blob: e4b5181c02385f8c44c93e9e6bbddb0e48877228 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2024 Tobias Wood tobias@spinicist.org.uk
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_CXX11_TENSOR_TENSOR_ROLL_H
#define EIGEN_CXX11_TENSOR_TENSOR_ROLL_H
// IWYU pragma: private
#include "./InternalHeaderCheck.h"
namespace Eigen {
namespace internal {
template <typename RollDimensions, typename XprType>
struct traits<TensorRollOp<RollDimensions, XprType> > : public traits<XprType> {
typedef typename XprType::Scalar Scalar;
typedef traits<XprType> XprTraits;
typedef typename XprTraits::StorageKind StorageKind;
typedef typename XprTraits::Index Index;
typedef typename XprType::Nested Nested;
typedef std::remove_reference_t<Nested> Nested_;
static constexpr int NumDimensions = XprTraits::NumDimensions;
static constexpr int Layout = XprTraits::Layout;
typedef typename XprTraits::PointerType PointerType;
};
template <typename RollDimensions, typename XprType>
struct eval<TensorRollOp<RollDimensions, XprType>, Eigen::Dense> {
typedef const TensorRollOp<RollDimensions, XprType>& type;
};
template <typename RollDimensions, typename XprType>
struct nested<TensorRollOp<RollDimensions, XprType>, 1, typename eval<TensorRollOp<RollDimensions, XprType> >::type> {
typedef TensorRollOp<RollDimensions, XprType> type;
};
} // end namespace internal
/**
* \ingroup CXX11_Tensor_Module
*
* \brief Tensor roll (circular shift) elements class.
*
*/
template <typename RollDimensions, typename XprType>
class TensorRollOp : public TensorBase<TensorRollOp<RollDimensions, XprType>, WriteAccessors> {
public:
typedef TensorBase<TensorRollOp<RollDimensions, XprType>, WriteAccessors> Base;
typedef typename Eigen::internal::traits<TensorRollOp>::Scalar Scalar;
typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
typedef typename XprType::CoeffReturnType CoeffReturnType;
typedef typename Eigen::internal::nested<TensorRollOp>::type Nested;
typedef typename Eigen::internal::traits<TensorRollOp>::StorageKind StorageKind;
typedef typename Eigen::internal::traits<TensorRollOp>::Index Index;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorRollOp(const XprType& expr, const RollDimensions& roll_dims)
: m_xpr(expr), m_roll_dims(roll_dims) {}
EIGEN_DEVICE_FUNC const RollDimensions& roll() const { return m_roll_dims; }
EIGEN_DEVICE_FUNC const internal::remove_all_t<typename XprType::Nested>& expression() const { return m_xpr; }
EIGEN_TENSOR_INHERIT_ASSIGNMENT_OPERATORS(TensorRollOp)
protected:
typename XprType::Nested m_xpr;
const RollDimensions m_roll_dims;
};
// Eval as rvalue
template <typename RollDimensions, typename ArgType, typename Device>
struct TensorEvaluator<const TensorRollOp<RollDimensions, ArgType>, Device> {
typedef TensorRollOp<RollDimensions, ArgType> XprType;
typedef typename XprType::Index Index;
static constexpr int NumDims = internal::array_size<RollDimensions>::value;
typedef DSizes<Index, NumDims> Dimensions;
typedef typename XprType::Scalar Scalar;
typedef typename XprType::CoeffReturnType CoeffReturnType;
typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
static constexpr int PacketSize = PacketType<CoeffReturnType, Device>::size;
typedef StorageMemory<CoeffReturnType, Device> Storage;
typedef typename Storage::Type EvaluatorPointerType;
static constexpr int Layout = TensorEvaluator<ArgType, Device>::Layout;
enum {
IsAligned = false,
PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
BlockAccess = NumDims > 0,
PreferBlockAccess = true,
CoordAccess = false, // to be implemented
RawAccess = false
};
typedef internal::TensorIntDivisor<Index> IndexDivisor;
//===- Tensor block evaluation strategy (see TensorBlock.h) -------------===//
using TensorBlockDesc = internal::TensorBlockDescriptor<NumDims, Index>;
using TensorBlockScratch = internal::TensorBlockScratchAllocator<Device>;
using ArgTensorBlock = typename TensorEvaluator<const ArgType, Device>::TensorBlock;
