blob: 9daf5686ae4f7cb55dd32b158fbe3cc51fbb951f [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Giacomo Po <gpo@ucla.edu>
// Copyright (C) 2011-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2018 David Hyde <dabh@stanford.edu>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_MINRES_H
#define EIGEN_MINRES_H
// IWYU pragma: private
#include "./InternalHeaderCheck.h"
namespace Eigen {
namespace internal {
/** \internal Low-level MINRES algorithm
* \param mat The matrix A
* \param rhs The right hand side vector b
* \param x On input and initial solution, on output the computed solution.
* \param precond A right preconditioner being able to efficiently solve for an
* approximation of Ax=b (regardless of b)
* \param iters On input the max number of iteration, on output the number of performed iterations.
* \param tol_error On input the tolerance error, on output an estimation of the relative error.
*/
template <typename MatrixType, typename Rhs, typename Dest, typename Preconditioner>
EIGEN_DONT_INLINE void minres(const MatrixType& mat, const Rhs& rhs, Dest& x, const Preconditioner& precond,
Index& iters, typename Dest::RealScalar& tol_error) {
using std::sqrt;
typedef typename Dest::RealScalar RealScalar;
typedef typename Dest::Scalar Scalar;
typedef Matrix<Scalar, Dynamic, 1> VectorType;
// Check for zero rhs
const RealScalar rhsNorm2(rhs.squaredNorm());
if (rhsNorm2 == 0) {
x.setZero();
iters = 0;
tol_error = 0;
return;
}
// initialize
const Index maxIters(iters); // initialize maxIters to iters
const Index N(mat.cols()); // the size of the matrix
const RealScalar threshold2(tol_error * tol_error * rhsNorm2); // convergence threshold (compared to residualNorm2)
// Initialize preconditioned Lanczos
VectorType v_old(N); // will be initialized inside loop
VectorType v(VectorType::Zero(N)); // initialize v
VectorType v_new(rhs - mat * x); // initialize v_new
RealScalar residualNorm2(v_new.squaredNorm());
VectorType w(N); // will be initialized inside loop
VectorType w_new(precond.solve(v_new)); // initialize w_new
// RealScalar beta; // will be initialized inside loop
RealScalar beta_new2(v_new.dot(w_new));
eigen_assert(beta_new2 >= 0.0 && "PRECONDITIONER IS NOT POSITIVE DEFINITE");
RealScalar beta_new(sqrt(beta_new2));
const RealScalar beta_one(beta_new);
// Initialize other variables
RealScalar c(1.0); // the cosine of the Givens rotation
RealScalar c_old(1.0);
RealScalar s(0.0); // the sine of the Givens rotation
RealScalar s_old(0.0); // the sine of the Givens rotation
VectorType p_oold(N); // will be initialized in loop
VectorType p_old(VectorType::Zero(N)); // initialize p_old=0
VectorType p(p_old); // initialize p=0
RealScalar eta(1.0);
iters = 0; // reset iters
while (iters < maxIters) {
// Preconditioned Lanczos
/* Note that there are 4 variants on the Lanczos algorithm. These are
* described in Paige, C. C. (1972). Computational variants of
* the Lanczos method for the eigenproblem. IMA Journal of Applied
* Mathematics, 10(3), 373-381. The current implementation corresponds
* to the case A(2,7) in the paper. It also corresponds to
* algorithm 6.14 in Y. Saad, Iterative Methods for Sparse Linear
* Systems, 2003 p.173. For the preconditioned version see
* A. Greenbaum, Iterative Methods for Solving Linear Systems, SIAM (1987).
*/
const RealScalar beta(beta_new);
v_old = v; // update: at first time step, this makes v_old = 0 so value of beta doesn't matter
v_new /= beta_new; // overwrite v_new for next iteration
w_new /= beta_new; // overwrite w_new for next iteration
v = v_new; // update
w = w_new; // update
v_new.noalias() = mat * w - beta * v_old; // compute v_new
const RealScalar alpha = v_new.dot(w);
v_new -= alpha * v; // overwrite v_new
w_new = precond.solve(v_new); // overwrite w_new
beta_new2 = v_new.dot(w_new); // compute beta_new
eigen_assert(beta_new2 >= 0.0 && "PRECONDITIONER IS NOT POSITIVE DEFINITE");
beta_new = sqrt(beta_new2); // compute beta_new
// Givens rotation
const RealScalar r2 = s * alpha + c * c_old * beta; // s, s_old, c and c_old are still from previous iteration
const RealScalar r3 = s_old * beta; // s, s_old, c and c_old are still from previous iteration
const RealScalar r1_hat = c * alpha - c_old * s * beta;
const RealScalar r1 = sqrt(std::pow(r1_hat, 2) + std::pow(beta_new, 2));
c_old = c; // store for next iteration
s_old = s; // store for next iteration
c = r1_hat / r1; // new cosine
s = beta_new / r1; // new sine
// Update solution
p_oold = p_old;
p_old = p;
p.noalias() = (w - r2 * p_old - r3 * p_oold) / r1; // IS NOALIAS REQUIRED?
x += beta_one * c * eta * p;
/* Update the squared residual. Note that this is the estimated residual.
