blob: 0ea1bc3c09500840999c27235f49b48a67ffeb61 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2011 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2011-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2011-2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_ASSIGN_EVALUATOR_H
#define EIGEN_ASSIGN_EVALUATOR_H
// IWYU pragma: private
#include "./InternalHeaderCheck.h"
namespace Eigen {
// This implementation is based on Assign.h
namespace internal {
/***************************************************************************
* Part 1 : the logic deciding a strategy for traversal and unrolling *
***************************************************************************/
// copy_using_evaluator_traits is based on assign_traits
template <typename DstEvaluator, typename SrcEvaluator, typename AssignFunc, int MaxPacketSize = Dynamic>
struct copy_using_evaluator_traits {
using Src = typename SrcEvaluator::XprType;
using Dst = typename DstEvaluator::XprType;
using DstScalar = typename Dst::Scalar;
static constexpr int DstFlags = DstEvaluator::Flags;
static constexpr int SrcFlags = SrcEvaluator::Flags;
public:
static constexpr int DstAlignment = DstEvaluator::Alignment;
static constexpr int SrcAlignment = SrcEvaluator::Alignment;
static constexpr int JointAlignment = plain_enum_min(DstAlignment, SrcAlignment);
static constexpr bool DstHasDirectAccess = bool(DstFlags & DirectAccessBit);
static constexpr bool SrcIsRowMajor = bool(SrcFlags & RowMajorBit);
static constexpr bool DstIsRowMajor = bool(DstFlags & RowMajorBit);
static constexpr bool IsVectorAtCompileTime = Dst::IsVectorAtCompileTime;
static constexpr int RowsAtCompileTime = size_prefer_fixed(Src::RowsAtCompileTime, Dst::RowsAtCompileTime);
static constexpr int ColsAtCompileTime = size_prefer_fixed(Src::ColsAtCompileTime, Dst::ColsAtCompileTime);
static constexpr int SizeAtCompileTime = size_at_compile_time(RowsAtCompileTime, ColsAtCompileTime);
static constexpr int MaxRowsAtCompileTime =
min_size_prefer_fixed(Src::MaxRowsAtCompileTime, Dst::MaxRowsAtCompileTime);
static constexpr int MaxColsAtCompileTime =
min_size_prefer_fixed(Src::MaxColsAtCompileTime, Dst::MaxColsAtCompileTime);
static constexpr int MaxSizeAtCompileTime =
min_size_prefer_fixed(Src::MaxSizeAtCompileTime, Dst::MaxSizeAtCompileTime);
static constexpr int InnerSizeAtCompileTime = IsVectorAtCompileTime ? SizeAtCompileTime
: DstIsRowMajor ? ColsAtCompileTime
: RowsAtCompileTime;
static constexpr int MaxInnerSizeAtCompileTime = IsVectorAtCompileTime ? MaxSizeAtCompileTime
: DstIsRowMajor ? MaxColsAtCompileTime
: MaxRowsAtCompileTime;
static constexpr int RestrictedInnerSize = min_size_prefer_fixed(MaxInnerSizeAtCompileTime, MaxPacketSize);
static constexpr int RestrictedLinearSize = min_size_prefer_fixed(MaxSizeAtCompileTime, MaxPacketSize);
static constexpr int OuterStride = outer_stride_at_compile_time<Dst>::ret;
// TODO distinguish between linear traversal and inner-traversals
using LinearPacketType = typename find_best_packet<DstScalar, RestrictedLinearSize>::type;
using InnerPacketType = typename find_best_packet<DstScalar, RestrictedInnerSize>::type;
static constexpr int LinearPacketSize = unpacket_traits<LinearPacketType>::size;
static constexpr int InnerPacketSize = unpacket_traits<InnerPacketType>::size;
public:
static constexpr int LinearRequiredAlignment = unpacket_traits<LinearPacketType>::alignment;
static constexpr int InnerRequiredAlignment = unpacket_traits<InnerPacketType>::alignment;
private:
static constexpr bool StorageOrdersAgree = DstIsRowMajor == SrcIsRowMajor;
static constexpr bool MightVectorize = StorageOrdersAgree && bool(DstFlags & SrcFlags & ActualPacketAccessBit) &&
bool(functor_traits<AssignFunc>::PacketAccess);
static constexpr bool MayInnerVectorize = MightVectorize && (InnerSizeAtCompileTime != Dynamic) &&
(InnerSizeAtCompileTime % InnerPacketSize == 0) &&
(OuterStride != Dynamic) && (OuterStride % InnerPacketSize == 0) &&
(EIGEN_UNALIGNED_VECTORIZE || JointAlignment >= InnerRequiredAlignment);
static constexpr bool MayLinearize = StorageOrdersAgree && (DstFlags & SrcFlags & LinearAccessBit);
static constexpr bool MayLinearVectorize =
MightVectorize && MayLinearize && DstHasDirectAccess &&
(EIGEN_UNALIGNED_VECTORIZE || (DstAlignment >= LinearRequiredAlignment) || MaxSizeAtCompileTime == Dynamic) &&
(MaxSizeAtCompileTime == Dynamic || MaxSizeAtCompileTime >= LinearPacketSize);
/* If the destination isn't aligned, we have to do runtime checks and we don't unroll,
so it's only good for large enough sizes. */
static constexpr int InnerSizeThreshold = (EIGEN_UNALIGNED_VECTORIZE ? 1 : 3) * InnerPacketSize;
static constexpr bool MaySliceVectorize =
MightVectorize && DstHasDirectAccess &&
(MaxInnerSizeAtCompileTime == Dynamic || MaxInnerSizeAtCompileTime >= InnerSizeThreshold);
/* slice vectorization can be slow, so we only want it if the slices are big, which is
indicated by InnerMaxSize rather than InnerSize, think of the case of a dynamic block
in a fixed-size matrix
However, with EIGEN_UNALIGNED_VECTORIZE and unrolling, slice vectorization is still worth it */
public:
static constexpr int Traversal = SizeAtCompileTime == 0 ? AllAtOnceTraversal
: (MayLinearVectorize && (LinearPacketSize > InnerPacketSize))
? LinearVectorizedTraversal
: MayInnerVectorize ? InnerVectorizedTraversal
