| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_CXX11_TENSOR_TENSOR_LAYOUT_SWAP_H |
| #define EIGEN_CXX11_TENSOR_TENSOR_LAYOUT_SWAP_H |
| |
| // IWYU pragma: private |
| #include "./InternalHeaderCheck.h" |
| |
| namespace Eigen { |
| |
| /** \class TensorLayoutSwap |
| * \ingroup CXX11_Tensor_Module |
| * |
| * \brief Swap the layout from col-major to row-major, or row-major |
| * to col-major, and invert the order of the dimensions. |
| * |
| * Beware: the dimensions are reversed by this operation. If you want to |
| * preserve the ordering of the dimensions, you need to combine this |
| * operation with a shuffle. |
| * |
| * \example: |
| * Tensor<float, 2, ColMajor> input(2, 4); |
| * Tensor<float, 2, RowMajor> output = input.swap_layout(); |
| * eigen_assert(output.dimension(0) == 4); |
| * eigen_assert(output.dimension(1) == 2); |
| * |
| * array<int, 2> shuffle(1, 0); |
| * output = input.swap_layout().shuffle(shuffle); |
| * eigen_assert(output.dimension(0) == 2); |
| * eigen_assert(output.dimension(1) == 4); |
| * |
| */ |
| namespace internal { |
| template <typename XprType> |
| struct traits<TensorLayoutSwapOp<XprType> > : public traits<XprType> { |
| typedef typename XprType::Scalar Scalar; |
| typedef traits<XprType> XprTraits; |
| typedef typename XprTraits::StorageKind StorageKind; |
| typedef typename XprTraits::Index Index; |
| typedef typename XprType::Nested Nested; |
| typedef std::remove_reference_t<Nested> Nested_; |
| static constexpr int NumDimensions = traits<XprType>::NumDimensions; |
| static constexpr int Layout = (traits<XprType>::Layout == ColMajor) ? RowMajor : ColMajor; |
| typedef typename XprTraits::PointerType PointerType; |
| }; |
| |
| template <typename XprType> |
| struct eval<TensorLayoutSwapOp<XprType>, Eigen::Dense> { |
| typedef const TensorLayoutSwapOp<XprType>& type; |
| }; |
| |
| template <typename XprType> |
| struct nested<TensorLayoutSwapOp<XprType>, 1, typename eval<TensorLayoutSwapOp<XprType> >::type> { |
| typedef TensorLayoutSwapOp<XprType> type; |
| }; |
| |
| } // end namespace internal |
| |
| template <typename XprType> |
| class TensorLayoutSwapOp : public TensorBase<TensorLayoutSwapOp<XprType>, WriteAccessors> { |
| public: |
| typedef TensorBase<TensorLayoutSwapOp<XprType>, WriteAccessors> Base; |
| typedef typename Eigen::internal::traits<TensorLayoutSwapOp>::Scalar Scalar; |
| typedef typename Eigen::NumTraits<Scalar>::Real RealScalar; |
| typedef std::remove_const_t<typename XprType::CoeffReturnType> CoeffReturnType; |
| typedef typename Eigen::internal::nested<TensorLayoutSwapOp>::type Nested; |
| typedef typename Eigen::internal::traits<TensorLayoutSwapOp>::StorageKind StorageKind; |
| typedef typename Eigen::internal::traits<TensorLayoutSwapOp>::Index Index; |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorLayoutSwapOp(const XprType& expr) : m_xpr(expr) {} |
| |
| EIGEN_DEVICE_FUNC const internal::remove_all_t<typename XprType::Nested>& expression() const { return m_xpr; } |
| |
| EIGEN_TENSOR_INHERIT_ASSIGNMENT_OPERATORS(TensorLayoutSwapOp) |
| protected: |
| typename XprType::Nested m_xpr; |
| }; |
| |
| // Eval as rvalue |
| template <typename ArgType, typename Device> |
| struct TensorEvaluator<const TensorLayoutSwapOp<ArgType>, Device> { |
| typedef TensorLayoutSwapOp<ArgType> XprType; |
| typedef typename XprType::Index Index; |
| static constexpr int NumDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value; |
| typedef DSizes<Index, NumDims> Dimensions; |
| |
| static constexpr int Layout = |
| (TensorEvaluator<ArgType, Device>::Layout == static_cast<int>(ColMajor)) ? RowMajor : ColMajor; |
