blob: 74c904fb58982b7bebf25cf092359b0c5721289a [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Rohit Garg <rpg.314@gmail.com>
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_MOREVECTORIZATION_MATHFUNCTIONS_H
#define EIGEN_MOREVECTORIZATION_MATHFUNCTIONS_H
// IWYU pragma: private
#include "./InternalHeaderCheck.h"
namespace Eigen {
namespace internal {
/** \internal \returns the arcsin of \a a (coeff-wise) */
template <typename Packet>
inline static Packet pasin(Packet a) {
return std::asin(a);
}
#ifdef EIGEN_VECTORIZE_SSE
template <>
EIGEN_DONT_INLINE Packet4f pasin(Packet4f x) {
EIGEN_DECLARE_CONST_Packet4f(half, 0.5);
EIGEN_DECLARE_CONST_Packet4f(minus_half, -0.5);
EIGEN_DECLARE_CONST_Packet4f(3half, 1.5);
EIGEN_DECLARE_CONST_Packet4f_FROM_INT(sign_mask, 0x80000000);
EIGEN_DECLARE_CONST_Packet4f(pi, 3.141592654);
EIGEN_DECLARE_CONST_Packet4f(pi_over_2, 3.141592654 * 0.5);
EIGEN_DECLARE_CONST_Packet4f(asin1, 4.2163199048E-2);
EIGEN_DECLARE_CONST_Packet4f(asin2, 2.4181311049E-2);
EIGEN_DECLARE_CONST_Packet4f(asin3, 4.5470025998E-2);
EIGEN_DECLARE_CONST_Packet4f(asin4, 7.4953002686E-2);
EIGEN_DECLARE_CONST_Packet4f(asin5, 1.6666752422E-1);
Packet4f a = pabs(x); // got the absolute value
Packet4f sign_bit = _mm_and_ps(x, p4f_sign_mask); // extracted the sign bit
Packet4f z1, z2; // will need them during computation
// will compute the two branches for asin
// so first compare with half
Packet4f branch_mask = _mm_cmpgt_ps(a, p4f_half); // this is to select which branch to take
// both will be taken, and finally results will be merged
// the branch for values >0.5
{
// the core series expansion
z1 = pmadd(p4f_minus_half, a, p4f_half);
Packet4f x1 = psqrt(z1);
Packet4f s1 = pmadd(p4f_asin1, z1, p4f_asin2);
Packet4f s2 = pmadd(s1, z1, p4f_asin3);
Packet4f s3 = pmadd(s2, z1, p4f_asin4);
Packet4f s4 = pmadd(s3, z1, p4f_asin5);
Packet4f temp = pmul(s4, z1); // not really a madd but a mul by z so that the next term can be a madd
z1 = pmadd(temp, x1, x1);
z1 = padd(z1, z1);
z1 = psub(p4f_pi_over_2, z1);
}
{
// the core series expansion
Packet4f x2 = a;
z2 = pmul(x2, x2);
Packet4f s1 = pmadd(p4f_asin1, z2, p4f_asin2);
Packet4f s2 = pmadd(s1, z2, p4f_asin3);
Packet4f s3 = pmadd(s2, z2, p4f_asin4);
Packet4f s4 = pmadd(s3, z2, p4f_asin5);
Packet4f temp = pmul(s4, z2); // not really a madd but a mul by z so that the next term can be a madd
z2 = pmadd(temp, x2, x2);
}
/* select the correct result from the two branch evaluations */
z1 = _mm_and_ps(branch_mask, z1);
z2 = _mm_andnot_ps(branch_mask, z2);
Packet4f z = _mm_or_ps(z1, z2);
/* update the sign */
return _mm_xor_ps(z, sign_bit);
}
#endif // EIGEN_VECTORIZE_SSE
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_MOREVECTORIZATION_MATHFUNCTIONS_H