: MayLinearVectorize ? LinearVectorizedTraversal
: MaySliceVectorize ? SliceVectorizedTraversal
: MayLinearize ? LinearTraversal
: DefaultTraversal;
static constexpr bool Vectorized = Traversal == InnerVectorizedTraversal || Traversal == LinearVectorizedTraversal ||
Traversal == SliceVectorizedTraversal;
using PacketType = std::conditional_t<Traversal == LinearVectorizedTraversal, LinearPacketType, InnerPacketType>;
private:
static constexpr int ActualPacketSize = Vectorized ? unpacket_traits<PacketType>::size : 1;
static constexpr int UnrollingLimit = EIGEN_UNROLLING_LIMIT * ActualPacketSize;
static constexpr int CoeffReadCost = int(DstEvaluator::CoeffReadCost) + int(SrcEvaluator::CoeffReadCost);
static constexpr bool MayUnrollCompletely =
(SizeAtCompileTime != Dynamic) && (SizeAtCompileTime * CoeffReadCost <= UnrollingLimit);
static constexpr bool MayUnrollInner =
(InnerSizeAtCompileTime != Dynamic) && (InnerSizeAtCompileTime * CoeffReadCost <= UnrollingLimit);
public:
static constexpr int Unrolling =
(Traversal == InnerVectorizedTraversal || Traversal == DefaultTraversal)
? (MayUnrollCompletely ? CompleteUnrolling
: MayUnrollInner ? InnerUnrolling
: NoUnrolling)
: Traversal == LinearVectorizedTraversal
? (MayUnrollCompletely && (EIGEN_UNALIGNED_VECTORIZE || (DstAlignment >= LinearRequiredAlignment))
? CompleteUnrolling
: NoUnrolling)
: Traversal == LinearTraversal ? (MayUnrollCompletely ? CompleteUnrolling : NoUnrolling)
#if EIGEN_UNALIGNED_VECTORIZE
: Traversal == SliceVectorizedTraversal ? (MayUnrollInner ? InnerUnrolling : NoUnrolling)
#endif
: NoUnrolling;
#ifdef EIGEN_DEBUG_ASSIGN
static void debug() {
std::cerr << "DstXpr: " << typeid(typename DstEvaluator::XprType).name() << std::endl;
std::cerr << "SrcXpr: " << typeid(typename SrcEvaluator::XprType).name() << std::endl;
std::cerr.setf(std::ios::hex, std::ios::basefield);
std::cerr << "DstFlags"
<< " = " << DstFlags << " (" << demangle_flags(DstFlags) << " )" << std::endl;
std::cerr << "SrcFlags"
<< " = " << SrcFlags << " (" << demangle_flags(SrcFlags) << " )" << std::endl;
std::cerr.unsetf(std::ios::hex);
EIGEN_DEBUG_VAR(DstAlignment)
EIGEN_DEBUG_VAR(SrcAlignment)
EIGEN_DEBUG_VAR(LinearRequiredAlignment)
EIGEN_DEBUG_VAR(InnerRequiredAlignment)
EIGEN_DEBUG_VAR(JointAlignment)
EIGEN_DEBUG_VAR(InnerSizeAtCompileTime)
EIGEN_DEBUG_VAR(MaxInnerSizeAtCompileTime)
EIGEN_DEBUG_VAR(LinearPacketSize)
EIGEN_DEBUG_VAR(InnerPacketSize)
EIGEN_DEBUG_VAR(ActualPacketSize)
EIGEN_DEBUG_VAR(StorageOrdersAgree)
EIGEN_DEBUG_VAR(MightVectorize)
EIGEN_DEBUG_VAR(MayLinearize)
EIGEN_DEBUG_VAR(MayInnerVectorize)
EIGEN_DEBUG_VAR(MayLinearVectorize)
EIGEN_DEBUG_VAR(MaySliceVectorize)
std::cerr << "Traversal"
<< " = " << Traversal << " (" << demangle_traversal(Traversal) << ")" << std::endl;
EIGEN_DEBUG_VAR(SrcEvaluator::CoeffReadCost)
EIGEN_DEBUG_VAR(DstEvaluator::CoeffReadCost)
EIGEN_DEBUG_VAR(Dst::SizeAtCompileTime)
EIGEN_DEBUG_VAR(UnrollingLimit)
EIGEN_DEBUG_VAR(MayUnrollCompletely)
EIGEN_DEBUG_VAR(MayUnrollInner)
std::cerr << "Unrolling"
<< " = " << Unrolling << " (" << demangle_unrolling(Unrolling) << ")" << std::endl;
std::cerr << std::endl;
}
#endif
};
/***************************************************************************
* Part 2 : meta-unrollers
***************************************************************************/
/************************
*** Default traversal ***
************************/
template <typename Kernel, int Index_, int Stop>
struct copy_using_evaluator_DefaultTraversal_CompleteUnrolling {
static constexpr int Outer = Index_ / Kernel::AssignmentTraits::InnerSizeAtCompileTime;
static constexpr int Inner = Index_ % Kernel::AssignmentTraits::InnerSizeAtCompileTime;
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE constexpr void run(Kernel& kernel) {
kernel.assignCoeffByOuterInner(Outer, Inner);
copy_using_evaluator_DefaultTraversal_CompleteUnrolling<Kernel, Index_ + 1, Stop>::run(kernel);
}
};
template <typename Kernel, int Stop>
struct copy_using_evaluator_DefaultTraversal_CompleteUnrolling<Kernel, Stop, Stop> {
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE EIGEN_CONSTEXPR void run(Kernel&) {}
};
template <typename Kernel, int Index_, int Stop>
struct copy_using_evaluator_DefaultTraversal_InnerUnrolling {
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE constexpr void run(Kernel& kernel, Index outer) {
kernel.assignCoeffByOuterInner(outer, Index_);
copy_using_evaluator_DefaultTraversal_InnerUnrolling<Kernel, Index_ + 1, Stop>::run(kernel, outer);
}
};
template <typename Kernel, int Stop>
struct copy_using_evaluator_DefaultTraversal_InnerUnrolling<Kernel, Stop, Stop> {
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE constexpr void run(Kernel&, Index) {}
};
/***********************
*** Linear traversal ***
***********************/
template <typename Kernel, int Index_, int Stop>
struct copy_using_evaluator_LinearTraversal_CompleteUnrolling {
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE constexpr void run(Kernel& kernel) {
kernel.assignCoeff(Index_);
copy_using_evaluator_LinearTraversal_CompleteUnrolling<Kernel, Index_ + 1, Stop>::run(kernel);
}
};
template <typename Kernel, int Stop>
struct copy_using_evaluator_LinearTraversal_CompleteUnrolling<Kernel, Stop, Stop> {
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE constexpr void run(Kernel&) {}
};
/**************************
