blob: 8c2bb2ef9e2fe8b6e1c0598250d93372284555b8 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2015 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_CXX11_TENSOR_TENSOR_META_H
#define EIGEN_CXX11_TENSOR_TENSOR_META_H
// IWYU pragma: private
#include "./InternalHeaderCheck.h"
namespace Eigen {
template <bool cond>
struct Cond {};
template <typename T1, typename T2>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE const T1& choose(Cond<true>, const T1& first, const T2&) {
return first;
}
template <typename T1, typename T2>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE const T2& choose(Cond<false>, const T1&, const T2& second) {
return second;
}
template <size_t n>
struct max_n_1 {
static const size_t size = n;
};
template <>
struct max_n_1<0> {
static const size_t size = 1;
};
template <typename T>
EIGEN_DEPRECATED EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE constexpr T divup(const T x, const T y) {
return Eigen::numext::div_ceil(x, y);
}
// Default packet types
template <typename Scalar, typename Device>
struct PacketType : internal::packet_traits<Scalar> {
typedef typename internal::packet_traits<Scalar>::type type;
};
// For CUDA packet types when using a GpuDevice
#if defined(EIGEN_USE_GPU) && defined(EIGEN_HAS_GPU_FP16) && defined(EIGEN_GPU_COMPILE_PHASE)
typedef ulonglong2 Packet4h2;
template <>
struct PacketType<half, GpuDevice> {
typedef Packet4h2 type;
static const int size = 8;
enum {
HasAdd = 1,
HasSub = 1,
HasMul = 1,
HasNegate = 1,
HasAbs = 1,
HasArg = 0,
HasAbs2 = 0,
HasMin = 1,
HasMax = 1,
HasConj = 0,
HasSetLinear = 0,
HasBlend = 0,
HasDiv = 1,
HasSqrt = 1,
HasRsqrt = 1,
HasExp = 1,
HasExpm1 = 0,
HasLog = 1,
HasLog1p = 0,
HasLog10 = 0,
HasPow = 1,
};
};
#endif
#if defined(EIGEN_USE_SYCL)
namespace TensorSycl {
namespace internal {
template <typename Index, Index A, Index B>
struct PlusOp {
static constexpr Index Value = A + B;
};
template <typename Index, Index A, Index B>
struct DivOp {
static constexpr Index Value = A / B;
};
template <typename Index, Index start, Index end, Index step, template <class Indx, Indx...> class StepOp>
struct static_for {
template <typename UnaryOperator>
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void loop(UnaryOperator op) {
op(start);
static_for<Index, StepOp<Index, start, step>::Value, end, step, StepOp>::loop(op);
}
};
template <typename Index, Index end, Index step, template <class Indx, Indx...> class StepOp>
struct static_for<Index, end, end, step, StepOp> {
template <typename UnaryOperator>
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void loop(UnaryOperator) {}
};
template <typename OutScalar, typename Device, bool Vectorizable>
struct Vectorise {
static constexpr int PacketSize = 1;
typedef OutScalar PacketReturnType;
};
template <typename OutScalar, typename Device>
struct Vectorise<OutScalar, Device, true> {
static constexpr int PacketSize = Eigen::PacketType<OutScalar, Device>::size;
typedef typename Eigen::PacketType<OutScalar, Device>::type PacketReturnType;
};
static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Index roundUp(Index x, Index y) { return ((((x) + (y)-1) / (y)) * (y)); }
} // namespace internal
} // namespace TensorSycl
template <>
struct PacketType<half, SyclDevice> {
typedef half type;
static const int size = 1;
enum {
HasAdd = 0,
HasSub = 0,
HasMul = 0,
HasNegate = 0,
HasAbs = 0,
HasArg = 0,
HasAbs2 = 0,
HasMin = 0,
HasMax = 0,
HasConj = 0,
HasSetLinear = 0,
HasBlend = 0
};
};
template <typename Scalar>
struct PacketType<Scalar, SyclDevice> : internal::default_packet_traits {
typedef Scalar type;
typedef Scalar half;
enum {
Vectorizable = 0,
size = 1,
AlignedOnScalar = 0,
};
enum {
HasAdd = 0,
HasSub = 0,
HasMul = 0,
HasNegate = 0,
HasAbs = 0,
HasAbs2 = 0,
HasMin = 0,
HasMax = 0,
HasConj = 0,
