| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #define TEST_ENABLE_TEMPORARY_TRACKING |
| |
| #include "main.h" |
| |
| using namespace std; |
| template <typename MatrixType> |
| void permutationmatrices(const MatrixType& m) { |
| typedef typename MatrixType::Scalar Scalar; |
| enum { Rows = MatrixType::RowsAtCompileTime, Cols = MatrixType::ColsAtCompileTime, Options = MatrixType::Options }; |
| typedef PermutationMatrix<Rows> LeftPermutationType; |
| typedef Transpositions<Rows> LeftTranspositionsType; |
| typedef Matrix<int, Rows, 1> LeftPermutationVectorType; |
| typedef Map<LeftPermutationType> MapLeftPerm; |
| typedef PermutationMatrix<Cols> RightPermutationType; |
| typedef Transpositions<Cols> RightTranspositionsType; |
| typedef Matrix<int, Cols, 1> RightPermutationVectorType; |
| typedef Map<RightPermutationType> MapRightPerm; |
| |
| Index rows = m.rows(); |
| Index cols = m.cols(); |
| |
| MatrixType m_original = MatrixType::Random(rows, cols); |
| LeftPermutationVectorType lv; |
| randomPermutationVector(lv, rows); |
| LeftPermutationType lp(lv); |
| RightPermutationVectorType rv; |
| randomPermutationVector(rv, cols); |
| RightPermutationType rp(rv); |
| LeftTranspositionsType lt(lv); |
| RightTranspositionsType rt(rv); |
| MatrixType m_permuted = MatrixType::Random(rows, cols); |
| |
| VERIFY_EVALUATION_COUNT(m_permuted = lp * m_original * rp, 1); // 1 temp for sub expression "lp * m_original" |
| |
| for (int i = 0; i < rows; i++) |
| for (int j = 0; j < cols; j++) VERIFY_IS_APPROX(m_permuted(lv(i), j), m_original(i, rv(j))); |
| |
| Matrix<Scalar, Rows, Rows> lm(lp); |
| Matrix<Scalar, Cols, Cols> rm(rp); |
| |
| VERIFY_IS_APPROX(m_permuted, lm * m_original * rm); |
| |
| m_permuted = m_original; |
| VERIFY_EVALUATION_COUNT(m_permuted = lp * m_permuted * rp, 1); |
| VERIFY_IS_APPROX(m_permuted, lm * m_original * rm); |
| |
| LeftPermutationType lpi; |
| lpi = lp.inverse(); |
| VERIFY_IS_APPROX(lpi * m_permuted, lp.inverse() * m_permuted); |
| |
| VERIFY_IS_APPROX(lp.inverse() * m_permuted * rp.inverse(), m_original); |
| VERIFY_IS_APPROX(lv.asPermutation().inverse() * m_permuted * rv.asPermutation().inverse(), m_original); |
| VERIFY_IS_APPROX( |
| MapLeftPerm(lv.data(), lv.size()).inverse() * m_permuted * MapRightPerm(rv.data(), rv.size()).inverse(), |
| m_original); |
| |
| VERIFY((lp * lp.inverse()).toDenseMatrix().isIdentity()); |
| VERIFY((lv.asPermutation() * lv.asPermutation().inverse()).toDenseMatrix().isIdentity()); |
| VERIFY( |
| (MapLeftPerm(lv.data(), lv.size()) * MapLeftPerm(lv.data(), lv.size()).inverse()).toDenseMatrix().isIdentity()); |
| |
| LeftPermutationVectorType lv2; |
| randomPermutationVector(lv2, rows); |
| LeftPermutationType lp2(lv2); |
| Matrix<Scalar, Rows, Rows> lm2(lp2); |
| VERIFY_IS_APPROX((lp * lp2).toDenseMatrix().template cast<Scalar>(), lm * lm2); |
| VERIFY_IS_APPROX((lv.asPermutation() * lv2.asPermutation()).toDenseMatrix().template cast<Scalar>(), lm * lm2); |
| VERIFY_IS_APPROX( |
| (MapLeftPerm(lv.data(), lv.size()) * MapLeftPerm(lv2.data(), lv2.size())).toDenseMatrix().template cast<Scalar>(), |
| lm * lm2); |
| |
| LeftPermutationType identityp; |
| identityp.setIdentity(rows); |
| VERIFY_IS_APPROX(m_original, identityp * m_original); |
| |
| // check inplace permutations |
| m_permuted = m_original; |
| VERIFY_EVALUATION_COUNT(m_permuted.noalias() = lp.inverse() * m_permuted, 1); // 1 temp to allocate the mask |
| VERIFY_IS_APPROX(m_permuted, lp.inverse() * m_original); |
| |
| m_permuted = m_original; |