*** Inner vectorization ***
**************************/
template <typename Kernel, int Index_, int Stop>
struct copy_using_evaluator_innervec_CompleteUnrolling {
using PacketType = typename Kernel::PacketType;
static constexpr int Outer = Index_ / Kernel::AssignmentTraits::InnerSizeAtCompileTime;
static constexpr int Inner = Index_ % Kernel::AssignmentTraits::InnerSizeAtCompileTime;
static constexpr int NextIndex = Index_ + unpacket_traits<PacketType>::size;
static constexpr int SrcAlignment = Kernel::AssignmentTraits::SrcAlignment;
static constexpr int DstAlignment = Kernel::AssignmentTraits::DstAlignment;
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel& kernel) {
kernel.template assignPacketByOuterInner<DstAlignment, SrcAlignment, PacketType>(Outer, Inner);
copy_using_evaluator_innervec_CompleteUnrolling<Kernel, NextIndex, Stop>::run(kernel);
}
};
template <typename Kernel, int Stop>
struct copy_using_evaluator_innervec_CompleteUnrolling<Kernel, Stop, Stop> {
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE EIGEN_CONSTEXPR void run(Kernel&) {}
};
template <typename Kernel, int Index_, int Stop, int SrcAlignment, int DstAlignment>
struct copy_using_evaluator_innervec_InnerUnrolling {
using PacketType = typename Kernel::PacketType;
static constexpr int NextIndex = Index_ + unpacket_traits<PacketType>::size;
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel& kernel, Index outer) {
kernel.template assignPacketByOuterInner<DstAlignment, SrcAlignment, PacketType>(outer, Index_);
copy_using_evaluator_innervec_InnerUnrolling<Kernel, NextIndex, Stop, SrcAlignment, DstAlignment>::run(kernel,
outer);
}
};
template <typename Kernel, int Stop, int SrcAlignment, int DstAlignment>
struct copy_using_evaluator_innervec_InnerUnrolling<Kernel, Stop, Stop, SrcAlignment, DstAlignment> {
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE constexpr void run(Kernel&, Index) {}
};
/***************************************************************************
* Part 3 : implementation of all cases
***************************************************************************/
// dense_assignment_loop is based on assign_impl
template <typename Kernel, int Traversal = Kernel::AssignmentTraits::Traversal,
int Unrolling = Kernel::AssignmentTraits::Unrolling>
struct dense_assignment_loop_impl;
template <typename Kernel, int Traversal = Kernel::AssignmentTraits::Traversal,
int Unrolling = Kernel::AssignmentTraits::Unrolling>
struct dense_assignment_loop {
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE constexpr void run(Kernel& kernel) {
#ifdef __cpp_lib_is_constant_evaluated
if (internal::is_constant_evaluated())
dense_assignment_loop_impl<Kernel, Traversal == AllAtOnceTraversal ? AllAtOnceTraversal : DefaultTraversal,
NoUnrolling>::run(kernel);
else
#endif
dense_assignment_loop_impl<Kernel, Traversal, Unrolling>::run(kernel);
}
};
/************************
***** Special Cases *****
************************/
// Zero-sized assignment is a no-op.
template <typename Kernel, int Unrolling>
struct dense_assignment_loop_impl<Kernel, AllAtOnceTraversal, Unrolling> {
static constexpr int SizeAtCompileTime = Kernel::AssignmentTraits::SizeAtCompileTime;
EIGEN_DEVICE_FUNC static void EIGEN_STRONG_INLINE EIGEN_CONSTEXPR run(Kernel& /*kernel*/) {
EIGEN_STATIC_ASSERT(SizeAtCompileTime == 0, EIGEN_INTERNAL_ERROR_PLEASE_FILE_A_BUG_REPORT)
}
};
/************************
*** Default traversal ***
************************/
template <typename Kernel>
struct dense_assignment_loop_impl<Kernel, DefaultTraversal, NoUnrolling> {
EIGEN_DEVICE_FUNC static void EIGEN_STRONG_INLINE constexpr run(Kernel& kernel) {
for (Index outer = 0; outer < kernel.outerSize(); ++outer) {
for (Index inner = 0; inner < kernel.innerSize(); ++inner) {
kernel.assignCoeffByOuterInner(outer, inner);
}
}
}
};
template <typename Kernel>
struct dense_assignment_loop_impl<Kernel, DefaultTraversal, CompleteUnrolling> {
static constexpr int SizeAtCompileTime = Kernel::AssignmentTraits::SizeAtCompileTime;
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE constexpr void run(Kernel& kernel) {
copy_using_evaluator_DefaultTraversal_CompleteUnrolling<Kernel, 0, SizeAtCompileTime>::run(kernel);
}
};
template <typename Kernel>
struct dense_assignment_loop_impl<Kernel, DefaultTraversal, InnerUnrolling> {
static constexpr int InnerSizeAtCompileTime = Kernel::AssignmentTraits::InnerSizeAtCompileTime;
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE constexpr void run(Kernel& kernel) {
const Index outerSize = kernel.outerSize();
for (Index outer = 0; outer < outerSize; ++outer)
copy_using_evaluator_DefaultTraversal_InnerUnrolling<Kernel, 0, InnerSizeAtCompileTime>::run(kernel, outer);
}
};
/***************************
*** Linear vectorization ***
***************************/
// The goal of unaligned_dense_assignment_loop is simply to factorize the handling
// of the non vectorizable beginning and ending parts
template <bool IsAligned = false>
struct unaligned_dense_assignment_loop {
// if IsAligned = true, then do nothing
template <typename Kernel>
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE EIGEN_CONSTEXPR void run(Kernel&, Index, Index) {}
};
template <>
struct unaligned_dense_assignment_loop<false> {
// MSVC must not inline this functions. If it does, it fails to optimize the
// packet access path.
