|  | /* dlarfg.f -- translated by f2c (version 20061008). | 
|  | You must link the resulting object file with libf2c: | 
|  | on Microsoft Windows system, link with libf2c.lib; | 
|  | on Linux or Unix systems, link with .../path/to/libf2c.a -lm | 
|  | or, if you install libf2c.a in a standard place, with -lf2c -lm | 
|  | -- in that order, at the end of the command line, as in | 
|  | cc *.o -lf2c -lm | 
|  | Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., | 
|  |  | 
|  | http://www.netlib.org/f2c/libf2c.zip | 
|  | */ | 
|  |  | 
|  | #include "f2c.h" | 
|  | #include "blaswrap.h" | 
|  |  | 
|  | /* Subroutine */ int dlarfg_(integer *n, doublereal *alpha, doublereal *x, | 
|  | integer *incx, doublereal *tau) | 
|  | { | 
|  | /* System generated locals */ | 
|  | integer i__1; | 
|  | doublereal d__1; | 
|  |  | 
|  | /* Builtin functions */ | 
|  | double d_sign(doublereal *, doublereal *); | 
|  |  | 
|  | /* Local variables */ | 
|  | integer j, knt; | 
|  | doublereal beta; | 
|  | extern doublereal dnrm2_(integer *, doublereal *, integer *); | 
|  | extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, | 
|  | integer *); | 
|  | doublereal xnorm; | 
|  | extern doublereal dlapy2_(doublereal *, doublereal *), dlamch_(char *); | 
|  | doublereal safmin, rsafmn; | 
|  |  | 
|  |  | 
|  | /*  -- LAPACK auxiliary routine (version 3.2) -- */ | 
|  | /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ | 
|  | /*     November 2006 */ | 
|  |  | 
|  | /*     .. Scalar Arguments .. */ | 
|  | /*     .. */ | 
|  | /*     .. Array Arguments .. */ | 
|  | /*     .. */ | 
|  |  | 
|  | /*  Purpose */ | 
|  | /*  ======= */ | 
|  |  | 
|  | /*  DLARFG generates a real elementary reflector H of order n, such */ | 
|  | /*  that */ | 
|  |  | 
|  | /*        H * ( alpha ) = ( beta ),   H' * H = I. */ | 
|  | /*            (   x   )   (   0  ) */ | 
|  |  | 
|  | /*  where alpha and beta are scalars, and x is an (n-1)-element real */ | 
|  | /*  vector. H is represented in the form */ | 
|  |  | 
|  | /*        H = I - tau * ( 1 ) * ( 1 v' ) , */ | 
|  | /*                      ( v ) */ | 
|  |  | 
|  | /*  where tau is a real scalar and v is a real (n-1)-element */ | 
|  | /*  vector. */ | 
|  |  | 
|  | /*  If the elements of x are all zero, then tau = 0 and H is taken to be */ | 
|  | /*  the unit matrix. */ | 
|  |  | 
|  | /*  Otherwise  1 <= tau <= 2. */ | 
|  |  | 
|  | /*  Arguments */ | 
|  | /*  ========= */ | 
|  |  | 
|  | /*  N       (input) INTEGER */ | 
|  | /*          The order of the elementary reflector. */ | 
|  |  | 
|  | /*  ALPHA   (input/output) DOUBLE PRECISION */ | 
|  | /*          On entry, the value alpha. */ | 
|  | /*          On exit, it is overwritten with the value beta. */ | 
|  |  | 
|  | /*  X       (input/output) DOUBLE PRECISION array, dimension */ | 
|  | /*                         (1+(N-2)*abs(INCX)) */ | 
|  | /*          On entry, the vector x. */ | 
|  | /*          On exit, it is overwritten with the vector v. */ | 
|  |  | 
|  | /*  INCX    (input) INTEGER */ | 
|  | /*          The increment between elements of X. INCX > 0. */ | 
|  |  | 
|  | /*  TAU     (output) DOUBLE PRECISION */ | 
|  | /*          The value tau. */ | 
|  |  | 
|  | /*  ===================================================================== */ | 
|  |  | 
|  | /*     .. Parameters .. */ | 
|  | /*     .. */ | 
|  | /*     .. Local Scalars .. */ | 
|  | /*     .. */ | 
|  | /*     .. External Functions .. */ | 
|  | /*     .. */ | 
|  | /*     .. Intrinsic Functions .. */ | 
|  | /*     .. */ | 
|  | /*     .. External Subroutines .. */ | 
|  | /*     .. */ | 
|  | /*     .. Executable Statements .. */ | 
|  |  | 
|  | /* Parameter adjustments */ | 
|  | --x; | 
|  |  | 
|  | /* Function Body */ | 
|  | if (*n <= 1) { | 
|  | *tau = 0.; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | i__1 = *n - 1; | 
|  | xnorm = dnrm2_(&i__1, &x[1], incx); | 
|  |  | 
|  | if (xnorm == 0.) { | 
|  |  | 
|  | /*        H  =  I */ | 
|  |  | 
|  | *tau = 0.; | 
|  | } else { | 
|  |  | 
|  | /*        general case */ | 
|  |  | 
|  | d__1 = dlapy2_(alpha, &xnorm); | 
|  | beta = -d_sign(&d__1, alpha); | 
|  | safmin = dlamch_("S") / dlamch_("E"); | 
|  | knt = 0; | 
|  | if (abs(beta) < safmin) { | 
|  |  | 
|  | /*           XNORM, BETA may be inaccurate; scale X and recompute them */ | 
|  |  | 
|  | rsafmn = 1. / safmin; | 
|  | L10: | 
|  | ++knt; | 
|  | i__1 = *n - 1; | 
|  | dscal_(&i__1, &rsafmn, &x[1], incx); | 
|  | beta *= rsafmn; | 
|  | *alpha *= rsafmn; | 
|  | if (abs(beta) < safmin) { | 
|  | goto L10; | 
|  | } | 
|  |  | 
|  | /*           New BETA is at most 1, at least SAFMIN */ | 
|  |  | 
|  | i__1 = *n - 1; | 
|  | xnorm = dnrm2_(&i__1, &x[1], incx); | 
|  | d__1 = dlapy2_(alpha, &xnorm); | 
|  | beta = -d_sign(&d__1, alpha); | 
|  | } | 
|  | *tau = (beta - *alpha) / beta; | 
|  | i__1 = *n - 1; | 
|  | d__1 = 1. / (*alpha - beta); | 
|  | dscal_(&i__1, &d__1, &x[1], incx); | 
|  |  | 
|  | /*        If ALPHA is subnormal, it may lose relative accuracy */ | 
|  |  | 
|  | i__1 = knt; | 
|  | for (j = 1; j <= i__1; ++j) { | 
|  | beta *= safmin; | 
|  | /* L20: */ | 
|  | } | 
|  | *alpha = beta; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | /*     End of DLARFG */ | 
|  |  | 
|  | } /* dlarfg_ */ |