| #include <Eigen/Array> |
| |
| int main(int argc, char *argv[]) { |
| std::cout.precision(2); |
| |
| // demo static functions |
| Eigen::Matrix3f m3 = Eigen::Matrix3f::Random(); |
| Eigen::Matrix4f m4 = Eigen::Matrix4f::Identity(); |
| |
| std::cout << "*** Step 1 ***\nm3:\n" << m3 << "\nm4:\n" << m4 << std::endl; |
| |
| // demo non-static set... functions |
| m4.setZero(); |
| m3.diagonal().setOnes(); |
| |
| std::cout << "*** Step 2 ***\nm3:\n" << m3 << "\nm4:\n" << m4 << std::endl; |
| |
| // demo fixed-size block() expression as lvalue and as rvalue |
| m4.block<3, 3>(0, 1) = m3; |
| m3.row(2) = m4.block<1, 3>(2, 0); |
| |
| std::cout << "*** Step 3 ***\nm3:\n" << m3 << "\nm4:\n" << m4 << std::endl; |
| |
| // demo dynamic-size block() |
| { |
| int rows = 3, cols = 3; |
| m4.block(0, 1, 3, 3).setIdentity(); |
| std::cout << "*** Step 4 ***\nm4:\n" << m4 << std::endl; |
| } |
| |
| // demo vector blocks |
| m4.diagonal().block(1, 2).setOnes(); |
| std::cout << "*** Step 5 ***\nm4.diagonal():\n" << m4.diagonal() << std::endl; |
| std::cout << "m4.diagonal().start(3)\n" << m4.diagonal().start(3) << std::endl; |
| |
| // demo coeff-wise operations |
| m4 = m4.cwise() * m4; |
| m3 = m3.cwise().cos(); |
| std::cout << "*** Step 6 ***\nm3:\n" << m3 << "\nm4:\n" << m4 << std::endl; |
| |
| // sums of coefficients |
| std::cout << "*** Step 7 ***\n m4.sum(): " << m4.sum() << std::endl; |
| std::cout << "m4.col(2).sum(): " << m4.col(2).sum() << std::endl; |
| std::cout << "m4.colwise().sum():\n" << m4.colwise().sum() << std::endl; |
| std::cout << "m4.rowwise().sum():\n" << m4.rowwise().sum() << std::endl; |
| |
| // demo intelligent auto-evaluation |
| m4 = m4 * m4; // auto-evaluates so no aliasing problem (performance penalty is low) |
| Eigen::Matrix4f other = (m4 * m4).lazy(); // forces lazy evaluation |
| m4 = m4 + m4; // here Eigen goes for lazy evaluation, as with most expressions |
| m4 = -m4 + m4 + 5 * m4; // same here, Eigen chooses lazy evaluation for all that. |
| m4 = m4 * (m4 + m4); // here Eigen chooses to first evaluate m4 + m4 into a temporary. |
| // indeed, here it is an optimization to cache this intermediate result. |
| m3 = m3 * m4.block<3, 3>(1, 1); // here Eigen chooses NOT to evaluate block() into a temporary |
| // because accessing coefficients of that block expression is not more costly than |
| // accessing coefficients of a plain matrix. |
| m4 = m4 * m4.transpose(); // same here, lazy evaluation of the transpose. |
| m4 = m4 * m4.transpose().eval(); // forces immediate evaluation of the transpose |
| |
| std::cout << "*** Step 8 ***\nm3:\n" << m3 << "\nm4:\n" << m4 << std::endl; |
| } |