// FIXME check which version exhibits this issue
#if EIGEN_COMP_MSVC
template <typename Kernel>
static EIGEN_DONT_INLINE void run(Kernel& kernel, Index start, Index end)
#else
template <typename Kernel>
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE EIGEN_CONSTEXPR void run(Kernel& kernel, Index start, Index end)
#endif
{
for (Index index = start; index < end; ++index) kernel.assignCoeff(index);
}
};
template <typename Kernel, int Index_, int Stop>
struct copy_using_evaluator_linearvec_CompleteUnrolling {
using PacketType = typename Kernel::PacketType;
static constexpr int SrcAlignment = Kernel::AssignmentTraits::SrcAlignment;
static constexpr int DstAlignment = Kernel::AssignmentTraits::DstAlignment;
static constexpr int NextIndex = Index_ + unpacket_traits<PacketType>::size;
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel& kernel) {
kernel.template assignPacket<DstAlignment, SrcAlignment, PacketType>(Index_);
copy_using_evaluator_linearvec_CompleteUnrolling<Kernel, NextIndex, Stop>::run(kernel);
}
};
template <typename Kernel, int Stop>
struct copy_using_evaluator_linearvec_CompleteUnrolling<Kernel, Stop, Stop> {
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE EIGEN_CONSTEXPR void run(Kernel&) {}
};
template <typename Kernel>
struct dense_assignment_loop_impl<Kernel, LinearVectorizedTraversal, NoUnrolling> {
using Scalar = typename Kernel::Scalar;
using PacketType = typename Kernel::PacketType;
static constexpr int PacketSize = unpacket_traits<PacketType>::size;
static constexpr int RequestedAlignment = Kernel::AssignmentTraits::LinearRequiredAlignment;
static constexpr bool DstIsAligned = Kernel::AssignmentTraits::DstAlignment >= RequestedAlignment;
static constexpr int SrcAlignment = Kernel::AssignmentTraits::JointAlignment;
static constexpr int DstAlignment =
packet_traits<Scalar>::AlignedOnScalar ? RequestedAlignment : Kernel::AssignmentTraits::DstAlignment;
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE EIGEN_CONSTEXPR void run(Kernel& kernel) {
const Index size = kernel.size();
const Index alignedStart = DstIsAligned ? 0 : first_aligned<RequestedAlignment>(kernel.dstDataPtr(), size);
const Index alignedEnd = alignedStart + numext::round_down(size - alignedStart, PacketSize);
unaligned_dense_assignment_loop<DstIsAligned>::run(kernel, 0, alignedStart);
for (Index index = alignedStart; index < alignedEnd; index += PacketSize)
kernel.template assignPacket<DstAlignment, SrcAlignment, PacketType>(index);
unaligned_dense_assignment_loop<>::run(kernel, alignedEnd, size);
}
};
template <typename Kernel>
struct dense_assignment_loop_impl<Kernel, LinearVectorizedTraversal, CompleteUnrolling> {
using PacketType = typename Kernel::PacketType;
static constexpr int PacketSize = unpacket_traits<PacketType>::size;
static constexpr int Size = Kernel::AssignmentTraits::SizeAtCompileTime;
static constexpr int AlignedSize = numext::round_down(Size, PacketSize);
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE EIGEN_CONSTEXPR void run(Kernel& kernel) {
copy_using_evaluator_linearvec_CompleteUnrolling<Kernel, 0, AlignedSize>::run(kernel);
copy_using_evaluator_LinearTraversal_CompleteUnrolling<Kernel, AlignedSize, Size>::run(kernel);
}
};
/**************************
*** Inner vectorization ***
**************************/
template <typename Kernel>
struct dense_assignment_loop_impl<Kernel, InnerVectorizedTraversal, NoUnrolling> {
using PacketType = typename Kernel::PacketType;
static constexpr int PacketSize = unpacket_traits<PacketType>::size;
static constexpr int SrcAlignment = Kernel::AssignmentTraits::JointAlignment;
static constexpr int DstAlignment = Kernel::AssignmentTraits::DstAlignment;
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE EIGEN_CONSTEXPR void run(Kernel& kernel) {
const Index innerSize = kernel.innerSize();
const Index outerSize = kernel.outerSize();
for (Index outer = 0; outer < outerSize; ++outer)
for (Index inner = 0; inner < innerSize; inner += PacketSize)
kernel.template assignPacketByOuterInner<DstAlignment, SrcAlignment, PacketType>(outer, inner);
}
};
template <typename Kernel>
struct dense_assignment_loop_impl<Kernel, InnerVectorizedTraversal, CompleteUnrolling> {
static constexpr int SizeAtCompileTime = Kernel::AssignmentTraits::SizeAtCompileTime;
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel& kernel) {
copy_using_evaluator_innervec_CompleteUnrolling<Kernel, 0, SizeAtCompileTime>::run(kernel);
}
};
template <typename Kernel>
struct dense_assignment_loop_impl<Kernel, InnerVectorizedTraversal, InnerUnrolling> {
static constexpr int InnerSize = Kernel::AssignmentTraits::InnerSizeAtCompileTime;