using TensorBlock = typename internal::TensorMaterializedBlock<CoeffReturnType, NumDims, Layout, Index>;
//===--------------------------------------------------------------------===//
EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
: m_impl(op.expression(), device), m_rolls(op.roll()), m_device(device) {
EIGEN_STATIC_ASSERT((NumDims > 0), Must_Have_At_Least_One_Dimension_To_Roll);
// Compute strides
m_dimensions = m_impl.dimensions();
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
m_strides[0] = 1;
for (int i = 1; i < NumDims; ++i) {
m_strides[i] = m_strides[i - 1] * m_dimensions[i - 1];
if (m_strides[i] > 0) m_fast_strides[i] = IndexDivisor(m_strides[i]);
}
} else {
m_strides[NumDims - 1] = 1;
for (int i = NumDims - 2; i >= 0; --i) {
m_strides[i] = m_strides[i + 1] * m_dimensions[i + 1];
if (m_strides[i] > 0) m_fast_strides[i] = IndexDivisor(m_strides[i]);
}
}
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType) {
m_impl.evalSubExprsIfNeeded(nullptr);
return true;
}
#ifdef EIGEN_USE_THREADS
template <typename EvalSubExprsCallback>
EIGEN_STRONG_INLINE void evalSubExprsIfNeededAsync(EvaluatorPointerType, EvalSubExprsCallback done) {
m_impl.evalSubExprsIfNeededAsync(nullptr, [done](bool) { done(true); });
}
#endif // EIGEN_USE_THREADS
EIGEN_STRONG_INLINE void cleanup() { m_impl.cleanup(); }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index roll(Index const i, Index const r, Index const n) const {
auto const tmp = (i + r) % n;
if (tmp < 0) {
return tmp + n;
} else {
return tmp;
}
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE array<Index, NumDims> rollCoords(array<Index, NumDims> const& coords) const {
array<Index, NumDims> rolledCoords;
for (int id = 0; id < NumDims; id++) {
eigen_assert(coords[id] < m_dimensions[id]);
rolledCoords[id] = roll(coords[id], m_rolls[id], m_dimensions[id]);
}
return rolledCoords;
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index rollIndex(Index index) const {
eigen_assert(index < dimensions().TotalSize());
Index rolledIndex = 0;
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
EIGEN_UNROLL_LOOP
for (int i = NumDims - 1; i > 0; --i) {
Index idx = index / m_fast_strides[i];
index -= idx * m_strides[i];
rolledIndex += roll(idx, m_rolls[i], m_dimensions[i]) * m_strides[i];
}
rolledIndex += roll(index, m_rolls[0], m_dimensions[0]);
} else {
EIGEN_UNROLL_LOOP
for (int i = 0; i < NumDims - 1; ++i) {
Index idx = index / m_fast_strides[i];
index -= idx * m_strides[i];
rolledIndex += roll(idx, m_rolls[i], m_dimensions[i]) * m_strides[i];
}
rolledIndex += roll(index, m_rolls[NumDims - 1], m_dimensions[NumDims - 1]);
}
return rolledIndex;
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const {
return m_impl.coeff(rollIndex(index));
}
template <int LoadMode>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const {
eigen_assert(index + PacketSize - 1 < dimensions().TotalSize());
EIGEN_ALIGN_MAX std::remove_const_t<CoeffReturnType> values[PacketSize];
EIGEN_UNROLL_LOOP
for (int i = 0; i < PacketSize; ++i) {
values[i] = coeff(index + i);
}
PacketReturnType rslt = internal::pload<PacketReturnType>(values);
return rslt;
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE internal::TensorBlockResourceRequirements getResourceRequirements() const {
const size_t target_size = m_device.lastLevelCacheSize();
return internal::TensorBlockResourceRequirements::skewed<Scalar>(target_size).addCostPerCoeff({0, 0, 24});
}
struct BlockIteratorState {
Index stride;
Index span;
Index size;
Index count;
};
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorBlock block(TensorBlockDesc& desc, TensorBlockScratch& scratch,
bool /*root_of_expr_ast*/ = false) const {
static const bool is_col_major = static_cast<int>(Layout) == static_cast<int>(ColMajor);
// Compute spatial coordinates for the first block element.
array<Index, NumDims> coords;
extract_coordinates(desc.offset(), coords);
array<Index, NumDims> initial_coords = coords;
Index offset = 0; // Offset in the output block buffer.
