| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008-2015 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_META_H |
| #define EIGEN_META_H |
| |
| #include "../InternalHeaderCheck.h" |
| |
| #if defined(EIGEN_GPU_COMPILE_PHASE) |
| |
| #include <cfloat> |
| |
| #if defined(EIGEN_CUDA_ARCH) |
| #include <math_constants.h> |
| #endif |
| |
| #if defined(EIGEN_HIP_DEVICE_COMPILE) |
| #include "Eigen/src/Core/arch/HIP/hcc/math_constants.h" |
| #endif |
| |
| #endif |
| |
| // Recent versions of ICC require <cstdint> for pointer types below. |
| #define EIGEN_ICC_NEEDS_CSTDINT (EIGEN_COMP_ICC>=1600) |
| |
| // Define portable (u)int{32,64} types |
| #include <cstdint> |
| |
| namespace Eigen { |
| namespace numext { |
| typedef std::uint8_t uint8_t; |
| typedef std::int8_t int8_t; |
| typedef std::uint16_t uint16_t; |
| typedef std::int16_t int16_t; |
| typedef std::uint32_t uint32_t; |
| typedef std::int32_t int32_t; |
| typedef std::uint64_t uint64_t; |
| typedef std::int64_t int64_t; |
| } |
| } |
| |
| namespace Eigen { |
| |
| typedef EIGEN_DEFAULT_DENSE_INDEX_TYPE DenseIndex; |
| |
| /** |
| * \brief The Index type as used for the API. |
| * \details To change this, \c \#define the preprocessor symbol \c EIGEN_DEFAULT_DENSE_INDEX_TYPE. |
| * \sa \blank \ref TopicPreprocessorDirectives, StorageIndex. |
| */ |
| |
| typedef EIGEN_DEFAULT_DENSE_INDEX_TYPE Index; |
| |
| namespace internal { |
| |
| /** \internal |
| * \file Meta.h |
| * This file contains generic metaprogramming classes which are not specifically related to Eigen. |
| * \note In case you wonder, yes we're aware that Boost already provides all these features, |
| * we however don't want to add a dependency to Boost. |
| */ |
| |
| // Only recent versions of ICC complain about using ptrdiff_t to hold pointers, |
| // and older versions do not provide *intptr_t types. |
| #if EIGEN_ICC_NEEDS_CSTDINT |
| typedef std::intptr_t IntPtr; |
| typedef std::uintptr_t UIntPtr; |
| #else |
| typedef std::ptrdiff_t IntPtr; |
| typedef std::size_t UIntPtr; |
| #endif |
| #undef EIGEN_ICC_NEEDS_CSTDINT |
| |
| struct true_type { enum { value = 1 }; }; |
| struct false_type { enum { value = 0 }; }; |
| |
| template<bool Condition> |
| struct bool_constant; |
| |
| template<> |
| struct bool_constant<true> : true_type {}; |
| |
| template<> |
| struct bool_constant<false> : false_type {}; |
| |
| template<bool Condition, typename Then, typename Else> |
| struct conditional { typedef Then type; }; |
| |
| template<typename Then, typename Else> |
| struct conditional <false, Then, Else> { typedef Else type; }; |
| |
| template<typename T> struct remove_reference { typedef T type; }; |
| template<typename T> struct remove_reference<T&> { typedef T type; }; |
| |
| template<typename T> struct remove_pointer { typedef T type; }; |
| template<typename T> struct remove_pointer<T*> { typedef T type; }; |
| template<typename T> struct remove_pointer<T*const> { typedef T type; }; |
| |
| template <class T> struct remove_const { typedef T type; }; |
| template <class T> struct remove_const<const T> { typedef T type; }; |
| template <class T> struct remove_const<const T[]> { typedef T type[]; }; |
| template <class T, unsigned int Size> struct remove_const<const T[Size]> { typedef T type[Size]; }; |
| |
| template<typename T> struct remove_all { typedef T type; }; |
| template<typename T> struct remove_all<const T> { typedef typename remove_all<T>::type type; }; |
| template<typename T> struct remove_all<T const&> { typedef typename remove_all<T>::type type; }; |