static constexpr int SrcAlignment = Kernel::AssignmentTraits::SrcAlignment;
static constexpr int DstAlignment = Kernel::AssignmentTraits::DstAlignment;
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel& kernel) {
const Index outerSize = kernel.outerSize();
for (Index outer = 0; outer < outerSize; ++outer)
copy_using_evaluator_innervec_InnerUnrolling<Kernel, 0, InnerSize, SrcAlignment, DstAlignment>::run(kernel,
outer);
}
};
/***********************
*** Linear traversal ***
***********************/
template <typename Kernel>
struct dense_assignment_loop_impl<Kernel, LinearTraversal, NoUnrolling> {
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE EIGEN_CONSTEXPR void run(Kernel& kernel) {
const Index size = kernel.size();
for (Index i = 0; i < size; ++i) kernel.assignCoeff(i);
}
};
template <typename Kernel>
struct dense_assignment_loop_impl<Kernel, LinearTraversal, CompleteUnrolling> {
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE EIGEN_CONSTEXPR void run(Kernel& kernel) {
copy_using_evaluator_LinearTraversal_CompleteUnrolling<Kernel, 0, Kernel::AssignmentTraits::SizeAtCompileTime>::run(
kernel);
}
};
/**************************
*** Slice vectorization ***
***************************/
template <typename Kernel>
struct dense_assignment_loop_impl<Kernel, SliceVectorizedTraversal, NoUnrolling> {
using Scalar = typename Kernel::Scalar;
using PacketType = typename Kernel::PacketType;
static constexpr int PacketSize = unpacket_traits<PacketType>::size;
static constexpr int RequestedAlignment = Kernel::AssignmentTraits::InnerRequiredAlignment;
static constexpr bool Alignable =
packet_traits<Scalar>::AlignedOnScalar || Kernel::AssignmentTraits::DstAlignment >= sizeof(Scalar);
static constexpr bool DstIsAligned = Kernel::AssignmentTraits::DstAlignment >= RequestedAlignment;
static constexpr int DstAlignment = Alignable ? RequestedAlignment : Kernel::AssignmentTraits::DstAlignment;
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE EIGEN_CONSTEXPR void run(Kernel& kernel) {
const Scalar* dst_ptr = kernel.dstDataPtr();
if ((!DstIsAligned) && (std::uintptr_t(dst_ptr) % sizeof(Scalar)) > 0) {
// the pointer is not aligned-on scalar, so alignment is not possible
return dense_assignment_loop<Kernel, DefaultTraversal, NoUnrolling>::run(kernel);
}
const Index innerSize = kernel.innerSize();
const Index outerSize = kernel.outerSize();
const Index alignedStep = Alignable ? (PacketSize - kernel.outerStride() % PacketSize) % PacketSize : 0;
Index alignedStart =
((!Alignable) || DstIsAligned) ? 0 : internal::first_aligned<RequestedAlignment>(dst_ptr, innerSize);
for (Index outer = 0; outer < outerSize; ++outer) {
const Index alignedEnd = alignedStart + numext::round_down(innerSize - alignedStart, PacketSize);
// do the non-vectorizable part of the assignment
for (Index inner = 0; inner < alignedStart; ++inner) kernel.assignCoeffByOuterInner(outer, inner);
// do the vectorizable part of the assignment
for (Index inner = alignedStart; inner < alignedEnd; inner += PacketSize)
kernel.template assignPacketByOuterInner<DstAlignment, Unaligned, PacketType>(outer, inner);
// do the non-vectorizable part of the assignment
for (Index inner = alignedEnd; inner < innerSize; ++inner) kernel.assignCoeffByOuterInner(outer, inner);
alignedStart = numext::mini((alignedStart + alignedStep) % PacketSize, innerSize);
}
}
};
#if EIGEN_UNALIGNED_VECTORIZE
template <typename Kernel>
struct dense_assignment_loop_impl<Kernel, SliceVectorizedTraversal, InnerUnrolling> {
using PacketType = typename Kernel::PacketType;
static constexpr int PacketSize = unpacket_traits<PacketType>::size;
static constexpr int InnerSize = Kernel::AssignmentTraits::InnerSizeAtCompileTime;
static constexpr int VectorizableSize = numext::round_down(InnerSize, PacketSize);
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE EIGEN_CONSTEXPR void run(Kernel& kernel) {
for (Index outer = 0; outer < kernel.outerSize(); ++outer) {
copy_using_evaluator_innervec_InnerUnrolling<Kernel, 0, VectorizableSize, 0, 0>::run(kernel, outer);
copy_using_evaluator_DefaultTraversal_InnerUnrolling<Kernel, VectorizableSize, InnerSize>::run(kernel, outer);
}
}
};
#endif
/***************************************************************************
* Part 4 : Generic dense assignment kernel
***************************************************************************/
// This class generalize the assignment of a coefficient (or packet) from one dense evaluator
// to another dense writable evaluator.
// It is parametrized by the two evaluators, and the actual assignment functor.
// This abstraction level permits to keep the evaluation loops as simple and as generic as possible.
