| /* clarft.f -- translated by f2c (version 20061008). |
| You must link the resulting object file with libf2c: |
| on Microsoft Windows system, link with libf2c.lib; |
| on Linux or Unix systems, link with .../path/to/libf2c.a -lm |
| or, if you install libf2c.a in a standard place, with -lf2c -lm |
| -- in that order, at the end of the command line, as in |
| cc *.o -lf2c -lm |
| Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., |
| |
| http://www.netlib.org/f2c/libf2c.zip |
| */ |
| |
| #include "blaswrap.h" |
| #include "lapack_datatypes.h" |
| |
| /* Table of constant values */ |
| |
| static complex c_b2 = {0.f, 0.f}; |
| static integer c__1 = 1; |
| |
| /* Subroutine */ void clarft_(char *direct, char *storev, integer *n, integer *k, complex *v, integer *ldv, |
| complex *tau, complex *t, integer *ldt) { |
| /* System generated locals */ |
| integer t_dim1, t_offset, v_dim1, v_offset, i__1, i__2, i__3, i__4; |
| complex q__1; |
| |
| /* Local variables */ |
| integer i__, j, prevlastv; |
| complex vii; |
| extern /* Subroutine */ void cgemv_(const char *, const integer *, const integer *, const complex *, const complex *, |
| const integer *, const complex *, const integer *, const complex *, complex *, |
| const integer *); |
| extern logical lsame_(char *, char *); |
| integer lastv; |
| extern /* Subroutine */ void ctrmv_(const char *, const char *, const char *, const integer *, const complex *, |
| const integer *, complex *, const integer *), |
| clacgv_(integer *, complex *, integer *); |
| |
| /* -- LAPACK auxiliary routine (version 3.2) -- */ |
| /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ |
| /* November 2006 */ |
| |
| /* .. Scalar Arguments .. */ |
| /* .. */ |
| /* .. Array Arguments .. */ |
| /* .. */ |
| |
| /* Purpose */ |
| /* ======= */ |
| |
| /* CLARFT forms the triangular factor T of a complex block reflector H */ |
| /* of order n, which is defined as a product of k elementary reflectors. */ |
| |
| /* If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular; */ |
| |
| /* If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular. */ |
| |
| /* If STOREV = 'C', the vector which defines the elementary reflector */ |
| /* H(i) is stored in the i-th column of the array V, and */ |
| |
| /* H = I - V * T * V' */ |
| |
| /* If STOREV = 'R', the vector which defines the elementary reflector */ |
| /* H(i) is stored in the i-th row of the array V, and */ |
| |
| /* H = I - V' * T * V */ |
| |
| /* Arguments */ |
| /* ========= */ |
| |
| /* DIRECT (input) CHARACTER*1 */ |
| /* Specifies the order in which the elementary reflectors are */ |
| /* multiplied to form the block reflector: */ |
| /* = 'F': H = H(1) H(2) . . . H(k) (Forward) */ |
| /* = 'B': H = H(k) . . . H(2) H(1) (Backward) */ |
| |
| /* STOREV (input) CHARACTER*1 */ |
| /* Specifies how the vectors which define the elementary */ |
| /* reflectors are stored (see also Further Details): */ |
| /* = 'C': columnwise */ |
| /* = 'R': rowwise */ |
| |
| /* N (input) INTEGER */ |
| /* The order of the block reflector H. N >= 0. */ |
| |
| /* K (input) INTEGER */ |
| /* The order of the triangular factor T (= the number of */ |
| /* elementary reflectors). K >= 1. */ |
| |
| /* V (input/output) COMPLEX array, dimension */ |
| /* (LDV,K) if STOREV = 'C' */ |
| /* (LDV,N) if STOREV = 'R' */ |
| /* The matrix V. See further details. */ |
| |
| /* LDV (input) INTEGER */ |
| /* The leading dimension of the array V. */ |
| /* If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K. */ |
| |