| template<typename T> struct remove_all<T&> { typedef typename remove_all<T>::type type; }; |
| template<typename T> struct remove_all<T const*> { typedef typename remove_all<T>::type type; }; |
| template<typename T> struct remove_all<T*> { typedef typename remove_all<T>::type type; }; |
| |
| template<typename T> struct is_arithmetic { enum { value = false }; }; |
| template<> struct is_arithmetic<float> { enum { value = true }; }; |
| template<> struct is_arithmetic<double> { enum { value = true }; }; |
| template<> struct is_arithmetic<long double> { enum { value = true }; }; |
| template<> struct is_arithmetic<bool> { enum { value = true }; }; |
| template<> struct is_arithmetic<char> { enum { value = true }; }; |
| template<> struct is_arithmetic<signed char> { enum { value = true }; }; |
| template<> struct is_arithmetic<unsigned char> { enum { value = true }; }; |
| template<> struct is_arithmetic<signed short> { enum { value = true }; }; |
| template<> struct is_arithmetic<unsigned short>{ enum { value = true }; }; |
| template<> struct is_arithmetic<signed int> { enum { value = true }; }; |
| template<> struct is_arithmetic<unsigned int> { enum { value = true }; }; |
| template<> struct is_arithmetic<signed long> { enum { value = true }; }; |
| template<> struct is_arithmetic<unsigned long> { enum { value = true }; }; |
| |
| template<typename T, typename U> struct is_same { enum { value = 0 }; }; |
| template<typename T> struct is_same<T,T> { enum { value = 1 }; }; |
| |
| template< class T > |
| struct is_void : is_same<void, typename remove_const<T>::type> {}; |
| |
| template<> struct is_arithmetic<signed long long> { enum { value = true }; }; |
| template<> struct is_arithmetic<unsigned long long> { enum { value = true }; }; |
| using std::is_integral; |
| |
| using std::make_unsigned; |
| |
| template <typename T> struct add_const { typedef const T type; }; |
| template <typename T> struct add_const<T&> { typedef T& type; }; |
| |
| template <typename T> struct is_const { enum { value = 0 }; }; |
| template <typename T> struct is_const<T const> { enum { value = 1 }; }; |
| |
| template<typename T> struct add_const_on_value_type { typedef const T type; }; |
| template<typename T> struct add_const_on_value_type<T&> { typedef T const& type; }; |
| template<typename T> struct add_const_on_value_type<T*> { typedef T const* type; }; |
| template<typename T> struct add_const_on_value_type<T* const> { typedef T const* const type; }; |
| template<typename T> struct add_const_on_value_type<T const* const> { typedef T const* const type; }; |
| |
| using std::is_convertible; |
| |
| /** \internal Allows to enable/disable an overload |
| * according to a compile time condition. |
| */ |
| template<bool Condition, typename T=void> struct enable_if; |
| |
| template<typename T> struct enable_if<true,T> |
| { typedef T type; }; |
| |
| /** \internal |
| * A base class do disable default copy ctor and copy assignment operator. |
| */ |
| class noncopyable |
| { |
| EIGEN_DEVICE_FUNC noncopyable(const noncopyable&); |
| EIGEN_DEVICE_FUNC const noncopyable& operator=(const noncopyable&); |
| protected: |
| EIGEN_DEVICE_FUNC noncopyable() {} |
| EIGEN_DEVICE_FUNC ~noncopyable() {} |
| }; |
| |
| /** \internal |
| * Provides access to the number of elements in the object of as a compile-time constant expression. |
| * It "returns" Eigen::Dynamic if the size cannot be resolved at compile-time (default). |
| * |
| * Similar to std::tuple_size, but more general. |
