| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2010-2011 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "common.h" |
| #include <Eigen/LU> |
| |
| // computes an LU factorization of a general M-by-N matrix A using partial pivoting with row interchanges |
| EIGEN_LAPACK_FUNC(getrf)(int *m, int *n, RealScalar *pa, int *lda, int *ipiv, int *info) { |
| *info = 0; |
| if (*m < 0) |
| *info = -1; |
| else if (*n < 0) |
| *info = -2; |
| else if (*lda < std::max(1, *m)) |
| *info = -4; |
| if (*info != 0) { |
| int e = -*info; |
| return xerbla_(SCALAR_SUFFIX_UP "GETRF", &e); |
| } |
| |
| if (*m == 0 || *n == 0) return; |
| |
| Scalar *a = reinterpret_cast<Scalar *>(pa); |
| int nb_transpositions; |
| int ret = int(Eigen::internal::partial_lu_impl<Scalar, Eigen::ColMajor, int>::blocked_lu(*m, *n, a, *lda, ipiv, |
| nb_transpositions)); |
| |
| for (int i = 0; i < std::min(*m, *n); ++i) ipiv[i]++; |
| |
| if (ret >= 0) *info = ret + 1; |
| } |
| |
| // GETRS solves a system of linear equations |
| // A * X = B or A' * X = B |
| // with a general N-by-N matrix A using the LU factorization computed by GETRF |
| EIGEN_LAPACK_FUNC(getrs) |
| (char *trans, int *n, int *nrhs, RealScalar *pa, int *lda, int *ipiv, RealScalar *pb, int *ldb, int *info) { |
| *info = 0; |
| if (OP(*trans) == INVALID) |
| *info = -1; |
| else if (*n < 0) |
| *info = -2; |
| else if (*nrhs < 0) |
| *info = -3; |
| else if (*lda < std::max(1, *n)) |
| *info = -5; |
| else if (*ldb < std::max(1, *n)) |
| *info = -8; |
| if (*info != 0) { |
| int e = -*info; |
| return xerbla_(SCALAR_SUFFIX_UP "GETRS", &e); |
| } |
| |
| Scalar *a = reinterpret_cast<Scalar *>(pa); |
| Scalar *b = reinterpret_cast<Scalar *>(pb); |
| MatrixType lu(a, *n, *n, *lda); |
| MatrixType B(b, *n, *nrhs, *ldb); |
| |
| for (int i = 0; i < *n; ++i) ipiv[i]--; |
| if (OP(*trans) == NOTR) { |
| B = PivotsType(ipiv, *n) * B; |
| lu.triangularView<UnitLower>().solveInPlace(B); |
| lu.triangularView<Upper>().solveInPlace(B); |
| } else if (OP(*trans) == TR) { |
| lu.triangularView<Upper>().transpose().solveInPlace(B); |
| lu.triangularView<UnitLower>().transpose().solveInPlace(B); |
| B = PivotsType(ipiv, *n).transpose() * B; |
| } else if (OP(*trans) == ADJ) { |
| lu.triangularView<Upper>().adjoint().solveInPlace(B); |
| lu.triangularView<UnitLower>().adjoint().solveInPlace(B); |
| B = PivotsType(ipiv, *n).transpose() * B; |
| } |
| for (int i = 0; i < *n; ++i) ipiv[i]++; |
| } |