blob: 2924abba062101075b33189c27fdf0610158fb82 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_CXX11_TENSOR_TENSOR_STRIDING_H
#define EIGEN_CXX11_TENSOR_TENSOR_STRIDING_H
// IWYU pragma: private
#include "./InternalHeaderCheck.h"
namespace Eigen {
/** \class TensorStriding
* \ingroup CXX11_Tensor_Module
*
* \brief Tensor striding class.
*
*
*/
namespace internal {
template <typename Strides, typename XprType>
struct traits<TensorStridingOp<Strides, XprType> > : public traits<XprType> {
typedef typename XprType::Scalar Scalar;
typedef traits<XprType> XprTraits;
typedef typename XprTraits::StorageKind StorageKind;
typedef typename XprTraits::Index Index;
typedef typename XprType::Nested Nested;
typedef std::remove_reference_t<Nested> Nested_;
static constexpr int NumDimensions = XprTraits::NumDimensions;
static constexpr int Layout = XprTraits::Layout;
typedef typename XprTraits::PointerType PointerType;
};
template <typename Strides, typename XprType>
struct eval<TensorStridingOp<Strides, XprType>, Eigen::Dense> {
typedef const TensorStridingOp<Strides, XprType> EIGEN_DEVICE_REF type;
};
template <typename Strides, typename XprType>
struct nested<TensorStridingOp<Strides, XprType>, 1, typename eval<TensorStridingOp<Strides, XprType> >::type> {
typedef TensorStridingOp<Strides, XprType> type;
};
} // end namespace internal
template <typename Strides, typename XprType>
class TensorStridingOp : public TensorBase<TensorStridingOp<Strides, XprType> > {
public:
typedef TensorBase<TensorStridingOp<Strides, XprType> > Base;
typedef typename Eigen::internal::traits<TensorStridingOp>::Scalar Scalar;
typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
typedef typename XprType::CoeffReturnType CoeffReturnType;
typedef typename Eigen::internal::nested<TensorStridingOp>::type Nested;
typedef typename Eigen::internal::traits<TensorStridingOp>::StorageKind StorageKind;
typedef typename Eigen::internal::traits<TensorStridingOp>::Index Index;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorStridingOp(const XprType& expr, const Strides& dims)
: m_xpr(expr), m_dims(dims) {}
EIGEN_DEVICE_FUNC const Strides& strides() const { return m_dims; }
EIGEN_DEVICE_FUNC const internal::remove_all_t<typename XprType::Nested>& expression() const { return m_xpr; }
EIGEN_TENSOR_INHERIT_ASSIGNMENT_OPERATORS(TensorStridingOp)
protected:
typename XprType::Nested m_xpr;
const Strides m_dims;
};
// Eval as rvalue
template <typename Strides, typename ArgType, typename Device>
struct TensorEvaluator<const TensorStridingOp<Strides, ArgType>, Device> {
typedef TensorStridingOp<Strides, ArgType> XprType;
typedef typename XprType::Index Index;
static constexpr int NumDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value;
typedef DSizes<Index, NumDims> Dimensions;
typedef typename XprType::Scalar Scalar;
typedef typename XprType::CoeffReturnType CoeffReturnType;
typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
static constexpr int PacketSize = PacketType<CoeffReturnType, Device>::size;
typedef StorageMemory<CoeffReturnType, Device> Storage;
typedef typename Storage::Type EvaluatorPointerType;
static constexpr int Layout = TensorEvaluator<ArgType, Device>::Layout;
enum {
IsAligned = /*TensorEvaluator<ArgType, Device>::IsAligned*/ false,
PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
BlockAccess = false,
PreferBlockAccess = TensorEvaluator<ArgType, Device>::PreferBlockAccess,
CoordAccess = false, // to be implemented
RawAccess = false
};
//===- Tensor block evaluation strategy (see TensorBlock.h) -------------===//
typedef internal::TensorBlockNotImplemented TensorBlock;