| * |
| * It currently supports: |
| * - any types T defining T::SizeAtCompileTime |
| * - plain C arrays as T[N] |
| * - std::array (c++11) |
| * - some internal types such as SingleRange and AllRange |
| * |
| * The second template parameter eases SFINAE-based specializations. |
| */ |
| template<typename T, typename EnableIf = void> struct array_size { |
| enum { value = Dynamic }; |
| }; |
| |
| template<typename T> struct array_size<T,typename internal::enable_if<((T::SizeAtCompileTime&0)==0)>::type> { |
| enum { value = T::SizeAtCompileTime }; |
| }; |
| |
| template<typename T, int N> struct array_size<const T (&)[N]> { |
| enum { value = N }; |
| }; |
| template<typename T, int N> struct array_size<T (&)[N]> { |
| enum { value = N }; |
| }; |
| |
| template<typename T, std::size_t N> struct array_size<const std::array<T,N> > { |
| enum { value = N }; |
| }; |
| template<typename T, std::size_t N> struct array_size<std::array<T,N> > { |
| enum { value = N }; |
| }; |
| |
| |
| /** \internal |
| * Analogue of the std::ssize free function. |
| * It returns the signed size of the container or view \a x of type \c T |
| * |
| * It currently supports: |
| * - any types T defining a member T::size() const |
| * - plain C arrays as T[N] |
| * |
| * For C++20, this function just forwards to `std::ssize`, or any ADL discoverable `ssize` function. |
| */ |
| #if EIGEN_COMP_CXXVER < 20 || EIGEN_GNUC_AT_MOST(9,4) |
| template <typename T> |
| EIGEN_CONSTEXPR auto index_list_size(const T& x) { |
| using R = std::common_type_t<std::ptrdiff_t, std::make_signed_t<decltype(x.size())>>; |
| return static_cast<R>(x.size()); |
| } |
| |
| template<typename T, std::ptrdiff_t N> |
| EIGEN_CONSTEXPR std::ptrdiff_t index_list_size(const T (&)[N]) { return N; } |
| #else |
| template <typename T> |
| EIGEN_CONSTEXPR auto index_list_size(T&& x) { |
| using std::ssize; |
| return ssize(std::forward<T>(x)); |
| } |
| #endif // EIGEN_COMP_CXXVER |
| |
| /** \internal |
| * Convenient struct to get the result type of a nullary, unary, binary, or |
| * ternary functor. |
| * |
| * Pre C++17: |
| * This uses std::result_of. However, note the `type` member removes |
| * const and converts references/pointers to their corresponding value type. |
| * |
| * Post C++17: Uses std::invoke_result |
| */ |
| #if EIGEN_HAS_STD_INVOKE_RESULT |
| template<typename T> struct result_of; |
| |
| template<typename F, typename... ArgTypes> |
| struct result_of<F(ArgTypes...)> { |
| typedef typename std::invoke_result<F, ArgTypes...>::type type1; |
| typedef typename remove_all<type1>::type type; |
| }; |
| |
| template<typename F, typename... ArgTypes> |
| struct invoke_result { |
| typedef typename std::invoke_result<F, ArgTypes...>::type type1; |
| typedef typename remove_all<type1>::type type; |
| }; |
| #else |
| template<typename T> struct result_of { |
| typedef typename std::result_of<T>::type type1; |
| typedef typename remove_all<type1>::type type; |
| }; |
| |
| template<typename F, typename... ArgTypes> |
| struct invoke_result { |
| typedef typename result_of<F(ArgTypes...)>::type type1; |
| typedef typename remove_all<type1>::type type; |
| }; |
| #endif |
| |
| // Reduces a sequence of bools to true if all are true, false otherwise. |
| template<bool... values> |
| using reduce_all = std::is_same<std::integer_sequence<bool, values..., true>, |
| std::integer_sequence<bool, true, values...> >; |
| |
| // Reduces a sequence of bools to true if any are true, false if all false. |
| template<bool... values> |
