| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "main.h" |
| |
| #define EIGEN_TESTMAP_MAX_SIZE 256 |
| |
| template <typename VectorType> |
| void map_class_vector(const VectorType& m) { |
| typedef typename VectorType::Scalar Scalar; |
| |
| Index size = m.size(); |
| |
| Scalar* array1 = internal::aligned_new<Scalar>(size); |
| Scalar* array2 = internal::aligned_new<Scalar>(size); |
| Scalar* array3 = new Scalar[size + 1]; |
| // In case of no alignment, avoid division by zero. |
| constexpr int alignment = (std::max<int>)(EIGEN_MAX_ALIGN_BYTES, 1); |
| Scalar* array3unaligned = (std::uintptr_t(array3) % alignment) == 0 ? array3 + 1 : array3; |
| Scalar array4[EIGEN_TESTMAP_MAX_SIZE]; |
| |
| Map<VectorType, AlignedMax>(array1, size) = VectorType::Random(size); |
| Map<VectorType, AlignedMax>(array2, size) = Map<VectorType, AlignedMax>(array1, size); |
| Map<VectorType>(array3unaligned, size) = Map<VectorType>(array1, size); |
| Map<VectorType>(array4, size) = Map<VectorType, AlignedMax>(array1, size); |
| VectorType ma1 = Map<VectorType, AlignedMax>(array1, size); |
| VectorType ma2 = Map<VectorType, AlignedMax>(array2, size); |
| VectorType ma3 = Map<VectorType>(array3unaligned, size); |
| VectorType ma4 = Map<VectorType>(array4, size); |
| VERIFY_IS_EQUAL(ma1, ma2); |
| VERIFY_IS_EQUAL(ma1, ma3); |
| VERIFY_IS_EQUAL(ma1, ma4); |
| #ifdef EIGEN_VECTORIZE |
| if (internal::packet_traits<Scalar>::Vectorizable && size >= AlignedMax) |
| VERIFY_RAISES_ASSERT((Map<VectorType, AlignedMax>(array3unaligned, size))) |
| #endif |
| |
| internal::aligned_delete(array1, size); |
| internal::aligned_delete(array2, size); |
| delete[] array3; |
| } |
| |
| template <typename MatrixType> |
| void map_class_matrix(const MatrixType& m) { |
| typedef typename MatrixType::Scalar Scalar; |
| |
| Index rows = m.rows(), cols = m.cols(), size = rows * cols; |
| Scalar s1 = internal::random<Scalar>(); |
| |
| // array1 and array2 -> aligned heap allocation |
| Scalar* array1 = internal::aligned_new<Scalar>(size); |
| for (int i = 0; i < size; i++) array1[i] = Scalar(1); |
| Scalar* array2 = internal::aligned_new<Scalar>(size); |
| for (int i = 0; i < size; i++) array2[i] = Scalar(1); |
| // array3unaligned -> unaligned pointer to heap |
| Scalar* array3 = new Scalar[size + 1]; |
| Index sizep1 = size + 1; // <- without this temporary MSVC 2103 generates bad code |
| for (Index i = 0; i < sizep1; i++) array3[i] = Scalar(1); |
| // In case of no alignment, avoid division by zero. |
| constexpr int alignment = (std::max<int>)(EIGEN_MAX_ALIGN_BYTES, 1); |
| Scalar* array3unaligned = (std::uintptr_t(array3) % alignment) == 0 ? array3 + 1 : array3; |
| Scalar array4[256]; |
| if (size <= 256) |
| for (int i = 0; i < size; i++) array4[i] = Scalar(1); |
| |
| Map<MatrixType> map1(array1, rows, cols); |
| Map<MatrixType, AlignedMax> map2(array2, rows, cols); |
| Map<MatrixType> map3(array3unaligned, rows, cols); |
| Map<MatrixType> map4(array4, rows, cols); |
| |
| VERIFY_IS_EQUAL(map1, MatrixType::Ones(rows, cols)); |
| VERIFY_IS_EQUAL(map2, MatrixType::Ones(rows, cols)); |
| VERIFY_IS_EQUAL(map3, MatrixType::Ones(rows, cols)); |
| map1 = MatrixType::Random(rows, cols); |
| map2 = map1; |
| map3 = map1; |
| MatrixType ma1 = map1; |
| MatrixType ma2 = map2; |
| MatrixType ma3 = map3; |
| VERIFY_IS_EQUAL(map1, map2); |
| VERIFY_IS_EQUAL(map1, map3); |
| VERIFY_IS_EQUAL(ma1, ma2); |
| VERIFY_IS_EQUAL(ma1, ma3); |
| VERIFY_IS_EQUAL(ma1, map3); |
| |
| VERIFY_IS_APPROX(s1 * map1, s1 * map2); |
| VERIFY_IS_APPROX(s1 * ma1, s1 * ma2); |
| VERIFY_IS_EQUAL(s1 * ma1, s1 * ma3); |
| VERIFY_IS_APPROX(s1 * map1, s1 * map3); |
| |
| map2 *= s1; |
| map3 *= s1; |