| VERIFY_EVALUATION_COUNT(m_permuted.noalias() = m_permuted * rp.inverse(), 1); // 1 temp to allocate the mask |
| VERIFY_IS_APPROX(m_permuted, m_original * rp.inverse()); |
| |
| m_permuted = m_original; |
| VERIFY_EVALUATION_COUNT(m_permuted.noalias() = lp * m_permuted, 1); // 1 temp to allocate the mask |
| VERIFY_IS_APPROX(m_permuted, lp * m_original); |
| |
| m_permuted = m_original; |
| VERIFY_EVALUATION_COUNT(m_permuted.noalias() = m_permuted * rp, 1); // 1 temp to allocate the mask |
| VERIFY_IS_APPROX(m_permuted, m_original * rp); |
| |
| if (rows > 1 && cols > 1) { |
| lp2 = lp; |
| Index i = internal::random<Index>(0, rows - 1); |
| Index j; |
| do j = internal::random<Index>(0, rows - 1); |
| while (j == i); |
| lp2.applyTranspositionOnTheLeft(i, j); |
| lm = lp; |
| lm.row(i).swap(lm.row(j)); |
| VERIFY_IS_APPROX(lm, lp2.toDenseMatrix().template cast<Scalar>()); |
| |
| RightPermutationType rp2 = rp; |
| i = internal::random<Index>(0, cols - 1); |
| do j = internal::random<Index>(0, cols - 1); |
| while (j == i); |
| rp2.applyTranspositionOnTheRight(i, j); |
| rm = rp; |
| rm.col(i).swap(rm.col(j)); |
| VERIFY_IS_APPROX(rm, rp2.toDenseMatrix().template cast<Scalar>()); |
| } |
| |
| { |
| // simple compilation check |
| Matrix<Scalar, Cols, Cols> A = rp; |
| Matrix<Scalar, Cols, Cols> B = rp.transpose(); |
| VERIFY_IS_APPROX(A, B.transpose()); |
| } |
| |
| m_permuted = m_original; |
| lp = lt; |
| rp = rt; |
| VERIFY_EVALUATION_COUNT(m_permuted = lt * m_permuted * rt, 1); |
| VERIFY_IS_APPROX(m_permuted, lp * m_original * rp.transpose()); |
| |
| VERIFY_IS_APPROX(lt.inverse() * m_permuted * rt.inverse(), m_original); |
| |
| // Check inplace transpositions |
| m_permuted = m_original; |
| VERIFY_IS_APPROX(m_permuted = lt * m_permuted, lp * m_original); |
| m_permuted = m_original; |
| VERIFY_IS_APPROX(m_permuted = lt.inverse() * m_permuted, lp.inverse() * m_original); |
| m_permuted = m_original; |
| VERIFY_IS_APPROX(m_permuted = m_permuted * rt, m_original * rt); |
| m_permuted = m_original; |
| VERIFY_IS_APPROX(m_permuted = m_permuted * rt.inverse(), m_original * rt.inverse()); |
| } |
| |
| template <typename T> |
| void bug890() { |
| typedef Matrix<T, Dynamic, Dynamic> MatrixType; |
| typedef Matrix<T, Dynamic, 1> VectorType; |
| typedef Stride<Dynamic, Dynamic> S; |
| typedef Map<MatrixType, Aligned, S> MapType; |
| typedef PermutationMatrix<Dynamic> Perm; |
| |
| VectorType v1(2), v2(2), op(4), rhs(2); |
| v1 << 666, 667; |
| op << 1, 0, 0, 1; |
| rhs << 42, 42; |
| |
| Perm P(2); |
| P.indices() << 1, 0; |
| |
| MapType(v1.data(), 2, 1, S(1, 1)) = P * MapType(rhs.data(), 2, 1, S(1, 1)); |
| VERIFY_IS_APPROX(v1, (P * rhs).eval()); |
| |
| MapType(v1.data(), 2, 1, S(1, 1)) = P.inverse() * MapType(rhs.data(), 2, 1, S(1, 1)); |
| VERIFY_IS_APPROX(v1, (P.inverse() * rhs).eval()); |
| } |
| |
| EIGEN_DECLARE_TEST(permutationmatrices) { |
| for (int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_1(permutationmatrices(Matrix<float, 1, 1>())); |
| CALL_SUBTEST_2(permutationmatrices(Matrix3f())); |
| CALL_SUBTEST_3(permutationmatrices(Matrix<double, 3, 3, RowMajor>())); |
| CALL_SUBTEST_4(permutationmatrices(Matrix4d())); |
| CALL_SUBTEST_5(permutationmatrices(Matrix<double, 40, 60>())); |
| CALL_SUBTEST_6(permutationmatrices(Matrix<double, Dynamic, Dynamic, RowMajor>( |
| internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); |
| CALL_SUBTEST_7(permutationmatrices( |
| MatrixXcf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); |
| } |
| CALL_SUBTEST_5(bug890<double>()); |
| } |