p, q, j_right); |
| |
| // keep track of the largest diagonal coefficient |
| maxDiagEntry = numext::maxi<RealScalar>( |
| maxDiagEntry, numext::maxi<RealScalar>(abs(m_workMatrix.coeff(p, p)), abs(m_workMatrix.coeff(q, q)))); |
| } |
| } |
| } |
| } |
| } |
| |
| /*** step 3. The work matrix is now diagonal, so ensure it's positive so its diagonal entries are the singular values |
| * ***/ |
| |
| for (Index i = 0; i < diagSize(); ++i) { |
| // For a complex matrix, some diagonal coefficients might note have been |
| // treated by svd_precondition_2x2_block_to_be_real, and the imaginary part |
| // of some diagonal entry might not be null. |
| if (NumTraits<Scalar>::IsComplex && abs(numext::imag(m_workMatrix.coeff(i, i))) > considerAsZero) { |
| RealScalar a = abs(m_workMatrix.coeff(i, i)); |
| m_singularValues.coeffRef(i) = abs(a); |
| if (computeU()) m_matrixU.col(i) *= m_workMatrix.coeff(i, i) / a; |
| } else { |
| // m_workMatrix.coeff(i,i) is already real, no difficulty: |
| RealScalar a = numext::real(m_workMatrix.coeff(i, i)); |
| m_singularValues.coeffRef(i) = abs(a); |
| if (computeU() && (a < RealScalar(0))) m_matrixU.col(i) = -m_matrixU.col(i); |
| } |
| } |
| |
| m_singularValues *= scale; |
| |
| /*** step 4. Sort singular values in descending order and compute the number of nonzero singular values ***/ |
| |
| m_nonzeroSingularValues = diagSize(); |
| for (Index i = 0; i < diagSize(); i++) { |
| Index pos; |
| RealScalar maxRemainingSingularValue = m_singularValues.tail(diagSize() - i).maxCoeff(&pos); |
| if (numext::is_exactly_zero(maxRemainingSingularValue)) { |
| m_nonzeroSingularValues = i; |
| break; |
| } |
| if (pos) { |
| pos += i; |
| std::swap(m_singularValues.coeffRef(i), m_singularValues.coeffRef(pos)); |
| if (computeU()) m_matrixU.col(pos).swap(m_matrixU.col(i)); |
| if (computeV()) m_matrixV.col(pos).swap(m_matrixV.col(i)); |
| } |
| } |
| |
| m_isInitialized = true; |
| return *this; |
| } |
| |
| /** \svd_module |
| * |
| * \return the singular value decomposition of \c *this computed by two-sided |
| * Jacobi transformations. |
| * |
| * \sa class JacobiSVD |
| */ |
| template <typename Derived> |
| template <int Options> |
| JacobiSVD<typename MatrixBase<Derived>::PlainObject, Options> MatrixBase<Derived>::jacobiSvd() const { |
| return JacobiSVD<PlainObject, Options>(*this); |
| } |
| |
| template <typename Derived> |
| template <int Options> |
| JacobiSVD<typename MatrixBase<Derived>::PlainObject, Options> MatrixBase<Derived>::jacobiSvd( |
| unsigned int computationOptions) const { |
| return JacobiSVD<PlainObject, Options>(*this, computationOptions); |
| } |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_JACOBISVD_H |