//===--------------------------------------------------------------------===//
EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) : m_impl(op.expression(), device) {
m_dimensions = m_impl.dimensions();
for (int i = 0; i < NumDims; ++i) {
m_dimensions[i] = Eigen::numext::ceil(static_cast<float>(m_dimensions[i]) / op.strides()[i]);
}
const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
m_outputStrides[0] = 1;
m_inputStrides[0] = 1;
for (int i = 1; i < NumDims; ++i) {
m_outputStrides[i] = m_outputStrides[i - 1] * m_dimensions[i - 1];
m_inputStrides[i] = m_inputStrides[i - 1] * input_dims[i - 1];
m_inputStrides[i - 1] *= op.strides()[i - 1];
}
m_inputStrides[NumDims - 1] *= op.strides()[NumDims - 1];
} else { // RowMajor
m_outputStrides[NumDims - 1] = 1;
m_inputStrides[NumDims - 1] = 1;
for (int i = NumDims - 2; i >= 0; --i) {
m_outputStrides[i] = m_outputStrides[i + 1] * m_dimensions[i + 1];
m_inputStrides[i] = m_inputStrides[i + 1] * input_dims[i + 1];
m_inputStrides[i + 1] *= op.strides()[i + 1];
}
m_inputStrides[0] *= op.strides()[0];
}
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType /*data*/) {
m_impl.evalSubExprsIfNeeded(NULL);
return true;
}
EIGEN_STRONG_INLINE void cleanup() { m_impl.cleanup(); }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const {
return m_impl.coeff(srcCoeff(index));
}
template <int LoadMode>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const {
EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
eigen_assert(index + PacketSize - 1 < dimensions().TotalSize());
Index inputIndices[] = {0, 0};
Index indices[] = {index, index + PacketSize - 1};
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
EIGEN_UNROLL_LOOP
for (int i = NumDims - 1; i > 0; --i) {
const Index idx0 = indices[0] / m_outputStrides[i];
const Index idx1 = indices[1] / m_outputStrides[i];
inputIndices[0] += idx0 * m_inputStrides[i];
inputIndices[1] += idx1 * m_inputStrides[i];
indices[0] -= idx0 * m_outputStrides[i];
indices[1] -= idx1 * m_outputStrides[i];
}
inputIndices[0] += indices[0] * m_inputStrides[0];
inputIndices[1] += indices[1] * m_inputStrides[0];
} else { // RowMajor
EIGEN_UNROLL_LOOP
for (int i = 0; i < NumDims - 1; ++i) {
const Index idx0 = indices[0] / m_outputStrides[i];
const Index idx1 = indices[1] / m_outputStrides[i];
inputIndices[0] += idx0 * m_inputStrides[i];
inputIndices[1] += idx1 * m_inputStrides[i];
indices[0] -= idx0 * m_outputStrides[i];
indices[1] -= idx1 * m_outputStrides[i];
}
inputIndices[0] += indices[0] * m_inputStrides[NumDims - 1];
inputIndices[1] += indices[1] * m_inputStrides[NumDims - 1];
}
if (inputIndices[1] - inputIndices[0] == PacketSize - 1) {
PacketReturnType rslt = m_impl.template packet<Unaligned>(inputIndices[0]);
return rslt;
} else {
EIGEN_ALIGN_MAX std::remove_const_t<CoeffReturnType> values[PacketSize];
values[0] = m_impl.coeff(inputIndices[0]);
values[PacketSize - 1] = m_impl.coeff(inputIndices[1]);
EIGEN_UNROLL_LOOP
for (int i = 1; i < PacketSize - 1; ++i) {
values[i] = coeff(index + i);
}
PacketReturnType rslt = internal::pload<PacketReturnType>(values);
return rslt;
}
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
double compute_cost = (NumDims - 1) * (TensorOpCost::AddCost<Index>() + TensorOpCost::MulCost<Index>() +
TensorOpCost::DivCost<Index>()) +
TensorOpCost::MulCost<Index>();
if (vectorized) {
compute_cost *= 2; // packet() computes two indices
}
const int innerDim = (static_cast<int>(Layout) == static_cast<int>(ColMajor)) ? 0 : (NumDims - 1);
return m_impl.costPerCoeff(vectorized && m_inputStrides[innerDim] == 1) +
// Computation is not vectorized per se, but it is done once per packet.