| using reduce_any = std::integral_constant<bool, |
| !std::is_same<std::integer_sequence<bool, values..., false>, std::integer_sequence<bool, false, values...> >::value>; |
| |
| struct meta_yes { char a[1]; }; |
| struct meta_no { char a[2]; }; |
| |
| // Check whether T::ReturnType does exist |
| template <typename T> |
| struct has_ReturnType |
| { |
| template <typename C> static meta_yes testFunctor(C const *, typename C::ReturnType const * = 0); |
| template <typename C> static meta_no testFunctor(...); |
| |
| enum { value = sizeof(testFunctor<T>(static_cast<T*>(0))) == sizeof(meta_yes) }; |
| }; |
| |
| template<typename T> const T* return_ptr(); |
| |
| template <typename T, typename IndexType=Index> |
| struct has_nullary_operator |
| { |
| template <typename C> static meta_yes testFunctor(C const *,typename enable_if<(sizeof(return_ptr<C>()->operator()())>0)>::type * = 0); |
| static meta_no testFunctor(...); |
| |
| enum { value = sizeof(testFunctor(static_cast<T*>(0))) == sizeof(meta_yes) }; |
| }; |
| |
| template <typename T, typename IndexType=Index> |
| struct has_unary_operator |
| { |
| template <typename C> static meta_yes testFunctor(C const *,typename enable_if<(sizeof(return_ptr<C>()->operator()(IndexType(0)))>0)>::type * = 0); |
| static meta_no testFunctor(...); |
| |
| enum { value = sizeof(testFunctor(static_cast<T*>(0))) == sizeof(meta_yes) }; |
| }; |
| |
| template <typename T, typename IndexType=Index> |
| struct has_binary_operator |
| { |
| template <typename C> static meta_yes testFunctor(C const *,typename enable_if<(sizeof(return_ptr<C>()->operator()(IndexType(0),IndexType(0)))>0)>::type * = 0); |
| static meta_no testFunctor(...); |
| |
| enum { value = sizeof(testFunctor(static_cast<T*>(0))) == sizeof(meta_yes) }; |
| }; |
| |
| /** \internal In short, it computes int(sqrt(\a Y)) with \a Y an integer. |
| * Usage example: \code meta_sqrt<1023>::ret \endcode |
| */ |
| template<int Y, |
| int InfX = 0, |
| int SupX = ((Y==1) ? 1 : Y/2), |
| bool Done = ((SupX-InfX)<=1 ? true : ((SupX*SupX <= Y) && ((SupX+1)*(SupX+1) > Y))) > |
| // use ?: instead of || just to shut up a stupid gcc 4.3 warning |
| class meta_sqrt |
| { |
| enum { |
| MidX = (InfX+SupX)/2, |
| TakeInf = MidX*MidX > Y ? 1 : 0, |
| NewInf = int(TakeInf) ? InfX : int(MidX), |
| NewSup = int(TakeInf) ? int(MidX) : SupX |
| }; |
| public: |
| enum { ret = meta_sqrt<Y,NewInf,NewSup>::ret }; |
| }; |
| |
| template<int Y, int InfX, int SupX> |
| class meta_sqrt<Y, InfX, SupX, true> { public: enum { ret = (SupX*SupX <= Y) ? SupX : InfX }; }; |
| |
| |
| /** \internal Computes the least common multiple of two positive integer A and B |
| * at compile-time. |
| */ |
| template<int A, int B, int K=1, bool Done = ((A*K)%B)==0, bool Big=(A>=B)> |
| struct meta_least_common_multiple |
| { |
| enum { ret = meta_least_common_multiple<A,B,K+1>::ret }; |
| }; |
| template<int A, int B, int K, bool Done> |
| struct meta_least_common_multiple<A,B,K,Done,false> |
| { |
| enum { ret = meta_least_common_multiple<B,A,K>::ret }; |
| }; |
| template<int A, int B, int K> |
| struct meta_least_common_multiple<A,B,K,true,true> |
| { |
| enum { ret = A*K }; |
| }; |
| |
| |
| /** \internal determines whether the product of two numeric types is allowed and what the return type is */ |
| template<typename T, typename U> struct scalar_product_traits |
| { |
| enum { Defined = 0 }; |
| }; |
| |
| // FIXME quick workaround around current limitation of result_of |