// Initialize output block iterator state. Dimension in this array are
// always in inner_most -> outer_most order (col major layout).
array<BlockIteratorState, NumDims> it;
for (int i = 0; i < NumDims; ++i) {
const int dim = is_col_major ? i : NumDims - 1 - i;
it[i].size = desc.dimension(dim);
it[i].stride = i == 0 ? 1 : (it[i - 1].size * it[i - 1].stride);
it[i].span = it[i].stride * (it[i].size - 1);
it[i].count = 0;
}
eigen_assert(it[0].stride == 1);
// Prepare storage for the materialized generator result.
const typename TensorBlock::Storage block_storage = TensorBlock::prepareStorage(desc, scratch);
CoeffReturnType* block_buffer = block_storage.data();
static const int inner_dim = is_col_major ? 0 : NumDims - 1;
const Index inner_dim_size = it[0].size;
while (it[NumDims - 1].count < it[NumDims - 1].size) {
Index i = 0;
for (; i < inner_dim_size; ++i) {
auto const rolled = rollCoords(coords);
auto const index = is_col_major ? m_dimensions.IndexOfColMajor(rolled) : m_dimensions.IndexOfRowMajor(rolled);
*(block_buffer + offset + i) = m_impl.coeff(index);
coords[inner_dim]++;
}
coords[inner_dim] = initial_coords[inner_dim];
if (NumDims == 1) break; // For the 1d tensor we need to generate only one inner-most dimension.
// Update offset.
for (i = 1; i < NumDims; ++i) {
if (++it[i].count < it[i].size) {
offset += it[i].stride;
coords[is_col_major ? i : NumDims - 1 - i]++;
break;
}
if (i != NumDims - 1) it[i].count = 0;
coords[is_col_major ? i : NumDims - 1 - i] = initial_coords[is_col_major ? i : NumDims - 1 - i];
offset -= it[i].span;
}
}
return block_storage.AsTensorMaterializedBlock();
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
double compute_cost = NumDims * (2 * TensorOpCost::AddCost<Index>() + 2 * TensorOpCost::MulCost<Index>() +
TensorOpCost::DivCost<Index>());
for (int i = 0; i < NumDims; ++i) {
compute_cost += 2 * TensorOpCost::AddCost<Index>();
}
return m_impl.costPerCoeff(vectorized) + TensorOpCost(0, 0, compute_cost, false /* vectorized */, PacketSize);
}
EIGEN_DEVICE_FUNC typename Storage::Type data() const { return nullptr; }
protected:
Dimensions m_dimensions;
array<Index, NumDims> m_strides;
array<IndexDivisor, NumDims> m_fast_strides;
TensorEvaluator<ArgType, Device> m_impl;
RollDimensions m_rolls;
const Device EIGEN_DEVICE_REF m_device;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void extract_coordinates(Index index, array<Index, NumDims>& coords) const {
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
for (int i = NumDims - 1; i > 0; --i) {
const Index idx = index / m_fast_strides[i];
index -= idx * m_strides[i];
coords[i] = idx;
}
coords[0] = index;
} else {
for (int i = 0; i < NumDims - 1; ++i) {
const Index idx = index / m_fast_strides[i];
index -= idx * m_strides[i];
coords[i] = idx;
}
coords[NumDims - 1] = index;
}
}
private:
};
// Eval as lvalue
template <typename RollDimensions, typename ArgType, typename Device>
struct TensorEvaluator<TensorRollOp<RollDimensions, ArgType>, Device>
: public TensorEvaluator<const TensorRollOp<RollDimensions, ArgType>, Device> {
typedef TensorEvaluator<const TensorRollOp<RollDimensions, ArgType>, Device> Base;
typedef TensorRollOp<RollDimensions, ArgType> XprType;
typedef typename XprType::Index Index;
static constexpr int NumDims = internal::array_size<RollDimensions>::value;
typedef DSizes<Index, NumDims> Dimensions;
static constexpr int Layout = TensorEvaluator<ArgType, Device>::Layout;
enum {
IsAligned = false,
PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
BlockAccess = false,
PreferBlockAccess = false,
CoordAccess = false,
RawAccess = false
};
EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) : Base(op, device) {}
typedef typename XprType::Scalar Scalar;
typedef typename XprType::CoeffReturnType CoeffReturnType;
typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
static constexpr int PacketSize = PacketType<CoeffReturnType, Device>::size;
//===- Tensor block evaluation strategy (see TensorBlock.h) -------------===//
typedef internal::TensorBlockNotImplemented TensorBlock;
//===--------------------------------------------------------------------===//
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return this->m_dimensions; }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& coeffRef(Index index) const {
return this->m_impl.coeffRef(this->rollIndex(index));
}
template <int StoreMode>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void writePacket(Index index, const PacketReturnType& x) const {
eigen_assert(index + PacketSize - 1 < dimensions().TotalSize());
EIGEN_ALIGN_MAX CoeffReturnType values[PacketSize];
internal::pstore<CoeffReturnType, PacketReturnType>(values, x);
EIGEN_UNROLL_LOOP
for (int i = 0; i < PacketSize; ++i) {
this->coeffRef(index + i) = values[i];
}
}
};
} // end namespace Eigen
#endif // EIGEN_CXX11_TENSOR_TENSOR_ROLL_H