| enum { |
| IsAligned = TensorEvaluator<ArgType, Device>::IsAligned, |
| PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess, |
| BlockAccess = false, |
| PreferBlockAccess = TensorEvaluator<ArgType, Device>::PreferBlockAccess, |
| CoordAccess = false, // to be implemented |
| RawAccess = TensorEvaluator<ArgType, Device>::RawAccess |
| }; |
| |
| //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===// |
| typedef internal::TensorBlockNotImplemented TensorBlock; |
| //===--------------------------------------------------------------------===// |
| |
| EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) : m_impl(op.expression(), device) { |
| for (int i = 0; i < NumDims; ++i) { |
| m_dimensions[i] = m_impl.dimensions()[NumDims - 1 - i]; |
| } |
| } |
| |
| typedef typename XprType::Scalar Scalar; |
| typedef typename XprType::CoeffReturnType CoeffReturnType; |
| typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; |
| typedef StorageMemory<CoeffReturnType, Device> Storage; |
| typedef typename Storage::Type EvaluatorPointerType; |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; } |
| |
| EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType data) { return m_impl.evalSubExprsIfNeeded(data); } |
| EIGEN_STRONG_INLINE void cleanup() { m_impl.cleanup(); } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const { return m_impl.coeff(index); } |
| |
| template <int LoadMode> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const { |
| return m_impl.template packet<LoadMode>(index); |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const { |
| return m_impl.costPerCoeff(vectorized); |
| } |
| |
| EIGEN_DEVICE_FUNC typename Storage::Type data() const { return constCast(m_impl.data()); } |
| |
| const TensorEvaluator<ArgType, Device>& impl() const { return m_impl; } |
| |
| protected: |
| TensorEvaluator<ArgType, Device> m_impl; |
| Dimensions m_dimensions; |
| }; |
| |
| // Eval as lvalue |
| template <typename ArgType, typename Device> |
| struct TensorEvaluator<TensorLayoutSwapOp<ArgType>, Device> |
| : public TensorEvaluator<const TensorLayoutSwapOp<ArgType>, Device> { |
| typedef TensorEvaluator<const TensorLayoutSwapOp<ArgType>, Device> Base; |
| typedef TensorLayoutSwapOp<ArgType> XprType; |
| |
| static constexpr int Layout = |
| (TensorEvaluator<ArgType, Device>::Layout == static_cast<int>(ColMajor)) ? RowMajor : ColMajor; |
| enum { |
| IsAligned = TensorEvaluator<ArgType, Device>::IsAligned, |
| PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess, |
| BlockAccess = false, |
| PreferBlockAccess = TensorEvaluator<ArgType, Device>::PreferBlockAccess, |
| CoordAccess = false // to be implemented |
| }; |
| |
| //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===// |
| typedef internal::TensorBlockNotImplemented TensorBlock; |
| //===--------------------------------------------------------------------===// |
| |
| EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) : Base(op, device) {} |
| |
| typedef typename XprType::Index Index; |
| typedef typename XprType::Scalar Scalar; |
| typedef typename XprType::CoeffReturnType CoeffReturnType; |
| typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType& coeffRef(Index index) const { |
| return this->m_impl.coeffRef(index); |
| } |
| template <int StoreMode> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void writePacket(Index index, const PacketReturnType& x) const { |
| this->m_impl.template writePacket<StoreMode>(index, x); |
| } |
| }; |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_CXX11_TENSOR_TENSOR_LAYOUT_SWAP_H |