| // template<typename Scalar, typename ArgType0, typename ArgType1> |
| // struct result_of<scalar_product_op<Scalar>(ArgType0,ArgType1)> { |
| // typedef typename scalar_product_traits<typename remove_all<ArgType0>::type, typename remove_all<ArgType1>::type>::ReturnType type; |
| // }; |
| |
| /** \internal Obtains a POD type suitable to use as storage for an object of a size |
| * of at most Len bytes, aligned as specified by \c Align. |
| */ |
| template<unsigned Len, unsigned Align> |
| struct aligned_storage { |
| struct type { |
| EIGEN_ALIGN_TO_BOUNDARY(Align) unsigned char data[Len]; |
| }; |
| }; |
| |
| } // end namespace internal |
| |
| template<typename T> struct NumTraits; |
| |
| namespace numext { |
| |
| #if defined(EIGEN_GPU_COMPILE_PHASE) |
| template<typename T> EIGEN_DEVICE_FUNC void swap(T &a, T &b) { T tmp = b; b = a; a = tmp; } |
| #else |
| template<typename T> EIGEN_STRONG_INLINE void swap(T &a, T &b) { std::swap(a,b); } |
| #endif |
| |
| using std::numeric_limits; |
| |
| // Integer division with rounding up. |
| // T is assumed to be an integer type with a>=0, and b>0 |
| template<typename T> |
| EIGEN_DEVICE_FUNC |
| T div_ceil(const T &a, const T &b) |
| { |
| return (a+b-1) / b; |
| } |
| |
| // The aim of the following functions is to bypass -Wfloat-equal warnings |
| // when we really want a strict equality comparison on floating points. |
| template<typename X, typename Y> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC |
| bool equal_strict(const X& x,const Y& y) { return x == y; } |
| |
| #if !defined(EIGEN_GPU_COMPILE_PHASE) || (!defined(EIGEN_CUDA_ARCH) && defined(EIGEN_CONSTEXPR_ARE_DEVICE_FUNC)) |
| template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC |
| bool equal_strict(const float& x,const float& y) { return std::equal_to<float>()(x,y); } |
| |
| template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC |
| bool equal_strict(const double& x,const double& y) { return std::equal_to<double>()(x,y); } |
| #endif |
| |
| /** |
| * \internal Performs an exact comparison of x to zero, e.g. to decide whether a term can be ignored. |
| * Use this to to bypass -Wfloat-equal warnings when exact zero is what needs to be tested. |
| */ |
| template<typename X> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC |
| bool is_exactly_zero(const X& x) { return equal_strict(x, typename NumTraits<X>::Literal{0}); } |
| |
| /** |
| * \internal Performs an exact comparison of x to one, e.g. to decide whether a factor needs to be multiplied. |
| * Use this to to bypass -Wfloat-equal warnings when exact one is what needs to be tested. |
| */ |
| template<typename X> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC |
| bool is_exactly_one(const X& x) { return equal_strict(x, typename NumTraits<X>::Literal{1}); } |
| |
| template<typename X, typename Y> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC |
| bool not_equal_strict(const X& x,const Y& y) { return x != y; } |
| |
| #if !defined(EIGEN_GPU_COMPILE_PHASE) || (!defined(EIGEN_CUDA_ARCH) && defined(EIGEN_CONSTEXPR_ARE_DEVICE_FUNC)) |
| template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC |
| bool not_equal_strict(const float& x,const float& y) { return std::not_equal_to<float>()(x,y); } |
| |
| template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC |
| bool not_equal_strict(const double& x,const double& y) { return std::not_equal_to<double>()(x,y); } |
| #endif |
| |
| } // end namespace numext |
| |
| namespace internal { |
| /// \internal Returns true if its argument is of integer or enum type. |