// One can customize the assignment using this generic dense_assignment_kernel with different
// functors, or by completely overloading it, by-passing a functor.
template <typename DstEvaluatorTypeT, typename SrcEvaluatorTypeT, typename Functor, int Version = Specialized>
class generic_dense_assignment_kernel {
protected:
typedef typename DstEvaluatorTypeT::XprType DstXprType;
typedef typename SrcEvaluatorTypeT::XprType SrcXprType;
public:
typedef DstEvaluatorTypeT DstEvaluatorType;
typedef SrcEvaluatorTypeT SrcEvaluatorType;
typedef typename DstEvaluatorType::Scalar Scalar;
typedef copy_using_evaluator_traits<DstEvaluatorTypeT, SrcEvaluatorTypeT, Functor> AssignmentTraits;
typedef typename AssignmentTraits::PacketType PacketType;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr generic_dense_assignment_kernel(DstEvaluatorType& dst,
const SrcEvaluatorType& src,
const Functor& func,
DstXprType& dstExpr)
: m_dst(dst), m_src(src), m_functor(func), m_dstExpr(dstExpr) {
#ifdef EIGEN_DEBUG_ASSIGN
AssignmentTraits::debug();
#endif
}
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index size() const EIGEN_NOEXCEPT { return m_dstExpr.size(); }
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index innerSize() const EIGEN_NOEXCEPT { return m_dstExpr.innerSize(); }
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index outerSize() const EIGEN_NOEXCEPT { return m_dstExpr.outerSize(); }
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT { return m_dstExpr.rows(); }
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT { return m_dstExpr.cols(); }
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index outerStride() const EIGEN_NOEXCEPT { return m_dstExpr.outerStride(); }
EIGEN_DEVICE_FUNC DstEvaluatorType& dstEvaluator() EIGEN_NOEXCEPT { return m_dst; }
EIGEN_DEVICE_FUNC const SrcEvaluatorType& srcEvaluator() const EIGEN_NOEXCEPT { return m_src; }
/// Assign src(row,col) to dst(row,col) through the assignment functor.
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr void assignCoeff(Index row, Index col) {
m_functor.assignCoeff(m_dst.coeffRef(row, col), m_src.coeff(row, col));
}
/// \sa assignCoeff(Index,Index)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void assignCoeff(Index index) {
m_functor.assignCoeff(m_dst.coeffRef(index), m_src.coeff(index));
}
/// \sa assignCoeff(Index,Index)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr void assignCoeffByOuterInner(Index outer, Index inner) {
Index row = rowIndexByOuterInner(outer, inner);
Index col = colIndexByOuterInner(outer, inner);
assignCoeff(row, col);
}
template <int StoreMode, int LoadMode, typename Packet>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void assignPacket(Index row, Index col) {
m_functor.template assignPacket<StoreMode>(&m_dst.coeffRef(row, col),
m_src.template packet<LoadMode, Packet>(row, col));
}
template <int StoreMode, int LoadMode, typename Packet>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void assignPacket(Index index) {
m_functor.template assignPacket<StoreMode>(&m_dst.coeffRef(index), m_src.template packet<LoadMode, Packet>(index));
}
template <int StoreMode, int LoadMode, typename Packet>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void assignPacketByOuterInner(Index outer, Index inner) {
Index row = rowIndexByOuterInner(outer, inner);
Index col = colIndexByOuterInner(outer, inner);
assignPacket<StoreMode, LoadMode, Packet>(row, col);
}
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE constexpr Index rowIndexByOuterInner(Index outer, Index inner) {
typedef typename DstEvaluatorType::ExpressionTraits Traits;
return int(Traits::RowsAtCompileTime) == 1 ? 0
: int(Traits::ColsAtCompileTime) == 1 ? inner
: int(DstEvaluatorType::Flags) & RowMajorBit ? outer
: inner;
}
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE constexpr Index colIndexByOuterInner(Index outer, Index inner) {
typedef typename DstEvaluatorType::ExpressionTraits Traits;
return int(Traits::ColsAtCompileTime) == 1 ? 0
: int(Traits::RowsAtCompileTime) == 1 ? inner
: int(DstEvaluatorType::Flags) & RowMajorBit ? inner
: outer;
}
EIGEN_DEVICE_FUNC const Scalar* dstDataPtr() const { return m_dstExpr.data(); }
protected:
DstEvaluatorType& m_dst;
const SrcEvaluatorType& m_src;
const Functor& m_functor;
// TODO find a way to avoid the needs of the original expression
DstXprType& m_dstExpr;
};
// Special kernel used when computing small products whose operands have dynamic dimensions. It ensures that the
// PacketSize used is no larger than 4, thereby increasing the chance that vectorized instructions will be used
// when computing the product.
template <typename DstEvaluatorTypeT, typename SrcEvaluatorTypeT, typename Functor>
class restricted_packet_dense_assignment_kernel
: public generic_dense_assignment_kernel<DstEvaluatorTypeT, SrcEvaluatorTypeT, Functor, BuiltIn> {
protected:
typedef generic_dense_assignment_kernel<DstEvaluatorTypeT, SrcEvaluatorTypeT, Functor, BuiltIn> Base;
public:
typedef typename Base::Scalar Scalar;
typedef typename Base::DstXprType DstXprType;
typedef copy_using_evaluator_traits<DstEvaluatorTypeT, SrcEvaluatorTypeT, Functor, 4> AssignmentTraits;
typedef typename AssignmentTraits::PacketType PacketType;
EIGEN_DEVICE_FUNC restricted_packet_dense_assignment_kernel(DstEvaluatorTypeT& dst, const SrcEvaluatorTypeT& src,
const Functor& func, DstXprType& dstExpr)
: Base(dst, src, func, dstExpr) {}
};
/***************************************************************************
* Part 5 : Entry point for dense rectangular assignment
***************************************************************************/
template <typename DstXprType, typename SrcXprType, typename Functor>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr void resize_if_allowed(DstXprType& dst, const SrcXprType& src,
const Functor& /*func*/) {
EIGEN_ONLY_USED_FOR_DEBUG(dst);
EIGEN_ONLY_USED_FOR_DEBUG(src);
eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols());
}
template <typename DstXprType, typename SrcXprType, typename T1, typename T2>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr void resize_if_allowed(DstXprType& dst, const SrcXprType& src,
const internal::assign_op<T1, T2>& /*func*/) {
Index dstRows = src.rows();
Index dstCols = src.cols();
if (((dst.rows() != dstRows) || (dst.cols() != dstCols))) dst.resize(dstRows, dstCols);
eigen_assert(dst.rows() == dstRows && dst.cols() == dstCols);
}
template <typename DstXprType, typename SrcXprType, typename Functor>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EIGEN_CONSTEXPR void call_dense_assignment_loop(DstXprType& dst,
const SrcXprType& src,
const Functor& func) {
typedef evaluator<DstXprType> DstEvaluatorType;
typedef evaluator<SrcXprType> SrcEvaluatorType;
SrcEvaluatorType srcEvaluator(src);
// NOTE To properly handle A = (A*A.transpose())/s with A rectangular,
// we need to resize the destination after the source evaluator has been created.