| /* TAU (input) COMPLEX array, dimension (K) */ |
| /* TAU(i) must contain the scalar factor of the elementary */ |
| /* reflector H(i). */ |
| |
| /* T (output) COMPLEX array, dimension (LDT,K) */ |
| /* The k by k triangular factor T of the block reflector. */ |
| /* If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is */ |
| /* lower triangular. The rest of the array is not used. */ |
| |
| /* LDT (input) INTEGER */ |
| /* The leading dimension of the array T. LDT >= K. */ |
| |
| /* Further Details */ |
| /* =============== */ |
| |
| /* The shape of the matrix V and the storage of the vectors which define */ |
| /* the H(i) is best illustrated by the following example with n = 5 and */ |
| /* k = 3. The elements equal to 1 are not stored; the corresponding */ |
| /* array elements are modified but restored on exit. The rest of the */ |
| /* array is not used. */ |
| |
| /* DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R': */ |
| |
| /* V = ( 1 ) V = ( 1 v1 v1 v1 v1 ) */ |
| /* ( v1 1 ) ( 1 v2 v2 v2 ) */ |
| /* ( v1 v2 1 ) ( 1 v3 v3 ) */ |
| /* ( v1 v2 v3 ) */ |
| /* ( v1 v2 v3 ) */ |
| |
| /* DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R': */ |
| |
| /* V = ( v1 v2 v3 ) V = ( v1 v1 1 ) */ |
| /* ( v1 v2 v3 ) ( v2 v2 v2 1 ) */ |
| /* ( 1 v2 v3 ) ( v3 v3 v3 v3 1 ) */ |
| /* ( 1 v3 ) */ |
| /* ( 1 ) */ |
| |
| /* ===================================================================== */ |
| |
| /* .. Parameters .. */ |
| /* .. */ |
| /* .. Local Scalars .. */ |
| /* .. */ |
| /* .. External Subroutines .. */ |
| /* .. */ |
| /* .. External Functions .. */ |
| /* .. */ |
| /* .. Executable Statements .. */ |
| |
| /* Quick return if possible */ |
| |
| /* Parameter adjustments */ |
| v_dim1 = *ldv; |
| v_offset = 1 + v_dim1; |
| v -= v_offset; |
| --tau; |
| t_dim1 = *ldt; |
| t_offset = 1 + t_dim1; |
| t -= t_offset; |
| |
| /* Function Body */ |
| if (*n == 0) { |
| return; |
| } |
| |
| if (lsame_(direct, "F")) { |
| prevlastv = *n; |
| i__1 = *k; |
| for (i__ = 1; i__ <= i__1; ++i__) { |
| prevlastv = max(prevlastv, i__); |
| i__2 = i__; |
| if (tau[i__2].r == 0.f && tau[i__2].i == 0.f) { |
| /* H(i) = I */ |
| |
| i__2 = i__; |
| for (j = 1; j <= i__2; ++j) { |
| i__3 = j + i__ * t_dim1; |
| t[i__3].r = 0.f, t[i__3].i = 0.f; |
| /* L10: */ |
| } |
| } else { |
| /* general case */ |
| |
| i__2 = i__ + i__ * v_dim1; |
| vii.r = v[i__2].r, vii.i = v[i__2].i; |
| i__2 = i__ + i__ * v_dim1; |
| v[i__2].r = 1.f, v[i__2].i = 0.f; |
| if (lsame_(storev, "C")) { |
| /* Skip any trailing zeros. */ |
| i__2 = i__ + 1; |
| for (lastv = *n; lastv >= i__2; --lastv) { |
| i__3 = lastv + i__ * v_dim1; |
| if (v[i__3].r != 0.f || v[i__3].i != 0.f) { |
| break; |
| } |
| } |
| j = min(lastv, prevlastv); |
| |
| /* T(1:i-1,i) := - tau(i) * V(i:j,1:i-1)' * V(i:j,i) */ |
| |
| i__2 = j - i__ + 1; |
| i__3 = i__ - 1; |
| i__4 = i__; |
| q__1.r = -tau[i__4].r, q__1.i = -tau[i__4].i; |
| cgemv_("Conjugate transpose", &i__2, &i__3, &q__1, &v[i__ + v_dim1], ldv, &v[i__ + i__ * v_dim1], &c__1, |
| &c_b2, &t[i__ * t_dim1 + 1], &c__1); |
| } else { |
| /* Skip any trailing zeros. */ |
| i__2 = i__ + 1; |
| for (lastv = *n; lastv >= i__2; --lastv) { |
| i__3 = i__ + lastv * v_dim1; |
| if (v[i__3].r != 0.f || v[i__3].i != 0.f) { |
| break; |
| } |
| } |
| j = min(lastv, prevlastv); |
| |
| /* T(1:i-1,i) := - tau(i) * V(1:i-1,i:j) * V(i,i:j)' */ |
| |
| if (i__ < j) { |
| i__2 = j - i__; |
| clacgv_(&i__2, &v[i__ + (i__ + 1) * v_dim1], ldv); |
| } |
| i__2 = i__ - 1; |
| i__3 = j - i__ + 1; |
| i__4 = i__; |