TensorOpCost(0, 0, compute_cost, vectorized, PacketSize);
}
EIGEN_DEVICE_FUNC typename Storage::Type data() const { return NULL; }
protected:
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index srcCoeff(Index index) const {
Index inputIndex = 0;
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
EIGEN_UNROLL_LOOP
for (int i = NumDims - 1; i > 0; --i) {
const Index idx = index / m_outputStrides[i];
inputIndex += idx * m_inputStrides[i];
index -= idx * m_outputStrides[i];
}
inputIndex += index * m_inputStrides[0];
} else { // RowMajor
EIGEN_UNROLL_LOOP
for (int i = 0; i < NumDims - 1; ++i) {
const Index idx = index / m_outputStrides[i];
inputIndex += idx * m_inputStrides[i];
index -= idx * m_outputStrides[i];
}
inputIndex += index * m_inputStrides[NumDims - 1];
}
return inputIndex;
}
Dimensions m_dimensions;
array<Index, NumDims> m_outputStrides;
array<Index, NumDims> m_inputStrides;
TensorEvaluator<ArgType, Device> m_impl;
};
// Eval as lvalue
template <typename Strides, typename ArgType, typename Device>
struct TensorEvaluator<TensorStridingOp<Strides, ArgType>, Device>
: public TensorEvaluator<const TensorStridingOp<Strides, ArgType>, Device> {
typedef TensorStridingOp<Strides, ArgType> XprType;
typedef TensorEvaluator<const XprType, Device> Base;
// typedef typename XprType::Index Index;
static constexpr int NumDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value;
// typedef DSizes<Index, NumDims> Dimensions;
static constexpr int Layout = TensorEvaluator<ArgType, Device>::Layout;
enum {
IsAligned = /*TensorEvaluator<ArgType, Device>::IsAligned*/ false,
PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
PreferBlockAccess = false,
CoordAccess = false, // to be implemented
RawAccess = false
};
EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) : Base(op, device) {}
typedef typename XprType::Index Index;
typedef typename XprType::Scalar Scalar;
typedef typename XprType::CoeffReturnType CoeffReturnType;
typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
static constexpr int PacketSize = PacketType<CoeffReturnType, Device>::size;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& coeffRef(Index index) const {
return this->m_impl.coeffRef(this->srcCoeff(index));
}
template <int StoreMode>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void writePacket(Index index, const PacketReturnType& x) const {
EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
eigen_assert(index + PacketSize - 1 < this->dimensions().TotalSize());
Index inputIndices[] = {0, 0};
Index indices[] = {index, index + PacketSize - 1};
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
EIGEN_UNROLL_LOOP
for (int i = NumDims - 1; i > 0; --i) {
const Index idx0 = indices[0] / this->m_outputStrides[i];
const Index idx1 = indices[1] / this->m_outputStrides[i];
inputIndices[0] += idx0 * this->m_inputStrides[i];
inputIndices[1] += idx1 * this->m_inputStrides[i];
indices[0] -= idx0 * this->m_outputStrides[i];
indices[1] -= idx1 * this->m_outputStrides[i];
}
inputIndices[0] += indices[0] * this->m_inputStrides[0];
inputIndices[1] += indices[1] * this->m_inputStrides[0];
} else { // RowMajor
EIGEN_UNROLL_LOOP
for (int i = 0; i < NumDims - 1; ++i) {
const Index idx0 = indices[0] / this->m_outputStrides[i];
const Index idx1 = indices[1] / this->m_outputStrides[i];
inputIndices[0] += idx0 * this->m_inputStrides[i];
inputIndices[1] += idx1 * this->m_inputStrides[i];
indices[0] -= idx0 * this->m_outputStrides[i];
indices[1] -= idx1 * this->m_outputStrides[i];
}
inputIndices[0] += indices[0] * this->m_inputStrides[NumDims - 1];
inputIndices[1] += indices[1] * this->m_inputStrides[NumDims - 1];
}
if (inputIndices[1] - inputIndices[0] == PacketSize - 1) {
this->m_impl.template writePacket<Unaligned>(inputIndices[0], x);
} else {
EIGEN_ALIGN_MAX Scalar values[PacketSize];
internal::pstore<Scalar, PacketReturnType>(values, x);
this->m_impl.coeffRef(inputIndices[0]) = values[0];
this->m_impl.coeffRef(inputIndices[1]) = values[PacketSize - 1];
EIGEN_UNROLL_LOOP
for (int i = 1; i < PacketSize - 1; ++i) {
this->coeffRef(index + i) = values[i];
}
}
}
};
} // end namespace Eigen
#endif // EIGEN_CXX11_TENSOR_TENSOR_STRIDING_H