resize_if_allowed(dst, src, func);
DstEvaluatorType dstEvaluator(dst);
typedef generic_dense_assignment_kernel<DstEvaluatorType, SrcEvaluatorType, Functor> Kernel;
Kernel kernel(dstEvaluator, srcEvaluator, func, dst.const_cast_derived());
dense_assignment_loop<Kernel>::run(kernel);
}
template <typename DstXprType, typename SrcXprType>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void call_dense_assignment_loop(DstXprType& dst, const SrcXprType& src) {
call_dense_assignment_loop(dst, src, internal::assign_op<typename DstXprType::Scalar, typename SrcXprType::Scalar>());
}
/***************************************************************************
* Part 6 : Generic assignment
***************************************************************************/
// Based on the respective shapes of the destination and source,
// the class AssignmentKind determine the kind of assignment mechanism.
// AssignmentKind must define a Kind typedef.
template <typename DstShape, typename SrcShape>
struct AssignmentKind;
// Assignment kind defined in this file:
struct Dense2Dense {};
struct EigenBase2EigenBase {};
template <typename, typename>
struct AssignmentKind {
typedef EigenBase2EigenBase Kind;
};
template <>
struct AssignmentKind<DenseShape, DenseShape> {
typedef Dense2Dense Kind;
};
// This is the main assignment class
template <typename DstXprType, typename SrcXprType, typename Functor,
typename Kind = typename AssignmentKind<typename evaluator_traits<DstXprType>::Shape,
typename evaluator_traits<SrcXprType>::Shape>::Kind,
typename EnableIf = void>
struct Assignment;
// The only purpose of this call_assignment() function is to deal with noalias() / "assume-aliasing" and automatic
// transposition. Indeed, I (Gael) think that this concept of "assume-aliasing" was a mistake, and it makes thing quite
// complicated. So this intermediate function removes everything related to "assume-aliasing" such that Assignment does
// not has to bother about these annoying details.
template <typename Dst, typename Src>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr void call_assignment(Dst& dst, const Src& src) {
call_assignment(dst, src, internal::assign_op<typename Dst::Scalar, typename Src::Scalar>());
}
template <typename Dst, typename Src>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void call_assignment(const Dst& dst, const Src& src) {
call_assignment(dst, src, internal::assign_op<typename Dst::Scalar, typename Src::Scalar>());
}
// Deal with "assume-aliasing"
template <typename Dst, typename Src, typename Func>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EIGEN_CONSTEXPR void call_assignment(
Dst& dst, const Src& src, const Func& func, std::enable_if_t<evaluator_assume_aliasing<Src>::value, void*> = 0) {
typename plain_matrix_type<Src>::type tmp(src);
call_assignment_no_alias(dst, tmp, func);
}
template <typename Dst, typename Src, typename Func>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr void call_assignment(
Dst& dst, const Src& src, const Func& func, std::enable_if_t<!evaluator_assume_aliasing<Src>::value, void*> = 0) {
call_assignment_no_alias(dst, src, func);
}
// by-pass "assume-aliasing"
// When there is no aliasing, we require that 'dst' has been properly resized
template <typename Dst, template <typename> class StorageBase, typename Src, typename Func>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EIGEN_CONSTEXPR void call_assignment(NoAlias<Dst, StorageBase>& dst,
const Src& src, const Func& func) {
call_assignment_no_alias(dst.expression(), src, func);
}
template <typename Dst, typename Src, typename Func>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EIGEN_CONSTEXPR void call_assignment_no_alias(Dst& dst, const Src& src,
const Func& func) {
enum {
NeedToTranspose = ((int(Dst::RowsAtCompileTime) == 1 && int(Src::ColsAtCompileTime) == 1) ||
(int(Dst::ColsAtCompileTime) == 1 && int(Src::RowsAtCompileTime) == 1)) &&
int(Dst::SizeAtCompileTime) != 1
};
typedef std::conditional_t<NeedToTranspose, Transpose<Dst>, Dst> ActualDstTypeCleaned;
typedef std::conditional_t<NeedToTranspose, Transpose<Dst>, Dst&> ActualDstType;
ActualDstType actualDst(dst);
// TODO check whether this is the right place to perform these checks:
EIGEN_STATIC_ASSERT_LVALUE(Dst)
EIGEN_STATIC_ASSERT_SAME_MATRIX_SIZE(ActualDstTypeCleaned, Src)
EIGEN_CHECK_BINARY_COMPATIBILIY(Func, typename ActualDstTypeCleaned::Scalar, typename Src::Scalar);
Assignment<ActualDstTypeCleaned, Src, Func>::run(actualDst, src, func);
}
template <typename Dst, typename Src, typename Func>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void call_restricted_packet_assignment_no_alias(Dst& dst, const Src& src,
const Func& func) {
typedef evaluator<Dst> DstEvaluatorType;
typedef evaluator<Src> SrcEvaluatorType;
typedef restricted_packet_dense_assignment_kernel<DstEvaluatorType, SrcEvaluatorType, Func> Kernel;
EIGEN_STATIC_ASSERT_LVALUE(Dst)
EIGEN_CHECK_BINARY_COMPATIBILIY(Func, typename Dst::Scalar, typename Src::Scalar);
SrcEvaluatorType srcEvaluator(src);
resize_if_allowed(dst, src, func);
DstEvaluatorType dstEvaluator(dst);
Kernel kernel(dstEvaluator, srcEvaluator, func, dst.const_cast_derived());
