blob: a8d17d9007c3652f4a19ed7700547f7435dde749 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#define EIGEN_TESTMAP_MAX_SIZE 256
template <typename VectorType>
void map_class_vector(const VectorType& m) {
typedef typename VectorType::Scalar Scalar;
Index size = m.size();
Scalar* array1 = internal::aligned_new<Scalar>(size);
Scalar* array2 = internal::aligned_new<Scalar>(size);
Scalar* array3 = new Scalar[size + 1];
// In case of no alignment, avoid division by zero.
constexpr int alignment = (std::max<int>)(EIGEN_MAX_ALIGN_BYTES, 1);
Scalar* array3unaligned = (std::uintptr_t(array3) % alignment) == 0 ? array3 + 1 : array3;
Scalar array4[EIGEN_TESTMAP_MAX_SIZE];
Map<VectorType, AlignedMax>(array1, size) = VectorType::Random(size);
Map<VectorType, AlignedMax>(array2, size) = Map<VectorType, AlignedMax>(array1, size);
Map<VectorType>(array3unaligned, size) = Map<VectorType>(array1, size);
Map<VectorType>(array4, size) = Map<VectorType, AlignedMax>(array1, size);
VectorType ma1 = Map<VectorType, AlignedMax>(array1, size);
VectorType ma2 = Map<VectorType, AlignedMax>(array2, size);
VectorType ma3 = Map<VectorType>(array3unaligned, size);
VectorType ma4 = Map<VectorType>(array4, size);
VERIFY_IS_EQUAL(ma1, ma2);
VERIFY_IS_EQUAL(ma1, ma3);
VERIFY_IS_EQUAL(ma1, ma4);
#ifdef EIGEN_VECTORIZE
if (internal::packet_traits<Scalar>::Vectorizable && size >= AlignedMax)
VERIFY_RAISES_ASSERT((Map<VectorType, AlignedMax>(array3unaligned, size)))
#endif
internal::aligned_delete(array1, size);
internal::aligned_delete(array2, size);
delete[] array3;
}
template <typename MatrixType>
void map_class_matrix(const MatrixType& m) {
typedef typename MatrixType::Scalar Scalar;
Index rows = m.rows(), cols = m.cols(), size = rows * cols;
Scalar s1 = internal::random<Scalar>();
// array1 and array2 -> aligned heap allocation
Scalar* array1 = internal::aligned_new<Scalar>(size);
for (int i = 0; i < size; i++) array1[i] = Scalar(1);
Scalar* array2 = internal::aligned_new<Scalar>(size);
for (int i = 0; i < size; i++) array2[i] = Scalar(1);
// array3unaligned -> unaligned pointer to heap
Scalar* array3 = new Scalar[size + 1];
Index sizep1 = size + 1; // <- without this temporary MSVC 2103 generates bad code
for (Index i = 0; i < sizep1; i++) array3[i] = Scalar(1);
// In case of no alignment, avoid division by zero.
constexpr int alignment = (std::max<int>)(EIGEN_MAX_ALIGN_BYTES, 1);
Scalar* array3unaligned = (std::uintptr_t(array3) % alignment) == 0 ? array3 + 1 : array3;
Scalar array4[256];
if (size <= 256)
for (int i = 0; i < size; i++) array4[i] = Scalar(1);
Map<MatrixType> map1(array1, rows, cols);
Map<MatrixType, AlignedMax> map2(array2, rows, cols);
Map<MatrixType> map3(array3unaligned, rows, cols);
Map<MatrixType> map4(array4, rows, cols);
VERIFY_IS_EQUAL(map1, MatrixType::Ones(rows, cols));
VERIFY_IS_EQUAL(map2, MatrixType::Ones(rows, cols));
VERIFY_IS_EQUAL(map3, MatrixType::Ones(rows, cols));
map1 = MatrixType::Random(rows, cols);
map2 = map1;
map3 = map1;
MatrixType ma1 = map1;
MatrixType ma2 = map2;
MatrixType ma3 = map3;
VERIFY_IS_EQUAL(map1, map2);
VERIFY_IS_EQUAL(map1, map3);
VERIFY_IS_EQUAL(ma1, ma2);
VERIFY_IS_EQUAL(ma1, ma3);
VERIFY_IS_EQUAL(ma1, map3);
VERIFY_IS_APPROX(s1 * map1, s1 * map2);
VERIFY_IS_APPROX(s1 * ma1, s1 * ma2);
VERIFY_IS_EQUAL(s1 * ma1, s1 * ma3);
VERIFY_IS_APPROX(s1 * map1, s1 * map3);
map2 *= s1;
map3 *= s1;
VERIFY_IS_APPROX(s1 * map1, map2);
VERIFY_IS_APPROX(s1 * map1, map3);
if (size <= 256) {
VERIFY_IS_EQUAL(map4, MatrixType::Ones(rows, cols));
map4 = map1;
MatrixType ma4 = map4;
VERIFY_IS_EQUAL(map1, map4);
VERIFY_IS_EQUAL(ma1, map4);
VERIFY_IS_EQUAL(ma1, ma4);
VERIFY_IS_APPROX(s1 * map1, s1 * map4);
map4 *= s1;
VERIFY_IS_APPROX(s1 * map1, map4);
}
internal::aligned_delete(array1, size);
internal::aligned_delete(array2, size);
delete[] array3;
}
template <typename VectorType>
void map_static_methods(const VectorType& m) {
typedef typename VectorType::Scalar Scalar;
Index size = m.size();
Scalar* array1 = internal::aligned_new<Scalar>(size);
Scalar* array2 = internal::aligned_new<Scalar>(size);
Scalar* array3 = new Scalar[size + 1];
// In case of no alignment, avoid division by zero.