| q__1.r = -tau[i__4].r, q__1.i = -tau[i__4].i; |
| cgemv_("No transpose", &i__2, &i__3, &q__1, &v[i__ * v_dim1 + 1], ldv, &v[i__ + i__ * v_dim1], ldv, &c_b2, |
| &t[i__ * t_dim1 + 1], &c__1); |
| if (i__ < j) { |
| i__2 = j - i__; |
| clacgv_(&i__2, &v[i__ + (i__ + 1) * v_dim1], ldv); |
| } |
| } |
| i__2 = i__ + i__ * v_dim1; |
| v[i__2].r = vii.r, v[i__2].i = vii.i; |
| |
| /* T(1:i-1,i) := T(1:i-1,1:i-1) * T(1:i-1,i) */ |
| |
| i__2 = i__ - 1; |
| ctrmv_("Upper", "No transpose", "Non-unit", &i__2, &t[t_offset], ldt, &t[i__ * t_dim1 + 1], &c__1); |
| i__2 = i__ + i__ * t_dim1; |
| i__3 = i__; |
| t[i__2].r = tau[i__3].r, t[i__2].i = tau[i__3].i; |
| if (i__ > 1) { |
| prevlastv = max(prevlastv, lastv); |
| } else { |
| prevlastv = lastv; |
| } |
| } |
| /* L20: */ |
| } |
| } else { |
| prevlastv = 1; |
| for (i__ = *k; i__ >= 1; --i__) { |
| i__1 = i__; |
| if (tau[i__1].r == 0.f && tau[i__1].i == 0.f) { |
| /* H(i) = I */ |
| |
| i__1 = *k; |
| for (j = i__; j <= i__1; ++j) { |
| i__2 = j + i__ * t_dim1; |
| t[i__2].r = 0.f, t[i__2].i = 0.f; |
| /* L30: */ |
| } |
| } else { |
| /* general case */ |
| |
| if (i__ < *k) { |
| if (lsame_(storev, "C")) { |
| i__1 = *n - *k + i__ + i__ * v_dim1; |
| vii.r = v[i__1].r, vii.i = v[i__1].i; |
| i__1 = *n - *k + i__ + i__ * v_dim1; |
| v[i__1].r = 1.f, v[i__1].i = 0.f; |
| /* Skip any leading zeros. */ |
| i__1 = i__ - 1; |
| for (lastv = 1; lastv <= i__1; ++lastv) { |
| i__2 = lastv + i__ * v_dim1; |
| if (v[i__2].r != 0.f || v[i__2].i != 0.f) { |
| break; |
| } |
| } |
| j = max(lastv, prevlastv); |
| |
| /* T(i+1:k,i) := */ |
| /* - tau(i) * V(j:n-k+i,i+1:k)' * V(j:n-k+i,i) */ |
| |
| i__1 = *n - *k + i__ - j + 1; |
| i__2 = *k - i__; |
| i__3 = i__; |
| q__1.r = -tau[i__3].r, q__1.i = -tau[i__3].i; |
| cgemv_("Conjugate transpose", &i__1, &i__2, &q__1, &v[j + (i__ + 1) * v_dim1], ldv, &v[j + i__ * v_dim1], |
| &c__1, &c_b2, &t[i__ + 1 + i__ * t_dim1], &c__1); |
| i__1 = *n - *k + i__ + i__ * v_dim1; |
| v[i__1].r = vii.r, v[i__1].i = vii.i; |
| } else { |
| i__1 = i__ + (*n - *k + i__) * v_dim1; |
| vii.r = v[i__1].r, vii.i = v[i__1].i; |
| i__1 = i__ + (*n - *k + i__) * v_dim1; |
| v[i__1].r = 1.f, v[i__1].i = 0.f; |
| /* Skip any leading zeros. */ |
| i__1 = i__ - 1; |
| for (lastv = 1; lastv <= i__1; ++lastv) { |
| i__2 = i__ + lastv * v_dim1; |
| if (v[i__2].r != 0.f || v[i__2].i != 0.f) { |
| break; |
| } |
| } |
| j = max(lastv, prevlastv); |
| |
| /* T(i+1:k,i) := */ |
| /* - tau(i) * V(i+1:k,j:n-k+i) * V(i,j:n-k+i)' */ |
| |
| i__1 = *n - *k + i__ - 1 - j + 1; |
| clacgv_(&i__1, &v[i__ + j * v_dim1], ldv); |
| i__1 = *k - i__; |
| i__2 = *n - *k + i__ - j + 1; |
| i__3 = i__; |
| q__1.r = -tau[i__3].r, q__1.i = -tau[i__3].i; |
| cgemv_("No transpose", &i__1, &i__2, &q__1, &v[i__ + 1 + j * v_dim1], ldv, &v[i__ + j * v_dim1], ldv, &c_b2, |
| &t[i__ + 1 + i__ * t_dim1], &c__1); |
| i__1 = *n - *k + i__ - 1 - j + 1; |
| clacgv_(&i__1, &v[i__ + j * v_dim1], ldv); |
| i__1 = i__ + (*n - *k + i__) * v_dim1; |
| v[i__1].r = vii.r, v[i__1].i = vii.i; |
| } |
| |
| /* T(i+1:k,i) := T(i+1:k,i+1:k) * T(i+1:k,i) */ |
| |
| i__1 = *k - i__; |
| ctrmv_("Lower", "No transpose", "Non-unit", &i__1, &t[i__ + 1 + (i__ + 1) * t_dim1], ldt, |
| &t[i__ + 1 + i__ * t_dim1], &c__1); |
| if (i__ > 1) { |
| prevlastv = min(prevlastv, lastv); |
| } else { |
| prevlastv = lastv; |
| } |
| } |
| i__1 = i__ + i__ * t_dim1; |
| i__2 = i__; |
| t[i__1].r = tau[i__2].r, t[i__1].i = tau[i__2].i; |
| } |
| /* L40: */ |
| } |
| } |
| |
| /* End of CLARFT */ |
| |
| } /* clarft_ */ |