| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2025 The Eigen Authors. |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_TEST_CUSTOM_COMPLEX_H |
| #define EIGEN_TEST_CUSTOM_COMPLEX_H |
| |
| #include <ostream> |
| #include <sstream> |
| |
| namespace custom_complex { |
| |
| template <typename Real> |
| struct CustomComplex { |
| CustomComplex() : re{0}, im{0} {} |
| CustomComplex(const CustomComplex& other) = default; |
| CustomComplex(CustomComplex&& other) = default; |
| CustomComplex& operator=(const CustomComplex& other) = default; |
| CustomComplex& operator=(CustomComplex&& other) = default; |
| CustomComplex(Real x) : re{x}, im{0} {} |
| CustomComplex(Real x, Real y) : re{x}, im{y} {} |
| |
| CustomComplex operator+(const CustomComplex& other) const { return CustomComplex(re + other.re, im + other.im); } |
| |
| CustomComplex operator-() const { return CustomComplex(-re, -im); } |
| |
| CustomComplex operator-(const CustomComplex& other) const { return CustomComplex(re - other.re, im - other.im); } |
| |
| CustomComplex operator*(const CustomComplex& other) const { |
| return CustomComplex(re * other.re - im * other.im, re * other.im + im * other.re); |
| } |
| |
| CustomComplex operator/(const CustomComplex& other) const { |
| // Smith's complex division (https://arxiv.org/pdf/1210.4539.pdf), |
| // guards against over/under-flow. |
| const bool scale_imag = numext::abs(other.im) <= numext::abs(other.re); |
| const Real rscale = scale_imag ? Real(1) : other.re / other.im; |
| const Real iscale = scale_imag ? other.im / other.re : Real(1); |
| const Real denominator = other.re * rscale + other.im * iscale; |
| return CustomComplex((re * rscale + im * iscale) / denominator, (im * rscale - re * iscale) / denominator); |
| } |
| |
| CustomComplex& operator+=(const CustomComplex& other) { |
| *this = *this + other; |
| return *this; |
| } |
| CustomComplex& operator-=(const CustomComplex& other) { |
| *this = *this - other; |
| return *this; |
| } |
| CustomComplex& operator*=(const CustomComplex& other) { |
| *this = *this * other; |
| return *this; |
| } |
| CustomComplex& operator/=(const CustomComplex& other) { |
| *this = *this / other; |
| return *this; |
| } |
| |
| bool operator==(const CustomComplex& other) const { |
| return numext::equal_strict(re, other.re) && numext::equal_strict(im, other.im); |
| } |
| bool operator!=(const CustomComplex& other) const { return !(*this == other); } |
| |
| friend CustomComplex operator+(const Real& a, const CustomComplex& b) { return CustomComplex(a + b.re, b.im); } |
| |
| friend CustomComplex operator-(const Real& a, const CustomComplex& b) { return CustomComplex(a - b.re, -b.im); } |
| |
| friend CustomComplex operator*(const Real& a, const CustomComplex& b) { return CustomComplex(a * b.re, a * b.im); } |
| |
| friend CustomComplex operator*(const CustomComplex& a, const Real& b) { return CustomComplex(a.re * b, a.im * b); } |
| |
| friend CustomComplex operator/(const CustomComplex& a, const Real& b) { return CustomComplex(a.re / b, a.im / b); } |
| |
| friend std::ostream& operator<<(std::ostream& stream, const CustomComplex& x) { |
| std::stringstream ss; |
| ss << "(" << x.re << ", " << x.im << ")"; |
| stream << ss.str(); |
| return stream; |
| } |
| |
| Real re; |
| Real im; |
| }; |
| |
| template <typename Real> |
| Real real(const CustomComplex<Real>& x) { |
| return x.re; |
| } |
| template <typename Real> |
| Real imag(const CustomComplex<Real>& x) { |
| return x.im; |
| } |
| template <typename Real> |
| CustomComplex<Real> conj(const CustomComplex<Real>& x) { |
| return CustomComplex<Real>(x.re, -x.im); |
| } |
| template <typename Real> |
| CustomComplex<Real> sqrt(const CustomComplex<Real>& x) { |
| return Eigen::internal::complex_sqrt(x); |
| } |
| template <typename Real> |
| Real abs(const CustomComplex<Real>& x) { |
| return Eigen::numext::sqrt(x.re * x.re + x.im * x.im); |
| } |
| |
| } // namespace custom_complex |
| |
| template <typename Real> |
| using CustomComplex = custom_complex::CustomComplex<Real>; |
| |
| namespace Eigen { |
| template <typename Real> |
| struct NumTraits<CustomComplex<Real>> : NumTraits<Real> { |
| enum { IsComplex = 1 }; |
| }; |
| |
| namespace numext { |
| template <typename Real> |
| EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool(isfinite)(const CustomComplex<Real>& x) { |
| return (numext::isfinite)(x.re) && (numext::isfinite)(x.im); |
| } |
| |
| } // namespace numext |
| } // namespace Eigen |
| |
| #endif // EIGEN_TEST_CUSTOM_COMPLEX_H |