constexpr int alignment = (std::max<int>)(EIGEN_MAX_ALIGN_BYTES, 1);
Scalar* array3unaligned = (std::uintptr_t(array3) % alignment) == 0 ? array3 + 1 : array3;
VectorType::MapAligned(array1, size) = VectorType::Random(size);
VectorType::Map(array2, size) = VectorType::Map(array1, size);
VectorType::Map(array3unaligned, size) = VectorType::Map(array1, size);
VectorType ma1 = VectorType::Map(array1, size);
VectorType ma2 = VectorType::MapAligned(array2, size);
VectorType ma3 = VectorType::Map(array3unaligned, size);
VERIFY_IS_EQUAL(ma1, ma2);
VERIFY_IS_EQUAL(ma1, ma3);
internal::aligned_delete(array1, size);
internal::aligned_delete(array2, size);
delete[] array3;
}
template <typename PlainObjectType>
void check_const_correctness(const PlainObjectType&) {
// there's a lot that we can't test here while still having this test compile!
// the only possible approach would be to run a script trying to compile stuff and checking that it fails.
// CMake can help with that.
// verify that map-to-const don't have LvalueBit
typedef std::add_const_t<PlainObjectType> ConstPlainObjectType;
VERIFY(!(internal::traits<Map<ConstPlainObjectType> >::Flags & LvalueBit));
VERIFY(!(internal::traits<Map<ConstPlainObjectType, AlignedMax> >::Flags & LvalueBit));
VERIFY(!(Map<ConstPlainObjectType>::Flags & LvalueBit));
VERIFY(!(Map<ConstPlainObjectType, AlignedMax>::Flags & LvalueBit));
}
EIGEN_DECLARE_TEST(mapped_matrix) {
for (int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1(map_class_vector(Matrix<float, 1, 1>()));
CALL_SUBTEST_1(check_const_correctness(Matrix<float, 1, 1>()));
CALL_SUBTEST_2(map_class_vector(Vector4d()));
CALL_SUBTEST_2(map_class_vector(VectorXd(13)));
CALL_SUBTEST_2(check_const_correctness(Matrix4d()));
CALL_SUBTEST_3(map_class_vector(RowVector4f()));
CALL_SUBTEST_4(map_class_vector(VectorXcf(8)));
CALL_SUBTEST_5(map_class_vector(VectorXi(12)));
CALL_SUBTEST_5(check_const_correctness(VectorXi(12)));
CALL_SUBTEST_1(map_class_matrix(Matrix<float, 1, 1>()));
CALL_SUBTEST_2(map_class_matrix(Matrix4d()));
CALL_SUBTEST_11(map_class_matrix(Matrix<float, 3, 5>()));
CALL_SUBTEST_4(map_class_matrix(MatrixXcf(internal::random<int>(1, 10), internal::random<int>(1, 10))));
CALL_SUBTEST_5(map_class_matrix(MatrixXi(internal::random<int>(1, 10), internal::random<int>(1, 10))));
CALL_SUBTEST_6(map_static_methods(Matrix<double, 1, 1>()));
CALL_SUBTEST_7(map_static_methods(Vector3f()));
CALL_SUBTEST_8(map_static_methods(RowVector3d()));
CALL_SUBTEST_9(map_static_methods(VectorXcd(8)));
CALL_SUBTEST_10(map_static_methods(VectorXf(12)));
}
}