The real residual |Ax-b|^2 may be slightly larger */
residualNorm2 *= s * s;
if (residualNorm2 < threshold2) {
break;
}
eta = -s * eta; // update eta
iters++; // increment iteration number (for output purposes)
}
/* Compute error. Note that this is the estimated error. The real
error |Ax-b|/|b| may be slightly larger */
tol_error = std::sqrt(residualNorm2 / rhsNorm2);
}
} // namespace internal
template <typename MatrixType_, int UpLo_ = Lower, typename Preconditioner_ = IdentityPreconditioner>
class MINRES;
namespace internal {
template <typename MatrixType_, int UpLo_, typename Preconditioner_>
struct traits<MINRES<MatrixType_, UpLo_, Preconditioner_> > {
typedef MatrixType_ MatrixType;
typedef Preconditioner_ Preconditioner;
};
} // namespace internal
/** \ingroup IterativeLinearSolvers_Module
* \brief A minimal residual solver for sparse symmetric problems
*
* This class allows to solve for A.x = b sparse linear problems using the MINRES algorithm
* of Paige and Saunders (1975). The sparse matrix A must be symmetric (possibly indefinite).
* The vectors x and b can be either dense or sparse.
*
* \tparam MatrixType_ the type of the sparse matrix A, can be a dense or a sparse matrix.
* \tparam UpLo_ the triangular part that will be used for the computations. It can be Lower,
* Upper, or Lower|Upper in which the full matrix entries will be considered. Default is Lower.
* \tparam Preconditioner_ the type of the preconditioner. Default is DiagonalPreconditioner
*
* The maximal number of iterations and tolerance value can be controlled via the setMaxIterations()
* and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations
* and NumTraits<Scalar>::epsilon() for the tolerance.
*
* This class can be used as the direct solver classes. Here is a typical usage example:
* \code
* int n = 10000;
* VectorXd x(n), b(n);
* SparseMatrix<double> A(n,n);
* // fill A and b
* MINRES<SparseMatrix<double> > mr;
* mr.compute(A);
* x = mr.solve(b);
* std::cout << "#iterations: " << mr.iterations() << std::endl;
* std::cout << "estimated error: " << mr.error() << std::endl;
* // update b, and solve again
* x = mr.solve(b);
* \endcode
*
* By default the iterations start with x=0 as an initial guess of the solution.
* One can control the start using the solveWithGuess() method.
*
* MINRES can also be used in a matrix-free context, see the following \link MatrixfreeSolverExample example \endlink.
*
* \sa class ConjugateGradient, BiCGSTAB, SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
*/
template <typename MatrixType_, int UpLo_, typename Preconditioner_>
class MINRES : public IterativeSolverBase<MINRES<MatrixType_, UpLo_, Preconditioner_> > {
typedef IterativeSolverBase<MINRES> Base;
using Base::m_error;
using Base::m_info;
using Base::m_isInitialized;
using Base::m_iterations;
using Base::matrix;
public:
using Base::_solve_impl;
typedef MatrixType_ MatrixType;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef Preconditioner_ Preconditioner;
enum { UpLo = UpLo_ };
public:
/** Default constructor. */
MINRES() : Base() {}
/** Initialize the solver with matrix \a A for further \c Ax=b solving.
*
* This constructor is a shortcut for the default constructor followed
* by a call to compute().
*
* \warning this class stores a reference to the matrix A as well as some
* precomputed values that depend on it. Therefore, if \a A is changed
* this class becomes invalid. Call compute() to update it with the new
* matrix A, or modify a copy of A.
*/
template <typename MatrixDerived>
explicit MINRES(const EigenBase<MatrixDerived>& A) : Base(A.derived()) {}
/** Destructor. */
~MINRES() {}
/** \internal */
template <typename Rhs, typename Dest>
void _solve_vector_with_guess_impl(const Rhs& b, Dest& x) const {
typedef typename Base::MatrixWrapper MatrixWrapper;
typedef typename Base::ActualMatrixType ActualMatrixType;
enum {
TransposeInput = (!MatrixWrapper::MatrixFree) && (UpLo == (Lower | Upper)) && (!MatrixType::IsRowMajor) &&
(!NumTraits<Scalar>::IsComplex)
};
typedef std::conditional_t<TransposeInput, Transpose<const ActualMatrixType>, ActualMatrixType const&>
RowMajorWrapper;
EIGEN_STATIC_ASSERT(internal::check_implication(MatrixWrapper::MatrixFree, UpLo == (Lower | Upper)),
MATRIX_FREE_CONJUGATE_GRADIENT_IS_COMPATIBLE_WITH_UPPER_UNION_LOWER_MODE_ONLY);
typedef std::conditional_t<UpLo == (Lower | Upper), RowMajorWrapper,
typename MatrixWrapper::template ConstSelfAdjointViewReturnType<UpLo>::Type>
SelfAdjointWrapper;
m_iterations = Base::maxIterations();
m_error = Base::m_tolerance;
RowMajorWrapper row_mat(matrix());
internal::minres(SelfAdjointWrapper(row_mat), b, x, Base::m_preconditioner, m_iterations, m_error);
m_info = m_error <= Base::m_tolerance ? Success : NoConvergence;
}
protected:
};
} // end namespace Eigen
#endif // EIGEN_MINRES_H