| /// FIXME this has the same purpose as `is_valid_index_type` in XprHelper.h |
| template<typename A> |
| constexpr bool is_int_or_enum_v = std::is_enum<A>::value || std::is_integral<A>::value; |
| |
| /// \internal Gets the minimum of two values which may be integers or enums |
| template<typename A, typename B> |
| inline constexpr int plain_enum_min(A a, B b) { |
| static_assert(is_int_or_enum_v<A>, "Argument a must be an integer or enum"); |
| static_assert(is_int_or_enum_v<B>, "Argument b must be an integer or enum"); |
| return ((int) a <= (int) b) ? (int) a : (int) b; |
| } |
| |
| /// \internal Gets the maximum of two values which may be integers or enums |
| template<typename A, typename B> |
| inline constexpr int plain_enum_max(A a, B b) { |
| static_assert(is_int_or_enum_v<A>, "Argument a must be an integer or enum"); |
| static_assert(is_int_or_enum_v<B>, "Argument b must be an integer or enum"); |
| return ((int) a >= (int) b) ? (int) a : (int) b; |
| } |
| |
| /** |
| * \internal |
| * `min_size_prefer_dynamic` gives the min between compile-time sizes. 0 has absolute priority, followed by 1, |
| * followed by Dynamic, followed by other finite values. The reason for giving Dynamic the priority over |
| * finite values is that min(3, Dynamic) should be Dynamic, since that could be anything between 0 and 3. |
| */ |
| template<typename A, typename B> |
| inline constexpr int min_size_prefer_dynamic(A a, B b) { |
| static_assert(is_int_or_enum_v<A>, "Argument a must be an integer or enum"); |
| static_assert(is_int_or_enum_v<B>, "Argument b must be an integer or enum"); |
| if ((int) a == 0 || (int) b == 0) return 0; |
| if ((int) a == 1 || (int) b == 1) return 1; |
| if ((int) a == Dynamic || (int) b == Dynamic) return Dynamic; |
| return plain_enum_min(a, b); |
| } |
| |
| /** |
| * \internal |
| * min_size_prefer_fixed is a variant of `min_size_prefer_dynamic` comparing MaxSizes. The difference is that finite values |
| * now have priority over Dynamic, so that min(3, Dynamic) gives 3. Indeed, whatever the actual value is |
| * (between 0 and 3), it is not more than 3. |
| */ |
| template<typename A, typename B> |
| inline constexpr int min_size_prefer_fixed(A a, B b) { |
| static_assert(is_int_or_enum_v<A>, "Argument a must be an integer or enum"); |
| static_assert(is_int_or_enum_v<B>, "Argument b must be an integer or enum"); |
| if ((int) a == 0 || (int) b == 0) return 0; |
| if ((int) a == 1 || (int) b == 1) return 1; |
| if ((int) a == Dynamic && (int) b == Dynamic) return Dynamic; |
| if ((int) a == Dynamic) return (int) b; |
| if ((int) b == Dynamic) return (int) a; |
| return plain_enum_min(a, b); |
| } |
| |
| /// \internal see `min_size_prefer_fixed`. No need for a separate variant for MaxSizes here. |
| template<typename A, typename B> |
| inline constexpr int max_size_prefer_dynamic(A a, B b) { |
| static_assert(is_int_or_enum_v<A>, "Argument a must be an integer or enum"); |
| static_assert(is_int_or_enum_v<B>, "Argument b must be an integer or enum"); |
| if ((int) a == Dynamic || (int) b == Dynamic) return Dynamic; |
| return plain_enum_max(a, b); |
| } |
| |
| /// \internal Calculate logical XOR at compile time |
| inline constexpr bool logical_xor(bool a, bool b) { |
| return a != b; |
| } |
| |
| /// \internal Calculate logical IMPLIES at compile time |
| inline constexpr bool check_implication(bool a, bool b) { |
| return !a || b; |
| } |
| } // end namespace internal |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_META_H |