HasSetLinear = 0
};
};
template <typename Scalar>
struct PacketType<Scalar, const SyclDevice> : PacketType<Scalar, SyclDevice> {};
#ifndef EIGEN_DONT_VECTORIZE_SYCL
#define PACKET_TYPE(CVQual, Type, val, lengths, DEV) \
template <> \
struct PacketType<CVQual Type, DEV> : internal::sycl_packet_traits<val, lengths> { \
typedef typename internal::packet_traits<Type>::type type; \
typedef typename internal::packet_traits<Type>::half half; \
};
PACKET_TYPE(const, float, 1, 4, SyclDevice)
PACKET_TYPE(, float, 1, 4, SyclDevice)
PACKET_TYPE(const, float, 1, 4, const SyclDevice)
PACKET_TYPE(, float, 1, 4, const SyclDevice)
PACKET_TYPE(const, double, 0, 2, SyclDevice)
PACKET_TYPE(, double, 0, 2, SyclDevice)
PACKET_TYPE(const, double, 0, 2, const SyclDevice)
PACKET_TYPE(, double, 0, 2, const SyclDevice)
#undef PACKET_TYPE
template <>
struct PacketType<half, const SyclDevice> : PacketType<half, SyclDevice> {};
template <>
struct PacketType<const half, const SyclDevice> : PacketType<half, SyclDevice> {};
#endif
#endif
// Pair mimics std::pair but works on e.g. nvcc.
template <typename U, typename V>
struct Pair {
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
U first;
V second;
typedef U first_type;
typedef V second_type;
EIGEN_CONSTEXPR EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Pair() : first(), second() {}
EIGEN_CONSTEXPR EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Pair(const U& f, const V& s) : first(f), second(s) {}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void swap(Pair& rhs) {
using numext::swap;
swap(first, rhs.first);
swap(second, rhs.second);
}
};
template <typename U, typename V>
EIGEN_CONSTEXPR EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool operator==(const Pair<U, V>& x, const Pair<U, V>& y) {
return (x.first == y.first && x.second == y.second);
}
template <typename U, typename V>
EIGEN_CONSTEXPR EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool operator!=(const Pair<U, V>& x, const Pair<U, V>& y) {
return !(x == y);
}
// Can't use std::pairs on cuda devices
template <typename Idx>
struct IndexPair {
EIGEN_CONSTEXPR EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE IndexPair() : first(0), second(0) {}
EIGEN_CONSTEXPR EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE IndexPair(Idx f, Idx s) : first(f), second(s) {}
EIGEN_DEVICE_FUNC void set(IndexPair<Idx> val) {
first = val.first;
second = val.second;
}
Idx first;
Idx second;
};
namespace internal {
template <typename IndexType, typename Index, Index First, Index... Is>
EIGEN_CONSTEXPR EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE array<Index, 1 + sizeof...(Is)> customIndices2Array(
IndexType& idx, numeric_list<Index, First, Is...>) {
return {static_cast<Index>(idx[First]), static_cast<Index>(idx[Is])...};
}
template <typename IndexType, typename Index>
EIGEN_CONSTEXPR EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE array<Index, 0> customIndices2Array(IndexType&,
numeric_list<Index>) {
return array<Index, 0>();
}
/** Make an array (for index/dimensions) out of a custom index */
template <typename Index, std::size_t NumIndices, typename IndexType>
EIGEN_CONSTEXPR EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE array<Index, NumIndices> customIndices2Array(IndexType& idx) {
return customIndices2Array(idx, typename gen_numeric_list<Index, NumIndices>::type{});
}
template <typename B, typename D>
struct is_base_of {
typedef char (&yes)[1];
typedef char (&no)[2];
template <typename BB, typename DD>
struct Host {
operator BB*() const;
operator DD*();
};
template <typename T>
static yes check(D*, T);
static no check(B*, int);
static const bool value = sizeof(check(Host<B, D>(), int())) == sizeof(yes);
};
} // namespace internal
} // namespace Eigen
#endif // EIGEN_CXX11_TENSOR_TENSOR_META_H