| VERIFY_IS_APPROX(s1 * map1, map2); |
| VERIFY_IS_APPROX(s1 * map1, map3); |
| |
| if (size <= 256) { |
| VERIFY_IS_EQUAL(map4, MatrixType::Ones(rows, cols)); |
| map4 = map1; |
| MatrixType ma4 = map4; |
| VERIFY_IS_EQUAL(map1, map4); |
| VERIFY_IS_EQUAL(ma1, map4); |
| VERIFY_IS_EQUAL(ma1, ma4); |
| VERIFY_IS_APPROX(s1 * map1, s1 * map4); |
| |
| map4 *= s1; |
| VERIFY_IS_APPROX(s1 * map1, map4); |
| } |
| |
| internal::aligned_delete(array1, size); |
| internal::aligned_delete(array2, size); |
| delete[] array3; |
| } |
| |
| template <typename VectorType> |
| void map_static_methods(const VectorType& m) { |
| typedef typename VectorType::Scalar Scalar; |
| |
| Index size = m.size(); |
| |
| Scalar* array1 = internal::aligned_new<Scalar>(size); |
| Scalar* array2 = internal::aligned_new<Scalar>(size); |
| Scalar* array3 = new Scalar[size + 1]; |
| // In case of no alignment, avoid division by zero. |
| constexpr int alignment = (std::max<int>)(EIGEN_MAX_ALIGN_BYTES, 1); |
| Scalar* array3unaligned = (std::uintptr_t(array3) % alignment) == 0 ? array3 + 1 : array3; |
| |
| VectorType::MapAligned(array1, size) = VectorType::Random(size); |
| VectorType::Map(array2, size) = VectorType::Map(array1, size); |
| VectorType::Map(array3unaligned, size) = VectorType::Map(array1, size); |
| VectorType ma1 = VectorType::Map(array1, size); |
| VectorType ma2 = VectorType::MapAligned(array2, size); |
| VectorType ma3 = VectorType::Map(array3unaligned, size); |
| VERIFY_IS_EQUAL(ma1, ma2); |
| VERIFY_IS_EQUAL(ma1, ma3); |
| |
| internal::aligned_delete(array1, size); |
| internal::aligned_delete(array2, size); |
| delete[] array3; |
| } |
| |
| template <typename PlainObjectType> |
| void check_const_correctness(const PlainObjectType&) { |
| // there's a lot that we can't test here while still having this test compile! |
| // the only possible approach would be to run a script trying to compile stuff and checking that it fails. |
| // CMake can help with that. |
| |
| // verify that map-to-const don't have LvalueBit |
| typedef std::add_const_t<PlainObjectType> ConstPlainObjectType; |
| VERIFY(!(internal::traits<Map<ConstPlainObjectType> >::Flags & LvalueBit)); |
| VERIFY(!(internal::traits<Map<ConstPlainObjectType, AlignedMax> >::Flags & LvalueBit)); |
| VERIFY(!(Map<ConstPlainObjectType>::Flags & LvalueBit)); |
| VERIFY(!(Map<ConstPlainObjectType, AlignedMax>::Flags & LvalueBit)); |
| } |
| |
| EIGEN_DECLARE_TEST(mapped_matrix) { |
| for (int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_1(map_class_vector(Matrix<float, 1, 1>())); |
| CALL_SUBTEST_1(check_const_correctness(Matrix<float, 1, 1>())); |
| CALL_SUBTEST_2(map_class_vector(Vector4d())); |
| CALL_SUBTEST_2(map_class_vector(VectorXd(13))); |
| CALL_SUBTEST_2(check_const_correctness(Matrix4d())); |
| CALL_SUBTEST_3(map_class_vector(RowVector4f())); |
| CALL_SUBTEST_4(map_class_vector(VectorXcf(8))); |
| CALL_SUBTEST_5(map_class_vector(VectorXi(12))); |
| CALL_SUBTEST_5(check_const_correctness(VectorXi(12))); |
| |
| CALL_SUBTEST_1(map_class_matrix(Matrix<float, 1, 1>())); |
| CALL_SUBTEST_2(map_class_matrix(Matrix4d())); |
| CALL_SUBTEST_11(map_class_matrix(Matrix<float, 3, 5>())); |
| CALL_SUBTEST_4(map_class_matrix(MatrixXcf(internal::random<int>(1, 10), internal::random<int>(1, 10)))); |
| CALL_SUBTEST_5(map_class_matrix(MatrixXi(internal::random<int>(1, 10), internal::random<int>(1, 10)))); |
| |
| CALL_SUBTEST_6(map_static_methods(Matrix<double, 1, 1>())); |
| CALL_SUBTEST_7(map_static_methods(Vector3f())); |
| CALL_SUBTEST_8(map_static_methods(RowVector3d())); |
| CALL_SUBTEST_9(map_static_methods(VectorXcd(8))); |
| CALL_SUBTEST_10(map_static_methods(VectorXf(12))); |
| } |
| } |