dense_assignment_loop<Kernel>::run(kernel);
}
template <typename Dst, typename Src>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EIGEN_CONSTEXPR void call_assignment_no_alias(Dst& dst, const Src& src) {
call_assignment_no_alias(dst, src, internal::assign_op<typename Dst::Scalar, typename Src::Scalar>());
}
template <typename Dst, typename Src, typename Func>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EIGEN_CONSTEXPR void call_assignment_no_alias_no_transpose(Dst& dst,
const Src& src,
const Func& func) {
// TODO check whether this is the right place to perform these checks:
EIGEN_STATIC_ASSERT_LVALUE(Dst)
EIGEN_STATIC_ASSERT_SAME_MATRIX_SIZE(Dst, Src)
EIGEN_CHECK_BINARY_COMPATIBILIY(Func, typename Dst::Scalar, typename Src::Scalar);
Assignment<Dst, Src, Func>::run(dst, src, func);
}
template <typename Dst, typename Src>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EIGEN_CONSTEXPR void call_assignment_no_alias_no_transpose(Dst& dst,
const Src& src) {
call_assignment_no_alias_no_transpose(dst, src, internal::assign_op<typename Dst::Scalar, typename Src::Scalar>());
}
// forward declaration
template <typename Dst, typename Src>
EIGEN_DEVICE_FUNC void check_for_aliasing(const Dst& dst, const Src& src);
// Generic Dense to Dense assignment
// Note that the last template argument "Weak" is needed to make it possible to perform
// both partial specialization+SFINAE without ambiguous specialization
template <typename DstXprType, typename SrcXprType, typename Functor, typename Weak>
struct Assignment<DstXprType, SrcXprType, Functor, Dense2Dense, Weak> {
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE constexpr void run(DstXprType& dst, const SrcXprType& src,
const Functor& func) {
#ifndef EIGEN_NO_DEBUG
if (!internal::is_constant_evaluated()) {
internal::check_for_aliasing(dst, src);
}
#endif
call_dense_assignment_loop(dst, src, func);
}
};
template <typename DstXprType, typename SrcPlainObject, typename Weak>
struct Assignment<DstXprType, CwiseNullaryOp<scalar_constant_op<typename DstXprType::Scalar>, SrcPlainObject>,
assign_op<typename DstXprType::Scalar, typename DstXprType::Scalar>, Dense2Dense, Weak> {
using Scalar = typename DstXprType::Scalar;
using NullaryOp = scalar_constant_op<Scalar>;
using SrcXprType = CwiseNullaryOp<NullaryOp, SrcPlainObject>;
using Functor = assign_op<Scalar, Scalar>;
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(DstXprType& dst, const SrcXprType& src,
const Functor& /*func*/) {
eigen_fill_impl<DstXprType>::run(dst, src);
}
};
template <typename DstXprType, typename SrcPlainObject, typename Weak>
struct Assignment<DstXprType, CwiseNullaryOp<scalar_zero_op<typename DstXprType::Scalar>, SrcPlainObject>,
assign_op<typename DstXprType::Scalar, typename DstXprType::Scalar>, Dense2Dense, Weak> {
using Scalar = typename DstXprType::Scalar;
using NullaryOp = scalar_zero_op<Scalar>;
using SrcXprType = CwiseNullaryOp<NullaryOp, SrcPlainObject>;
using Functor = assign_op<Scalar, Scalar>;
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(DstXprType& dst, const SrcXprType& src,
const Functor& /*func*/) {
eigen_zero_impl<DstXprType>::run(dst, src);
}
};
// Generic assignment through evalTo.
// TODO: not sure we have to keep that one, but it helps porting current code to new evaluator mechanism.
// Note that the last template argument "Weak" is needed to make it possible to perform
// both partial specialization+SFINAE without ambiguous specialization
template <typename DstXprType, typename SrcXprType, typename Functor, typename Weak>
struct Assignment<DstXprType, SrcXprType, Functor, EigenBase2EigenBase, Weak> {
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(
DstXprType& dst, const SrcXprType& src,
const internal::assign_op<typename DstXprType::Scalar, typename SrcXprType::Scalar>& /*func*/) {
Index dstRows = src.rows();
Index dstCols = src.cols();
if ((dst.rows() != dstRows) || (dst.cols() != dstCols)) dst.resize(dstRows, dstCols);
eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols());
src.evalTo(dst);
}
// NOTE The following two functions are templated to avoid their instantiation if not needed
// This is needed because some expressions supports evalTo only and/or have 'void' as scalar type.
template <typename SrcScalarType>
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(
DstXprType& dst, const SrcXprType& src,
const internal::add_assign_op<typename DstXprType::Scalar, SrcScalarType>& /*func*/) {
Index dstRows = src.rows();
Index dstCols = src.cols();
if ((dst.rows() != dstRows) || (dst.cols() != dstCols)) dst.resize(dstRows, dstCols);
eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols());
src.addTo(dst);
}
template <typename SrcScalarType>
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(
DstXprType& dst, const SrcXprType& src,
const internal::sub_assign_op<typename DstXprType::Scalar, SrcScalarType>& /*func*/) {
Index dstRows = src.rows();
Index dstCols = src.cols();
if ((dst.rows() != dstRows) || (dst.cols() != dstCols)) dst.resize(dstRows, dstCols);
eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols());
src.subTo(dst);
}
};
} // namespace internal
} // end namespace Eigen
#endif // EIGEN_ASSIGN_EVALUATOR_H